
6.895 Randomness and Computation April 16, 2008

Lecture 19: PRG for Space-Bounded Computation

Lecturer: Ronitt Rubinfeld (lecture given by Krzysztof Onak) Scribe: Ning Xie

1 Definitions and Models of Computation

A randomized algorithm A can be thought of as a function A : {0, 1}n × {0, 1}R(n) → {Accept, Reject},
that is, function A is a deterministic algorithm that takes two input strings x and y, where x is the
“real” input to the randomized algorithm and y is the random string used during the computation.

Definition 1 A (deterministic) function G : {0, 1}m → {0, 1}R(n) is a pseudorandom generator (PRG)
for algorithm A with parameter ǫ if for all x,

∣

∣

∣

∣

Pr
y

[A(x, y) accepts]− Pr
z

[A(x, G(z)) accepts]

∣

∣

∣

∣

≤ ǫ.

We are going to study the following PRG construction.

Theorem 2 (Nisan 1990) For any algorithm A that runs in S(n) = Ω(log n) space and uses R(n)
random bits, there is a pseudorandom generator for A with parameter 1

10 that uses O(S(n) log R(n))
random bits and runs in O(S(n) log R(n)) space.

The following claim easily follows.

Corollary 3 (Nisan 1990) If a randomized algorithm A runs in S(n) = Ω(log n) space and uses R(n)
random bits, then A can be converted into a randomized algorithm A′ that runs in O(S(n) log R(n))
space and uses O(S(n) log R(n)) random bits.

Consider the model of Turing machine computation when space complexity is our main concern. The
TM has two tapes, one is read-only input tape of size n and the other is a work tape of size S(n). The
space complexity of the TM is S(n) (that is, the read-only input tape will not be counted). Such a TM
has at most n · 2O(s(n)) states, and if s(n) = Ω(log n), this can be bounded by 2O(s(n)) states.

2 Pairwise Independent Hash Functions and Hash Mixing Lemma

Definition 4 Let H = {h : {0, 1}r → {0, 1}r} be a set of functions. H is called a family of pairwise
independent hash functions (or a universal family of hash functions) if for all x1 6= x2 and for all
y1, y2 ∈ {0, 1}r,

Pr
h∈H

[h(x1) = y1 and h(x2) = y2] = 2−2r.

For our PRG construction purposes, we only need the following well-known fact about universal hash
functions.

Fact 5 For every r > 0, there exists a small family H of pairwise independent hash functions that go
from {0, 1}r to {0, 1}r such that each h ∈ H can be represented by O(r) bits and h(x) can be computed
in O(r) space.

For example, we can take H to be the set of all affine functions over the field F2r .
The next lemma about families of pairwise independent hash functions will be the main technical

tool in our proof. We first need to introduce the following definitions.

Definition 6 For a subset A of {0, 1}r, µ(A) = |A|
2r .

1

Definition 7 Let A, B ⊆ {0, 1}r, h : {0, 1}r → {0, 1}r and ǫ > 0. We say h is (ǫ, A, B)-good if

∣

∣

∣

∣

Pr
y∈{0,1}r

[y ∈ A and h(y) ∈ B]− Pr
y,z∈{0,1}r

[y ∈ A and z ∈ B]

∣

∣

∣

∣

≤ ǫ,

or equivalently,
∣

∣

∣

∣

Pr
y∈{0,1}r

[y ∈ A and h(y) ∈ B]− µ(A)µ(B)

∣

∣

∣

∣

≤ ǫ

Lemma 8 (Hash Mixing Lemma) Let H be a universal family of hash functions that map {0, 1}r to
{0, 1}r, then for any A, B ⊆ {0, 1}r,

Pr
h∈H

[h is not (ǫ, A, B)-good] ≤ ǫ,

where ǫ = 2−r/3.

Proof We would like to bound the number of h ∈ H such that
∣

∣Pry∈{0,1}r [y ∈ A and h(y) ∈ B]− µ(A)µ(B)
∣

∣ >

ǫ, or equivalently, the number of h’s with

∣

∣

∣

∣

Pr
y∈A

[h(y) ∈ B]− µ(B)

∣

∣

∣

∣

>
ǫ

µ(A)
. (1)

Now define an indicator random variable Zh
y by

Zh
y =

{

1 if h(y) ∈ B,

0 otherwise.

By multiplying both sides by A, we can rewrite (1) in terms of Zh
y

∣

∣

∣

∣

∣

∣

∑

y∈A

Zh
y − |A|µ(B)

∣

∣

∣

∣

∣

∣

>
ǫ|A|

µ(A)
= ǫ · 2r.

First note that, since H is a pairwise independent family of hash functions, one can easily check that it
is also 1-wise independent. Namely, Prh∈H [h(x) = y] = 2−r for all x and y. It follows that E[Zh

y] = µ(B)

and E

[

∑

y∈A Zh
y

]

= |A|µ(B).

Let Y =
∑

y∈A Zh
y , a random variable that depends on h. As we already know that E[Y] = |A|µ(B),

our plan is to compute the variance of Y and use Chebyshev’s inequality to bound from above the
probability that Y deviates from its mean.

E
[

Y 2
]

= E



(
∑

y∈A

Zh
y)2



 = E





∑

y∈A

∑

z∈A

Zh
y Zh

z





= E





∑

y∈A

Zh
y Zh

y



 + E





∑

y∈A

∑

z∈A,z 6=y

Zh
y Zh

z





= E





∑

y∈A

Zh
y



 +
∑

y∈A

∑

z∈A,z 6=y

E[Zh
y]E[Zh

z]

= |A|µ(B) + |A|(|A| − 1)µ(B)2,

2

ty
�

�
�

��

A
A
A
AU

←− h2

ty th2(y)
�

�
�
��

B
B
B
BBN

�
�
�

��

B
B
B
BBNt t t t

←− h1

y h1(y)h2(y) h1(h2(y))

Figure 1: An example of how to construct the generator when ℓ = 2. We assign a randomly chosen
hash function for each layer (in this example h1 and h2 are the hash functions). The left child is simply
the same string as the parent node and the right child is obtained by applying the hash function of that
layer to the string at the parent node. The output of the generator is the concatenation of all the strings
on the bottom layer (in this example, the output is y ◦ h1(y) ◦ h2(y) ◦ h1(h2(y))).

where in the second-to-last step, we use the fact that H is a family of universal (pairwise independent)
hash functions. Therefore,

Var[Y] = E[Y 2]− E[Y]2 = |A|µ(B) + |A|(|A| − 1)µ(B)2 − (|A|µ(B))2 ≤ |A|µ(B).

Now applying Chebyshev’s inequality, which says Pr[|Y − E[Y]| > δ] <
Var[Y]

δ2 , with δ = ǫ · 2r, we get

Pr





∣

∣

∣

∣

∣

∣

∑

y∈A

Zh
y − |A|µ(B)

∣

∣

∣

∣

∣

∣

> ǫ2r



 <
|A|µ(B)

ǫ222r
≤

2r · 1

2−2r/3 · 22r
= 2−r/3 = ǫ.

This completes the proof of the lemma.

3 Nisan’s Pseudorandom Generator

Now we describe how to construct the PRGs that “fool” space-bounded computation. Define a generator

Gℓ : {0, 1}r×Hℓ → ({0, 1}r)2
ℓ

, where H is a family of universal hash functions. We define Gℓ recursively
as:

G0(y) = y;

and
Gℓ(y, h1, . . . , hℓ−1, hℓ) = Gℓ−1(y, h1, . . . , hℓ−1) ◦Gℓ−1(hℓ(y), h1, . . . , hℓ−1),

where ◦ denotes concatenation. That is, we first randomly pick ℓ hash functions from H and then
recursively apply these hash functions to the seed input y of length r to obtained a pseudorandom string
Gℓ(y, h1, . . . , hℓ) of length 2ℓ · r. An example with ℓ = 2 is illustrated in Figure 1.

3

We now consider the following model of randomized computation. Let us fix x, the input to our
algorithm A. We now create a finite state automaton Q with states corresponding to all possible
configurations of the Turing machine on x. Transitions between states in the automaton are driven
by consecutive random bits delivered to the algorithm. Let us denote the number of all states of the
automaton by T . Recall that T = 2O(S(n)). One of the states is the start state, and some of the states
are marked as accepting states. If after R(n) transitions corresponding to R(n) random bits, Q ends up
at an accepting state, it accepts the input. Otherwise, Q rejects the input.

Let D be a distribution over {0, 1}k, sequences of k bits. We denote by Q(D) the probability transition
matrix of size T × T . The (i, j)-th entry of Q(D) equals the probability that the length-k sequence of
bits chosen according to D results in transition from the i-th state to the j-th state. If we know Q(D)
for a distribution D on R(n) bits, we can compute the corresponding probability of accepting the input.

Let U{0,1}n denote the uniform distribution over {0, 1}n. Therefore, if the random bits are truly
random, the transition matrix of Q will be Q(U{0,1}r·2k). However, if the random bits come from a

pseudorandom generator, the corresponding transition matrix may be different. We need to define a
measure of distance between the effects of two distributions. We use the standard ℓ1-norm for this
purpose.

Definition 9 For any x ∈ R
s, ‖x‖ =

∑s
i=1 |xi|. For any s× s real-valued matrix Q, the ℓ1-norm of Q

is
‖Q‖ = sup

‖x‖=1

‖xQ‖.

Definition 10 A sequence of hash functions (h1, . . . , hk) is called ǫ-good if

‖Q(G(U{0,1}r , h1, . . . , hk))−Q(U{0,1}r·2k)‖ ≤ ǫ.

The correctness of Nisan’s PRG follows from the following main lemma.

Lemma 11
Pr[(h1, . . . , hk) is not (2k − 1)T 2ǫ-good] ≤ kT 3ǫ.

4

