Lecture 3

Lecturer: Ronitt Rubinfeld
Scribe: Guanghao Ye

1 Approximate Average Degree

1.1 Problem Setup

Let's first formally state the problem:
Problem 1. Given a graph $G=(V, E)$, an approximation parameter $\epsilon \in(0,1)$, and a confidence parameter $\delta \in(0,1)$. The goal is to output a \tilde{d} such that

$$
\operatorname{Pr}[|\tilde{d}-\bar{d}| \leq \epsilon \bar{d}] \geq 1-\delta
$$

where $\bar{d}=\frac{2 m}{n}$ is the average degree of the graph.
Throughout the lecture, we will have the following assumptions:

- The average degree $\bar{d} \geq 1$.
- We are given access to the following two queries:

1. "degree queries": Given $v \in V$, output $\operatorname{deg}(v)$
2. "neighbor queries": Given $(v, j) \in V \times \mathbb{N}$, output j-th neighbor of v.

1.2 Lower bound

Recall in the last lecture, we have shown that when the average degree is very small, it requires $\Omega(n)$ many queries. For example, considering to distinguish the graph with a single edge and the graph with no edge.

Here, we (informally) show a lower bound of $\Omega(\sqrt{n})$ queries. Let's consider the following two graphs: The cycle graph with n nodes C_{n} has average degree $\bar{d}=2$. We construct another graph G consists of two connected components where one is a cycle graph with $n-c \sqrt{n}$ many nodes and the other component is a clique with $c \sqrt{n}$ many nodes. Then, the average degree for this graph is

$$
\bar{d}=\frac{2 m}{n}=\frac{2\left(\binom{c \sqrt{n}}{2}+n-c \sqrt{n}\right)}{n}=\frac{2 n+c^{2} n-c \sqrt{n}}{n}=2+c^{2}-\frac{c}{\sqrt{n}} \approx 2+c^{2}
$$

However, to distinguish these two graphs, the algorithm at least needs to sample one node from the clique. This shows $\Omega(\sqrt{n})$ many queries are necessary.

In today's lecture, we will show $\tilde{O}(\sqrt{n})$ many queries suffice.

1.3 Algorithm

1.3.1 Warm-up: Almost regular graphs

Let's consider a slightly easier problem: Assume each node has degree in $[\Delta, 10 \Delta]$.
It's easy to see that the algorithm above has runtime $O\left(\frac{1}{\epsilon^{2}} \log (1 / \delta)\right)$.
Now, we show \tilde{d} is a good approximation for the average degree.
Claim 2. The output \tilde{d} is an unbiased estimator: $\mathbb{E}[\tilde{d}]=\bar{d}$.

```
Algorithm 1 Approximating Degree for almost regular graphs
    \(k \leftarrow \frac{50}{\varepsilon^{2}} \log (2 / \delta)\)
    for \(i=1, \ldots, k\) do
        Pick \(v_{i} \in_{u} V \quad \triangleright\) We use \(x \in_{u} D\) to denote \(x\) is chosen uniformly at random from set \(D\)
        \(X_{i} \leftarrow \operatorname{deg}\left(v_{i}\right)\)
    end for
    return \(\tilde{d} \leftarrow \frac{1}{k} \sum_{i=1}^{k} X_{i}\)
```

Proof.

$$
\begin{aligned}
\mathbb{E}[\tilde{d}] & =\frac{1}{k} \sum_{i=1}^{k} E\left[X_{i}\right] \quad \text { (linearity of expectation) } \\
& =\mathbb{E}\left[X_{i}\right] \quad \text { (i.i.d) } \\
& =\sum_{v} \operatorname{Pr}\left[v_{i} \text { is picked }\right] \cdot \operatorname{deg}\left(v_{i}\right) \\
& =\frac{1}{n} \cdot \sum_{v} \operatorname{deg}\left(v_{i}\right) \\
& =\frac{2 m}{n}=\bar{d}
\end{aligned}
$$

Claim 3. The output \tilde{d} satisfies the requirement of Problem 1; $\operatorname{Pr}[|\tilde{d}-\bar{d}| \leq \epsilon \bar{d}] \geq 1-\delta$.
Before we proceed, let's introduce todays's Chernoff bound:
Theorem 4 (Hoeffding's inequality). Y_{1}, \ldots, Y_{k} are independent random variable's such that $Y_{i} \in[0,1]$ and $Y=\sum_{i=1}^{k} Y_{i}$. For $b \geq 1$, we have

$$
\operatorname{Pr}[|Y-\mathbb{E}[Y]|>b] \leq 2 \cdot \exp \left(-2 b^{2} / k\right)
$$

Now, we are ready to prove the claim above.
Proof of Claim 3. By the assumption of almost regular graph, X_{i} 's are in $[\Delta, 10 \Delta]$. Let $Z_{i} \leftarrow \frac{X_{i}}{10 \Delta}$ and $Z=\sum_{i} Z_{i}$, then we have $Z_{i} \in[0,1]$ and $\tilde{d}=\frac{10 \Delta}{k} Z$.

Note that $\mathbb{E}[Z]=\frac{k}{10 \Delta} \mathbb{E}[\tilde{d}]=\frac{k \bar{d}}{10 \Delta}$. This implies

$$
|\tilde{d}-\bar{d}| \leq \varepsilon \bar{d} \Longleftrightarrow\left|\frac{10 \Delta}{k} Z-\frac{10 \Delta}{k} \mathbb{E}[Z]\right| \leq \varepsilon \bar{d} \Longleftrightarrow|Z-\mathbb{E}[Z]| \leq \varepsilon \bar{d} \cdot \frac{k}{10 \Delta} .
$$

Using Theorem 4 above on Z, with $b=\frac{k}{10 \Delta} \varepsilon \bar{d}$, we get

$$
\operatorname{Pr}\left[|Z-\mathbb{E}[Z]| \geq \frac{k}{10 \Delta} \varepsilon \bar{d}\right] \leq 2 \exp \left(-2 \frac{\varepsilon^{2} \bar{d}^{2} k^{2}}{100 \Delta^{2} k}\right) \leq 2 \exp \left(-\frac{1}{50} k \varepsilon^{2}\right) \leq \delta
$$

where second last step follows by $\bar{d}^{2} / \Delta^{2} \geq 1$ by assumption, and the last step follows by choice of k.

1.3.2 General Case

From Markov's inequality, we know that at most a $1 / C$ fraction of nodes have degree larger than $C \bar{d}$. This implies most nodes satisfy the warm up case! However, the rest of nodes can have large degrees. To cope with this, we define a new notion of degree, denoted by $\mathrm{deg}^{+}(\cdot)$.

We first assign a total order on the nodes of graph by assuming each node has a unique ID, then the order is given by the ID.

Definition 5. Given two nodes $u, v \in V$, we say $u \prec v$ if

- $\operatorname{deg}(u)<\operatorname{deg}(v)$
- or $\operatorname{deg}(u)=\operatorname{deg}(v)$ and u has smaller ID than v.

Then, we define $\operatorname{deg}^{+}(u)$ as the number of nodes v in u 's neighborhood such that $u \prec v$.
Intuitively, if we orienting edges from small to large, the $\operatorname{deg}^{+}(\cdot)$ count the "out-edges". Then, this directly implies

$$
\begin{equation*}
\sum_{u \in V} \operatorname{deg}^{+}(u)=m=\frac{n \bar{d}}{2} \tag{1}
\end{equation*}
$$

The benefits of having this notion is that the newly defined degree cannot be too large for any node in the graph:

Claim 6. For any node $v \in V$, $\operatorname{deg}^{+}(v) \leq \sqrt{2 m}$.
Proof. We define the vertex set $H \subseteq V$ to be $\sqrt{2 m}$ nodes with highest rank (degree) w.r.t. \prec. For any $v \in H, \operatorname{deg}^{+}(v) \leq \sqrt{2 m}$. since edge leaving v go to bigger nodes, must be also in H.

For any $v \in V \backslash H$, we will show $\operatorname{deg}^{+}(v) \leq \operatorname{deg}(v) \leq \sqrt{2 m}$. For the sake of contradiction, we assume $\operatorname{deg}(v)>\sqrt{2 m}$, then all $w \in H$ have $\operatorname{deg}(w) \geq \operatorname{deg}(v)$, Then, we have total degree $\geq|H| \cdot \operatorname{deg}(v) \geq$ $\sqrt{2 m} \cdot \sqrt{2 m}=2 m$ but total degree is $2 m$. This is a contradiction.

Now, we present our algorithm for the general case.

```
Algorithm 2 Approximating Degree
    \(k \leftarrow \frac{16}{\varepsilon^{2}} \sqrt{n}\)
    for \(i=1, \ldots, k\) do
        Pick \(v_{i} \in_{u} V \quad \triangleright\) Step (1)
        Pick \(u_{i} \in_{u} N\left(v_{i}\right) \quad \triangleright\) Step (2)
        Let \(X_{i}= \begin{cases}2 \operatorname{deg}\left(v_{i}\right) & \text { if } v_{i} \prec u_{i} \\ 0 & \end{cases}\)
    end for
    return \(\tilde{d} \leftarrow \frac{1}{k} \sum_{i=1}^{k} X_{i}\)
```

Claim 7. X_{i} is an unbiased estimator of $\bar{d}: \mathbb{E}\left[X_{i}\right]=\bar{d}$.

Proof.

$$
\begin{aligned}
\mathbb{E}\left[X_{i}\right] & =\sum_{v \in V} \operatorname{Pr}[v \text { picked in (1) }] \cdot \mathbb{E}\left[X_{i} \mid v \text { picked in (1) }\right] \\
& =\frac{1}{n} \sum_{v \in V} \sum_{u \in N(v)} \operatorname{Pr}[u \text { pickied in (2) }] \cdot \mathbb{E}\left[X_{i} \mid v \text { picked in (1) and } u \text { picked in (2) }\right] \\
& =\frac{1}{n} \sum_{v \in V} \sum_{u \in N(v), v \prec u} \frac{1}{\operatorname{deg}(v)} \cdot 2 \operatorname{deg}(v) \\
& =\frac{2}{n} \sum_{v \in V} \operatorname{deg}^{+}(v) \\
& =\bar{d}
\end{aligned}
$$

where the third step follows by definition of X_{i} given in Algorithm 2, the fourth step follows by definition of $\operatorname{deg}^{+}(\cdot)$, and the last step follows by Equation (1).

In the next lecture, we will show $\operatorname{Var}\left[X_{i}\right]$ is small by using the upper bound on $\operatorname{deg}^{+}(\cdot)$.

