Lecture 10

Lecturer: Ronitt Rubinfeld

Today, we are going to discuss the following

- Linearity Testing,
- Fourier Analysis.

1 Linearity Testing

Definition 1 A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is called linear if

$$
\begin{equation*}
\forall x, y \in\{0,1\}^{n}: f(x)+f(y)=f(x+y) \quad(\bmod 2) \tag{1}
\end{equation*}
$$

where the plus sign represents mod 2 addition in vector space; specifically,

$$
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}(\bmod 2), x_{2}+y_{2}(\bmod 2), \ldots, x_{n}+y_{n}(\bmod 2)\right)
$$

The property defined by equation (1) is also known as the homomorphism property. Some examples of linear functions are

- $f(x)=0$,
- $f(x)=x_{i}$ (projection functions),
- $f(x)=\bigoplus_{i=1}^{n} x_{i}$.

A useful relation is the following for which we give an informal proof.
Claim 1 A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is linear iff $\forall x: f(x)=\bigoplus_{i \in S} x_{i}$ for some $S \subseteq[n]$.
Sketch of Proof A linear function f is uniquely determined by all $f\left(u_{i}\right)$ where $u_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ is the i th unit vector. Clearly, 2^{n} possible settings of $f\left(u_{i}\right)$'s means 2^{n} possible linear functions. On the other hand, there are only 2^{n} sets $S \subseteq[n]$. Consequently, we're accounting for all linear functions.

How can we tell if a function f is linear? Querying can be very inefficient since points of non-linearity may be very sparse in the whole space. This motivates the following definition.

Definition $2 A$ function f is ϵ-close to linear if there exists a linear function g such that

$$
\operatorname{Pr}[f(x)=g(x)]=\frac{|\{x \mid f(x)=g(x)\}|}{2^{n}} \geq 1-\epsilon .
$$

Otherwise f is ϵ-far to linear.
Base on this idea, we propose a linearity test.
function Test
repeat $r \leftarrow 1$
pick $x, y \in_{R}\{0,1\}$
if $[f(x)+f(y) \neq f(x+y)(\bmod 2)]$ then
Fail and Halt.
end if
until $r=O\left(\frac{1}{\epsilon}\right)$

Output Pass.

end function

Regarding the behavior of our test, we observe the following.

- if f is linear, then $\operatorname{Pr}[\mathrm{Pass}]=1$,
- if f is ϵ-far from linear, then $\operatorname{Pr}[$ Fail $] \geq \frac{3}{4}$.

A Notational Switch

From now on, the following changes are in effect:

Previously	Now
$f_{s}:\{0,1\}^{n} \rightarrow\{0,1\}$	$f_{s}:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$
$f_{s}(x)=\bigoplus_{i \in S} x_{i}=\sum_{i \in S} x_{i}(\bmod 2)$	$f_{s}(x)=\prod_{i \in S} x_{i}$

We note that, with this notational change, $f(x) f(y) \neq f(x, y) \Longleftrightarrow f(x) f(y) f(x y)=-1$. Therefore, it's possible to define the following indicator random variables

$$
\frac{1-f(x) f(y) f(x y)}{2}= \begin{cases}0 & \text { if the test passes } \\ 1 & \text { if the test fails. }\end{cases}
$$

We also define their expected value:

$$
\delta=\mathbb{E}_{x, y}\left[\frac{1-f(x) f(y) f(x y)}{2}\right] .
$$

The expected value of the indicator random variable is the probability of rejection in one pass. The probability of being accepted is similarly define as

$$
1-\delta=\mathbb{E}_{x, y}\left[\frac{1+f(x) f(y) f(x y)}{2}\right]
$$

But, how can we calculate the value of these expressions? This is where Fourier Analysis comes in.

2 Fourier Analysis

Let's begin by considering the set $\mathbf{G}=\left\{g \mid g:\{ \pm 1\}^{n} \rightarrow \mathrm{R}\right\}$. Note that \mathbf{G} is a vector space of dimension 2^{n}. In other words, all functions can be written as linear combinations of 2^{n} basis functions. For $f, g \in \mathbf{G}$, their inner product is defined as

$$
\langle f, g\rangle=\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}} f(x) g(x) .
$$

Next comes the choice of a basis for our vector space. Here we consider two possibilities. First, let's consider indicator functions

$$
e_{a}(x)= \begin{cases}1 & \text { if } x=a \\ 0 & \text { if } x \neq a\end{cases}
$$

In this case an arbitrary function $f \in \mathbf{G}$ may be written as $f(x)=\sum_{a} f(x) e_{a}(x)$. Even though indicator functions constitute an orthonormal basis, they're not very useful. Instead, we'll use character functions

$$
\chi_{S}(x)=\prod_{i \in S} x_{i}
$$

Some examples of functions that can be written in terms of character functions:

- $f(x)=1$ can be written as 1 which is χ_{\emptyset}.
- $f(x)=x_{i}$ can be written as x_{i} which is $\chi_{\{i\}}$.
- $\operatorname{And}\left(x_{1}, x_{2}\right)$ can be written as $\frac{1}{2}+\frac{1}{2} x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{1} x_{2}$.
- $\operatorname{Maj}\left(x_{1}, x_{2}, x_{3}\right)$ can be written as $\frac{1}{2} x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{1} x_{2} x_{3}$.

We haven't shown that character functions form an orthonormal basis yet. This is done in two steps. First we prove their orthonormality. Next, we show that they are indeed a basis.

Lemma 2 The set $\left\{\chi_{S} \mid S \subseteq[n]\right\}$ forms an orthonormal basis.
Proof Normality:

$$
\left\langle\chi_{\mathrm{S}}, \chi_{\mathrm{S}}\right\rangle=\frac{1}{2^{n}} \sum_{x} \underbrace{\left(\chi_{\mathrm{S}}(x)\right)^{2}}_{1^{\prime} \mathrm{s}}=1
$$

where the second equality follows from the observation that the LHS expression is an average of 1 's. Orthogonality: suppose $S \neq T$,

$$
\begin{aligned}
\left\langle\chi_{\mathrm{S}}, \chi_{\mathrm{T}}\right\rangle & =\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}} \chi_{\mathrm{S}}(x) \chi_{\mathrm{T}}(x) \\
& =\frac{1}{2^{n}} \sum_{x}\left(\prod_{i \in S} x_{i} \prod_{j \in T} x_{j}\right) \\
& =\frac{1}{2^{n}} \sum_{x}(\prod_{x \in S \backslash T} x_{i} \prod_{j \in T \backslash S} x_{j} \overbrace{\prod_{k \in S \cap T} x_{k}^{2}}^{1}) \\
& =\frac{1}{2^{n}} \sum_{x}\left(\prod_{i \in S \Delta T} x_{i}\right) \\
& =\frac{1}{2^{n}} \sum_{x, x^{\oplus j}}\left(\prod_{i \in S \Delta T} x_{i}+\prod_{i \in S \Delta T} x_{i}^{\oplus j}\right) \\
& =\frac{1}{2^{n}} \sum_{x, x^{\oplus j}} \prod_{i \in S \Delta T \backslash\{j\}}\left[x_{j}+\overline{x_{j}}\right] \\
& =0
\end{aligned}
$$

where $x^{\oplus j}$ is x with the j-th entry flipped and the last equality holds because $x_{j}+\overline{x_{j}}=0$.
Now, we need to show that any $f \in \mathbf{G}$, has a unique representation as a linear combination of χ_{S} 's. The proof of the following theorem is left as an exercise.

Theorem 3 Suppose $f \in \mathbf{G}$, then

$$
f=\sum_{S \subseteq[n]} \hat{f}(S) \chi_{S}
$$

where

$$
\hat{f}(S)=\left\langle f, \chi_{S}\right\rangle=\frac{1}{2^{n}} \sum_{x} f(x) \chi_{S}(x)
$$

Some nice properties:

1. $\chi_{\mathrm{S}} \chi_{\mathrm{T}}=\chi_{S \Delta T}$.
2. (parity functions:) if $f=\chi_{\mathrm{S}}$, then

$$
\hat{f}(Z)= \begin{cases}1 & \text { if } Z=S \\ 0 & \text { if } Z \neq S\end{cases}
$$

3.

$$
\hat{f}(S)=1-2 \operatorname{Pr}[\underbrace{f(x) \neq \chi_{\mathrm{S}}(x)}_{\operatorname{dist}\left(f, \chi_{S}\right)}]
$$

Proof

$$
\begin{aligned}
\hat{f}(S) & =\frac{1}{2^{n}} \sum_{x} f(x) \chi_{\mathrm{S}}(x) \\
& =\frac{1}{2^{n}}[\sum_{x: f(x)=\chi_{\mathrm{S}}(x)} \underbrace{f(x) \chi_{\mathrm{S}}(x)}_{1}+\sum_{x: f(x) \neq \chi_{\mathrm{S}}(x)} \underbrace{f(x) \chi_{\mathrm{S}}(x)}_{-1}] \\
& =\frac{1}{2^{n}}\left[\left(2^{n}-\left|\left\{x \mid f(x) \neq \chi_{\mathrm{S}}(x)\right\}\right|\right) \times 1+\left(\left|\left\{x \mid f(x) \neq \chi_{\mathrm{S}}(x)\right\}\right|\right) \times(-1)\right] \\
& =1-2 \operatorname{Pr}\left[f(x) \neq \chi_{\mathrm{S}}(x)\right] .
\end{aligned}
$$

4. if $S \neq T$, then $\operatorname{dist}\left(\chi_{\mathrm{S}}, \chi_{\mathrm{T}}\right)=\frac{1}{2}$.

Sketch of Proof For $S \neq T$, consider the Fourier representation of χ_{S}, and in particular the T th Fourier coefficient. It is equal to 0 by the orthonormality of χ_{S} and χ_{T}. Furthermore, by property 3 , we have $0=1-2 \operatorname{Pr}\left[\chi_{\mathrm{S}} \neq \chi_{\mathrm{T}}\right]$. Solving it gives us property 4 .

Comment: Hadamard codes encode $a \in\{ \pm 1\}^{n}$ by bit strings of length 2^{n} by writing the value of χ_{a} for all n-bit inputs. Now, for all $a \neq b$ we observe that $\operatorname{Had}(a)$ and $\operatorname{Had}(b)$ differ on $\frac{1}{2}$ of the bits.

