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1 Today

• Examples of Fourier representations for basic functions

• Learning via Fourier representations(”low degree algorithm”)

2 Two Examples of Fourier representation of basic functions

2.1 AND on T ⊆ [1..n] such that |T | = k

Definition 1 (AND function)

AND(x) =

{
1 if ∀ ∈ T, xi = −1

−1 otherwise

Define

f(x) =

{
1 if ∀ ∈ T, xi = −1

0 otherwise
=

1− xi1
2

· 1− xi2
2

· · · 1− xik
2

=
∑
S⊆T

(−1)|S|

2k
χS

Then we have

AND(x) = 2f(x)− 1 = (−1 +
2 · 1
2k

) +
∑

S⊆T,S 6=∅

(−1)|S|

2k−1
χS

2.2 Decision Trees

Figure 1: Decision Tree
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Definition 2 (path functions)

fl(x) =
∏
i∈Vl

(1± xi) (Sign depends on whether the path go left or right)

=
1

2|V |

∑
S⊆Vl

(±1)# of left turns in the pathχS

=

{
1 if x takes path l

0 otherwise

Notice that no input reach more than one leaf, so we can define the decision tree as

f(x) =
∑
l

fl(x) · value(l)

3 Learning via Fourier Representation

3.1 Fourier Concentration

Definition 3 f : {−1}n → R has α(ε, n)-Fourier concentration if∑
S⊆[n],|S|>α(ε,n)

f̂(s)2 ≤ ε

Remark For boolean function f , by Parseval’s theorem, this implies∑
S⊆[n],|S|≤α(ε,n)

f̂(s)2 ≥ 1− ε

Observe 1 If f doesn’t depend on xi, then all f̂(S) for which i ∈ S satisfy f̂(S) = 0.

Observe 2 Any function depends on most k variables has∑
S,|S|>k

f̂(S)2 = 0

which implies k-Fourier concentration.

Lemma 1 f = AND on T ⊆ [1...n] has log( 4
ε )-Fourier concentration.

Proof Let k = |T |

• If k ≤ log( 4
ε ), we’ve done by the previous observation.

• If k > log( 4
ε ), we will show f has 0-Fourier concentration. Notice

f̂(∅)2 = (−1 +
2

2k
)2 > 1− ε

So ∑
S,|S|>0

f̂(S)2 ≤ ε

which implies f has 0-Fourier concentration.
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3.2 Low Degree Algorithm

• Given degree d , accuracy τ , confidence δ

• Take m = O(n
d

τ ln nd

δ ) samples

• For each S such that |S| ≤ d, CS ← estimate of f̂(S)

• Output h(x) =
∑
|S|≤d CSχS(x)

• Use sign(h(x)) for hypothesis

3.3 Approximating Functions with Low Fourier Degree

Claim 2 With probability ≥ 1− δ, ∀S such that |S| ≤ d, |CS − f̂(S)| ≤ γ for γ ←
√

τ
nd .

Proof Since samples are taken randomly, this claim can be proved by Hoeffling Bound and Union
Bound.

Theorem 3 If f has d = α(ε, n)-Fourier concentration, then h satisfies Ex[(f(x)−h(x))2] ≤ ε+ τ with
probability ≥ 1− δ.

Proof Define g(x) = f(x) − h(x). Then we have ĝ(S) = f̂(S) − ĥ(S). By definition, ∀S such that

|S| > d, ĥ(S) = 0⇒ ĝ(S) = f̂(S). By claim, ∀S such that |S| ≤ d, ĥ(S) = CS ⇒ |ĝ(S)| ≤ γ. Thus,

Ex[(f(x)− g(x))2] = Ex[g(x)2] =
∑
S

ĝ(S)2 =
∑
|S|≤d

γ2 +
∑
|S|>d

f̂(S)2 ≤ τ + ε

3.4 sign(h) is useful for prediction

Theorem 4 Let f : {±1}n → {±1} and h : {±1}n → R, then Pr[f(x) 6= sign(h(x))] ≤ E[(f(x) −
h(x))2].

Proof

E[(f(x)− h(x))2] =
1

2n

∑
(f(x)− h(x))2

Pr[f(x) 6= sign(h(x))] =
1

2n

∑
1sign(h(x)) 6=f(x)

Notice that (f(x) − h(x))2 ≥ 1f(x)6=sign(h(x)). This is because if f(x) = sign(h(x)), 1f(x)6=sign(h(x)) =
0 ≤ (f(x) − h(x))2. If f(x) 6= sign(h(x)), 1f(x)6=sign(h(x)) = 1 ≤ (f(x) − h(x))2. Then we can directly
prove this theorem.

Theorem 5 If C has Fourier concentration d = α(ε, h). There is a q = O(n
d

ε ) sample uniform distri-
bution learning algorithm for C which outputs hypothesis h′ such that Pr[f(x) 6= h′(x)] ≤ 2ε.

Proof Run low degree with τ = ε and outputs h such that Ex[(f(x)−h(x))2] 6= 2ε. Let h′ = sign(h),
then Pr[f(x) 6= h′(x)] ≤ 2ε.
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