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Lecture 10
Lecturer: Ronitt Rubinfeld Scribe: Hamidreza Jahanjou

Today, we are going to discuss the following
e Linearity Testing,

e Fourier Analysis.

1 Linearity Testing
Definition 1 A function f: {0,1}" — {0,1} is called linear if
Va,y € {0,1}" 5 f@) + f(y) = flx+y) (mod 2) 1)
where the plus sign represents mod 2 addition in vector space; specifically,
(1, ey Zn) + (Y15 o0y Yn) = (z1 + 31 (mod 2), 2 +y2 (mod 2),..., z, + y, (mod 2)).

The property defined by equation (1) is also known as the homomorphism property.
Some examples of linear functions are

e f(z) =0,

e f(z) = x;, (projection functions),

o f(x)

@ Z;.
i=1
A useful relation is the following for which we give an informal proof.

Claim 1 A function f:{0,1}" — {0,1} is linear iff Vo : f(x) =& z; for some S C [n].
€S

Sketch of Proof A linear function f is uniquely determined by all f(u;) where u; = (0, ...,0, 1,0, ...,0)
is the ith unit vector. Clearly, 2" possible settings of f(u;)’s means 2™ possible linear functions. On the
other hand, there are only 2" sets S C [n]. Consequently, we’re accounting for all linear functions. H

How can we tell if a function f is linear? Querying can be very inefficient since points of non-linearity
may be very sparse in the whole space. This motivates the following definition.

Definition 2 A function f is e-close to linear if there exists a linear function g such that

_ Helf@) = g@)} 4
2n =

— €.

Prf(z) = g(z)]
Otherwise f is e-far to linear.

Base on this idea, we propose a linearity test.

function TEST
repeat r <1
pick z,y €r {0,1}
if [f(x) + f(y) # f(z +y) (mod 2)] then
Fail and Halt.
end if
until r = O(2)



Output Pass.
end function

Regarding the behavior of our test, we observe the following.
e if f is linear, then Pr[Pass| = 1,

e if f is e-far from linear, then Pr[Fail] > 2.

A Notational Switch

From now on, the following changes are in effect:

Previously Now
fs: {0,1}™ — {0,1} fs o {£1}" = {£1}
fs(z) :2 T =) s ®i (mod 2) | fs(z) = [[icgzi

We note that, with this notational change, f(z)f(y) # f(z,y) < f(z)f(y)f(xy) = —1. Therefore,
it’s possible to define the following indicator random variables

1— f(x)f(y)f(xy) ] O if the test passes,
2 ~ |1 if the test fails.

We also define their expected value:

5—E,, [1 - f(x)g(y)f(xy)} _

The expected value of the indicator random variable is the probability of rejection in one pass. The
probability of being accepted is similarly define as

L+ S )]

But, how can we calculate the value of these expressions? This is where Fourier Analysis comes in.

2 Fourier Analysis

Let’s begin by considering the set G = {g | g : {£1}"™ — R}. Note that G is a vector space of dimension
2™, In other words, all functions can be written as linear combinations of 2" basis functions. For
7,9 € G, their inner product is defined as

o) =5 O Fela).

ze{£1}"

Next comes the choice of a basis for our vector space. Here we consider two possibilities. First, let’s
consider indicator functions

(@) 1 if z=a,
eq(x) =
0 if z #a.



In this case an arbitrary function f € G may be written as f(z) = Y, f(z)eqa(x). Even though
indicator functions constitute an orthonormal basis, they’re not very useful. Instead, we’ll use character
functions

Xs(x) = H Ti.
ies
Some examples of functions that can be written in terms of character functions:
e f(x) =1 can be written as 1 which is x,.
e f(x) = x; can be written as x; which is X{iy:
e And(zy,z2) can be written as % + %xl + %1’2 - %xlxg.
e Maj(x1,x2,x3) can be written as %xl + %xz + %Sﬂg — %xl.’ﬁng.

We haven’t shown that character functions form an orthonormal basis yet. This is done in two steps.
First we prove their orthonormality. Next, we show that they are indeed a basis.

Lemma 2 The set {x4|S C [n]} forms an orthonormal basis.

Proof Normality:

1 2
<X57Xs> = on ZL: (Xs(‘r)) =1
1’s
where the second equality follows from the observation that the LHS expression is an average of 1’s.
Orthogonality: suppose S # T,

<X57XT> = on Z Xs(m)XT(x)
ze{£1l}
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where %7 is  with the j-th entry flipped and the last equality holds because z; +7; = 0. B

Now, we need to show that any f € G, has a unique representation as a linear combination of xq’s.
The proof of the following theorem is left as an exercise.



Theorem 3 Suppose f € G, then
/= Z f(S)XS
SC[n]

where

F(8) = (fxs) = 5 3 Fhxs().

Some nice properties:

L. XgX1 = Xgar

2. (parity functions:) if f = xg, then

Proof

1

. Yoo flxgl) + ) fla)xs(@)
2 [w:f(m)—xs(w)+ w:f(z)ixs(w)+}
= 2in [@" = Ha | f(@) # xg(@)}) x 1+ ({z | f(z) # xg(2)}]) x (=1)]

=1-2Pr[f(z) # x4(2)].

4. if S # T, then dist(xg, xp) = 3-

Sketch of Proof For S # T, consider the Fourier representation of xg, and in particular the
T'th Fourier coefficient. It is equal to 0 by the orthonormality of xg and x.p.. Furthermore, by
property 3, we have 0 = 1 — 2Pr[xq # x|. Solving it gives us property 4. B

Comment: Hadamard codes encode a € {£1}™ by bit strings of length 2™ by writing the value of x, for
all n-bit inputs. Now, for all a # b we observe that Had(a) and Had(b) differ on % of the bits.



