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1 Introduction

Today, we are going to discuss learning noisy Parity functions with queries. If f is linear we can find it
efficiently by solving a linear system of equations. However, for an arbitrary f that is ”approximately”
linear, we would still like to efficiently find all linear functions that are ’close’ to f .

Under the general PAC model, this problem is conjectured to be hard, referred to as hardness of
parity with noise, hardness of decoding linear codes, maximum likelihood decoding of linear codes or
finding the largest Fourier coefficient. Sub-exponential algorithms exist for certain relaxations of the
problem, however, the general case is believed to be NP-hard.

Since the problem is infeasible in the PAC model, we will allow queries to f instead of random
sampling. This problem was first studied by Goldreich and Levin in the context of cryptographic
pseudorandom generators and has found applications in error correcting codes (list decoding of Hadamard
codes) and learning theory (by Kushilevitz and Mansour).

• Model for Learning with Noise

• Warmup 0 and 0′ - Brute force algorithms

• Warmup 1 - Learning exactly: zero error case

• Warmup 2 - Learning almost exactly fairly certainly: 1

poly(n)
error case

• Warmup 3 - Learning fairly exactly almost certainly: ≈ 1
4 error case

2 Model for Learning with Noise

2.1 Goal

Given a linear Boolean function, f : {±1}n → {±1}, and a threshold, θ:

1. Output all S ⊆ [n] such that |f̂(S)| ≥ θ → ”All Important FC’s”

2. Do not output any S ⊆ [n] such that |f̂(S)| < θ
2 → ”No Junk”

2.2 Recall

Prx[f(x) = χS(x)] = 1
2 + 1

2 f̂(S), so

Case 1 ⇒ Prx[f(x) = χS(x)] ≥ 1
2 + θ

2 ∀S : |f̂(S)| ≥ θ
Case 2 ⇒ Prx[f(x) = χS(x)] < 1

2 + θ
4 ∀S : |f̂(S)| < θ

2

2.3 Notation

• ei = (1, . . . , 1,−1, 1, . . . , 1) where -1 is in the ith position

• Bitwise product: x� y = (x1y1, x2y2, . . . , xnyn)
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Warmup 0: Brute Force

Suppose we are permitted arbitrary runtime and queries. We could merely evaluate all Fourier Coeffi-
cients, f̂(S), exactly.

Warmup 0’: (slightly less) Brute Force

If we are instead permitted only polynomially many queries and arbitrary runtime, we could estimate
all Fourier Coefficients, f̂(S), using the method from Lecture 12 (Estimating One Fourier Coefficient).
However, we can reuse the queries used to estimate the first Fourier Coefficient to estimate all (exponen-
tially) others, requiring only a polynomial number of queries total. This analysis (using Chernoff and
Union Bounds) is straightforward, as we saw in Lecture 15.

Warmup 1: Learning exactly

Suppose f = χS for some S (f is linear). This is the ”0 error case” and θ = 1.

Algorithm 1
Linear Algebra: merely solve for the coefficients:
Given n linearly independent xi’s, find the S that satisfies xi · S = f(xi) ∀i.

Algorithm 2
S ← ∅
for all i ∈ [n]

if f(
−→
1 ) 6= f(ei)

S ← S ∪ {i}
output S

The correctness of this Algorithm 2 is follows directly from the fact that χS(u) 6= χS(u� ei) ∀i ∈ S,
u ∈ {±1}n.

Warmup 2:

Suppose there exists an S such that f agrees with χS ”almost everywhere” - that is, on ≥ 1 − 1

poly(n)

fraction of inputs. It can be efficiently found with probability that depends on the closeness of agreement
between f and χS .

Algorithm
S ← ∅
choose r ∈R {±1}n
for all i ∈ [n]

if f(r) 6= f(r � ei)
S ← S ∪ {i}

output S

Why does this work? (Sketch)

First, notice that r and r� ei are both uniformly distributed and that f(r) = χS(r) and f(r� ei) =
χS(r � ei) for almost all r. So,

Pr[S not correct] ≤ 2n
1

poly(n)
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by the Union Bound. Here, the 2 arises from the 2 queries, the n arises from the union across all i ∈ [n]
and the 1

poly(n)
arises from the closesness of agreement between f and χS . So, as f and χS more closely

agree, the more the third term will dominate the second, driving down the probability of error.

Warmup 3:

Now suppose that we require only that there exists an S such that f agrees with χS on at least 3
4 + θ

2
of the inputs. Notice that there can be only one such S. Otherwise, if there were two such S’s, S1 and
S2, then they would have to agree with each other on at least 1

2 + θ of the inputs, contradicting the fact
that unique χS ’s differ on exactly half of the inputs. The algorithm from Warmup 2 would not suffice
to find an S differing so much with f , so we employ a new technique:

Algorithm
S ← ∅
choose r1, · · · , rt ∈R {±1}n
for all i ∈ [n]

if
∑t
j=1 f(rj)f(rj � ei) ≤ 0 . . . a majority of rj’s yield f(rj) 6= f(rj � ei)
S ← S ∪ {i}

output S

Why does this work? (Sketch)

Let S? ⊆ [n] be the unique set such that χS? agrees with f on ≥ 3
4 + θ

2 of the inputs. We seek to
bound the probability that the rj ’s collectively select some S 6= S?.

Pr[”wrong” answer for rj on i] = Pr[f(rj)f(rj � ei)(−1)1i∈S? = −1]

but, χS(rj)χS(rj � ei)(−1)1i∈S = 1 ∀S. So,

Pr[”wrong” answer for rj on i] = Pr[f(rj) 6= χS?(rj) ∪ f(rj � ei) 6= χS?(rj � ei)]

≤ (
1

4
− θ

2
) + (

1

4
− θ

2
) =

1

2
− θ

using the Union Bound and the observation that the rj ’s (and rj � ei’s) are uniformly distributed.
So, using the Chernoff Bounds, we can set t = Θ( 1

θ2 log n
δ ) to boost the probability of outputting S? to

1− δ:

Pr[most rj are ”correct” on i] ≥ 1− δ

n
Pr[most rj are ”correct” ∀i] ≥ 1− δ

Pr[Algorithm outputs S?] ≥ 1− δ

So, if we are lucky enough to learn a function which highly agrees with a single χS (i.e. on more
than 3

4 + θ
2 of the inputs), then we can find it with arbitrarily high probability, 1− δ, with a number of

samples that is polynomial in log n, log 1
δ and 1

θ .
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