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Lecture 10
Lecturer: Ronitt Rubinfeld Scribe: Hamidreza Jahanjou

Today, we are going to discuss the following

• Linearity Testing,

• Fourier Analysis.

1 Linearity Testing

Definition 1 A function f : {0, 1}n → {0, 1} is called linear if

∀x, y ∈ {0, 1}n : f(x) + f(y) = f(x+ y) (mod 2) (1)

where the plus sign represents mod 2 addition in vector space; specifically,

(x1, ..., xn) + (y1, ..., yn) = (x1 + y1 (mod 2), x2 + y2 (mod 2), ..., xn + yn (mod 2)).

The property defined by equation (1) is also known as the homomorphism property.
Some examples of linear functions are

• f(x) = 0,

• f(x) = xi, (projection functions),

• f(x) =
n⊕
i=1

xi.

A useful relation is the following for which we give an informal proof.

Claim 1 A function f : {0, 1}n → {0, 1} is linear iff ∀x : f(x) =
⊕
i∈S

xi for some S ⊆ [n].

Sketch of Proof A linear function f is uniquely determined by all f(ui) where ui = (0, ..., 0, 1, 0, ..., 0)
is the ith unit vector. Clearly, 2n possible settings of f(ui)’s means 2n possible linear functions. On the
other hand, there are only 2n sets S ⊆ [n]. Consequently, we’re accounting for all linear functions.

How can we tell if a function f is linear? Querying can be very inefficient since points of non-linearity
may be very sparse in the whole space. This motivates the following definition.

Definition 2 A function f is ε-close to linear if there exists a linear function g such that

Pr[f(x) = g(x)] =
|{x|f(x) = g(x)}|

2n
≥ 1− ε.

Otherwise f is ε-far to linear.

Base on this idea, we propose a linearity test.

function Test
repeat r ← 1

pick x, y ∈R {0, 1}
if [f(x) + f(y) 6= f(x+ y) (mod 2)] then

Fail and Halt.
end if

until r = O( 1
ε )
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Output Pass.
end function

Regarding the behavior of our test, we observe the following.

• if f is linear, then Pr[Pass] = 1,

• if f is ε-far from linear, then Pr[Fail] ≥ 3
4 .

A Notational Switch

From now on, the following changes are in effect:

Previously Now

fs : {0, 1}n → {0, 1} fs : {±1}n → {±1}

fs(x) =
⊕
i∈S

xi =
∑
i∈S xi (mod 2) fs(x) =

∏
i∈S xi

We note that, with this notational change, f(x)f(y) 6= f(x, y) ⇐⇒ f(x)f(y)f(xy) = −1. Therefore,
it’s possible to define the following indicator random variables

1− f(x)f(y)f(xy)

2
=

{
0 if the test passes,

1 if the test fails.

We also define their expected value:

δ = Ex,y
[

1− f(x)f(y)f(xy)

2

]
.

The expected value of the indicator random variable is the probability of rejection in one pass. The
probability of being accepted is similarly define as

1− δ = Ex,y
[

1 + f(x)f(y)f(xy)

2

]
.

But, how can we calculate the value of these expressions? This is where Fourier Analysis comes in.

2 Fourier Analysis

Let’s begin by considering the set G = {g | g : {±1}n → R}. Note that G is a vector space of dimension
2n. In other words, all functions can be written as linear combinations of 2n basis functions. For
f, g ∈ G, their inner product is defined as

〈f, g〉 =
1

2n

∑
x∈{±1}n

f(x)g(x).

Next comes the choice of a basis for our vector space. Here we consider two possibilities. First, let’s
consider indicator functions

ea(x) =

{
1 if x = a,

0 if x 6= a.
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In this case an arbitrary function f ∈ G may be written as f(x) =
∑
a f(x)ea(x). Even though

indicator functions constitute an orthonormal basis, they’re not very useful. Instead, we’ll use character
functions

χ
S
(x) =

∏
i∈S

xi.

Some examples of functions that can be written in terms of character functions:

• f(x) = 1 can be written as 1 which is χ∅.

• f(x) = xi can be written as xi which is χ{i}.

• And(x1, x2) can be written as 1
2 + 1

2x1 + 1
2x2 − 1

2x1x2.

• Maj(x1, x2, x3) can be written as 1
2x1 + 1

2x2 + 1
2x3 − 1

2x1x2x3.

We haven’t shown that character functions form an orthonormal basis yet. This is done in two steps.
First we prove their orthonormality. Next, we show that they are indeed a basis.

Lemma 2 The set {χ
S
| S ⊆ [n]} forms an orthonormal basis.

Proof Normality:

〈χ
S
, χ

S
〉 =

1

2n

∑
x

(χ
S
(x))2︸ ︷︷ ︸
1’s

= 1

where the second equality follows from the observation that the LHS expression is an average of 1’s.
Orthogonality: suppose S 6= T ,

〈χ
S
, χ

T
〉 =

1

2n

∑
x∈{±1}

χ
S
(x)χ

T
(x)

=
1

2n

∑
x

(∏
i∈S

xi
∏
j∈T

xj
)

=
1

2n

∑
x

( ∏
x∈S\T

xi
∏

j∈T\S

xj

1︷ ︸︸ ︷∏
k∈S∩T

x2
k

)
=

1

2n

∑
x

( ∏
i∈S∆T

xi
)

=
1

2n

∑
x,x⊕j

( ∏
i∈S∆T

xi +
∏

i∈S∆T

x⊕ji
)

=
1

2n

∑
x,x⊕j

∏
i∈S∆T\{j}

[xj + xj ]

= 0

where x⊕j is x with the j-th entry flipped and the last equality holds because xj + xj = 0.

Now, we need to show that any f ∈ G, has a unique representation as a linear combination of χ
S
’s.

The proof of the following theorem is left as an exercise.
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Theorem 3 Suppose f ∈ G, then

f =
∑
S⊆[n]

f̂(S)χ
S

where

f̂(S) = 〈f, χ
S
〉 =

1

2n

∑
x

f(x)χ
S
(x).

Some nice properties:

1. χ
S
χ

T
= χ

S∆T
.

2. (parity functions:) if f = χ
S
, then

f̂(Z) =

{
1 if Z = S,

0 if Z 6= S.

3.
f̂(S) = 1− 2 Pr[f(x) 6= χ

S
(x)︸ ︷︷ ︸

dist(f,χS)

].

Proof

f̂(S) =
1

2n

∑
x

f(x)χ
S
(x)

=
1

2n

[ ∑
x:f(x)=χS(x)

f(x)χ
S
(x)︸ ︷︷ ︸

1

+
∑

x:f(x)6=χS(x)

f(x)χ
S
(x)︸ ︷︷ ︸

−1

]

=
1

2n
[
(2n − |{x | f(x) 6= χ

S
(x)}|)× 1 + (|{x | f(x) 6= χ

S
(x)}|)× (−1)

]
= 1− 2 Pr[f(x) 6= χ

S
(x)].

4. if S 6= T , then dist(χ
S
, χ

T
) = 1

2 .

Sketch of Proof For S 6= T , consider the Fourier representation of χ
S
, and in particular the

T th Fourier coefficient. It is equal to 0 by the orthonormality of χ
S

and χ
T

. Furthermore, by
property 3, we have 0 = 1− 2 Pr[χ

S
6= χ

T
]. Solving it gives us property 4.

Comment: Hadamard codes encode a ∈ {±1}n by bit strings of length 2n by writing the value of χa for
all n-bit inputs. Now, for all a 6= b we observe that Had(a) and Had(b) differ on 1

2 of the bits.
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