
6.5240 Sublinear Time Algorithms October 12, 2022

Lecture 9
Lecturer: Ronitt Rubinfeld Scribe: Akash Das

In this lecture, we continue the discussion of finding a sublinear time algorithm for testing if a graph
is triangle-free.

Recall last lecture we presented an outline of what the algorithm should like. We also stated the Triangle
Removal Lemma, which will be essential in our analysis of the algorithm. Additionally, last lecture we
stated the Szemerédi Regularity Lemma and proved the Triangle Counting Lemma, which we will need
this lecture to prove the Triangle Removal Lemma.

1 Triangle-free Testing

1.1 Setup and Goal

Since we want a tester to see if a graph is triangle-free we should first define what exactly this property
is. The definition is given below.

Definition 1 (Triangle-free) We say a graph G = (V,E) is triangle-free if there doesn’t exist distinct
u, v, w ∈ V such that (u, v), (v, w), (u,w) ∈ E.

We also want to have some notion that a graph is far from being triangle free. In the next definition,
we will do just that:

Definition 2 (ϵ-far) We say that a graph G is ϵ-far from being triangle-free if one needs to delete at
least ϵn2 edges from the graph to make it triangle-free.

Now, suppose we are given a graph G = (V,E). We want to find a sublinear time algorithm that will
either:

1. Accept if G is triangle-free

2. Reject with probability greater than 2
3 if G is ϵ-far from triangle-free.

The outline for the algorithm we want to use is shown below:

Algorithm 1 Outline for Triangle-free tester

t← some constant that will be specified later
i← 0
N ← n
while i < t do

Sample distinct vertices u, v, w from G and check if it’s a triangle.
If yes, then Reject
i← i+ 1

end while
Accept

Note that if we let t = O(n3), where n = |V |, this algorithm would clearly work the way we want it to.
Our goal to choose a value of t that doesn’t depend on n and only depends on ϵ. To do this, we will
need the Triangle Removal Lemma, which is stated and proved in section 1.4.

1



1.2 Prerequisite Definitions

Before delving into the statements of the lemmas we will need, we will first recall some important
definitions from last lecture. This definitions will be essential for understanding the statements of the
Triangle-Counting Lemma and the Szemerédi Regularity Lemma.

Definition 3 Given a graph G = (V,E) and two subsets A,B ⊆ V , we define

e(A,B) = |{(a, b) ∈ E|a ∈ A, b ∈ B}|.

Note that e(A,B) is just the number of edges between the two subsets.

Definition 4 (Edge density) Given the same setup in the previous definition, we define the edge den-
sity between the two sets to be

d(A,B) =
e(A,B)

|A||B|

Definition 5 (ϵ-regular) Given two subsets of vertices A and B, we say that (A,B) is ϵ-regular if
∀A′ ⊆ A,B′ ⊆ B such that |A′| ≥ ϵ|A| and |B′| ≥ ϵ|B|, we have that |d(A,B)− d(A′, B′)| < ϵ.

Definition 6 (Equipartition) Given a set X, we say that an equipartition of X is a partition in which
every part has the same size.

For the purposes of this lecture, we will allow parts of an equipartition to have roughly equal size (if |X|
isn’t divisible by the number of parts we are dividing the set into, then it isn’t possible to get a partition
in which every part is exactly the same).

Definition 7 (Refinement) Given a partition P of the set S, we say that the partition Q of the set S
is a refinement of P if every part of Q is a subset of a part of P. More formally, if we have partitions
of S defined below

P =

m⊔
i=1

Pi,Q =

n⊔
i=j

Qj ,

we say Q is a refinement of P if and only if for every 1 ≤ i ≤ n, there exists a 1 ≤ j ≤ m such that
Qi ⊆ Pj.

1.3 Two Necessary Lemmas

With these definitions in mind, we will state the Triangle Counting Lemma and the Szemerédi Regularity
Lemma, both of which are very important to us for proving the Triangle Removal Lemma, which will
lead to a sublinear time tester for the triangle-free property. We did state these lemmas in the previous
lecture, but we will present slightly different formulations of the lemmas in this lecture that will be useful
for us today.

Lemma 8 (Triangle-Counting Lemma) For all 0 < η < 1, there exists γ = η
2 = γ△(η) and δ =

(1−η)η3

8 = δ△(η) such that if A,B,C are disjoint subsets of V and each pair of subsets are γ-regular with
density at least η, then G has at least δ|A||B||C| distinct triangles with a node in each of A,B, and C.

We proved an equivalent version of this in last lecture, so will omit the proof here.

Lemma 9 (Szemerédi Regularity Lemma) For all m, ϵ > 0, there exists a constant T = T (m, ϵ)
such that for any graph G = (V,E) and any equipartition A of V into m sets, there exists an equipartition
V into sets V1, V2, . . . , Vk which refines A, such that m ≤ k ≤ T and at most ϵ

(
k
2

)
pairs of these sets are

not ϵ-regular.
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The proof of this lemma is long and beyond the scope of this class so we omit the proof.

Remark Note that T = T (m, ϵ) is a huge number that is a function of m and ϵ, but the important
thing to note is that is a constant that is independent of the graph we are looking at. The actual
constant, according to [1], is an O(ϵ−5)-level exponential of m.

Now, we are ready to state and prove the Triangle Removal Lemma.

1.4 Triangle Removal Lemma

Lemma 10 For all ϵ > 0, there exists a δ > 0 such that any graph on n nodes which is ϵ-far from being
triangle-free has at least δ

(
n
3

)
triangles.

Proof Suppose we are given ϵ and G. First, we define ϵ′ = min( ϵ5 , γ
△ (

ϵ
5

)
) = ϵ

10 . Now, by Szemerédi
Regularity Lemma, we know that we can get an equipartition {V1, V2, . . . , Vk} of V such that

5

ϵ
≤ k ≤ T

(
5

ϵ
, ϵ′

)
and such that at most ϵ′

(
k
2

)
pairs of subsets are not ϵ′-regular. Now, we construct G′ by taking G and

performing the following deletions:

1. Delete edges internal to any Vi. Since each vertex is in the same set with n
k vertices, this deletes

at most n · nk = n2

k ≤
ϵn2

5 edges.

2. Delete edges between pairs of sets that are not ϵ’-regular. Since there are at most ϵ′
(
k
2

)
pairs of

sets that are not ϵ′-regular, this deletes at most ϵ′
(
k
2

)
· (nk )

2 ≤ ϵn2

20 edges.

3. Delete edges between low-density pairs of sets (density smaller than ϵ
5 ). Since the edge density

between such pairs is at most ϵ
5 , the number of edges we delete is at most ϵ

5

(
n
2

)
≤ ϵn2

10 edges.

Adding these up, we get the number of total edges we deleted is at most

ϵn2

5
+

ϵn2

20
+

ϵn2

10
=

7ϵn2

20
< ϵn2.

Since we assumed that G is ϵ-far from being triangle-free, we have that G′ still has at least one triangle
u, v, w. However, since G′ contains no internal edges, we know that u, v, w must lie in distinct partitions.
Suppose u ∈ Vh, v ∈ Vi, and w ∈ Vj for distinct h, i, j. Since all pairs of sets with edges between them
are ϵ′-regular and have density at least ϵ

5 , we know that Vh, Vi, Vj are all pairwise ϵ′-regular and have
pairwise edge densities at least ϵ

5 . Thus, by Triangle Counting Lemma, we get that the total number of
distinct triangles in G is at least ϵ′|Vh||Vi||Vj |. We can lower-bound this number as shown below:

ϵ′|Vh||Vi||Vj | =
ϵ

10
· n

3

k3
≥ ϵn3

10[T ( 5ϵ ,
ϵ
10 )]

3
≥ δ′

(
n

3

)
for some constant δ′ > 0. Note that δ′ is only dependent on ϵ, and thus is constant. This concludes the
proof of the lemma.

Note that the value δ′ might be very small, but the fact that it is a positive constant that only depends
on ϵ will be sufficient for our purposes.
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1.5 Statement and analysis of algorithm

Suppose we are given a graph G = (V,E) and a parameter ϵ > 0. By the Triangle Removal Lemma, we
know that there exists δ > 0 such that any graph G that is ϵ-far from being triangle-free has at least
δ
(
n
3

)
, where n = |V |. We use this parameter δ in the algorithm, shown below.

Algorithm 2 Triangle-free tester

t← 2
δ

i← 0
N ← n
while i < t do

Sample distinct vertices u, v, w from G and check if it’s a triangle.
If yes, then Reject
i← i+ 1

end while
Accept

Theorem 11 Algorithm 2 is sublinear and always accepts G if G is triangle free and it rejects G with
probability greater than 2

3 if G is ϵ-far from triangle-free.

Proof First note that our algorithm clearly accepts whenever G is triangle-free, as we simply never
will see a triangle. Now, suppose G is ϵ-far from triangle-free. Then, by Triangle Removal Lemma, we
know that there exists at least δ′

(
n
3

)
distinct triangles, where n = |V |. Thus, the probability of three

randomly sampled points being a triangle is at least δ. Thus, the probability that we never reject after
t iterations of the while loop is at most (1 − δ)t = (1 − δ)

2
δ ≤ e−δ· 2δ = e−2 < 1

3 . Thus, the probability
that we reject if G is ϵ-far from triangle-free is greater than 2

3 . Thus, our algorithm is correct.

As for time complexity, note that we since t = O( 1δ ), and since δ is only dependent on ϵ, we have that
this algorithm has no dependence on |V | or |E|, and thus is a valid sublinear algorithm. Thus, we are
done.
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