Lecture 24 (Makeup)

Lecturer: Ronitt Rubinfeld

1 Outline

The following topics were covered in class:

- Monotonicity testing on a sequence or list (function with domain $\{1,2, \ldots, n\}$)
- Monotonicity testing on a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ (binary labeling of a hypercube)

2 Monotonicity testing on a sequence

2.1 Introduction

We are now interested in property testing of functions rather than distributions, where each query returns the value of the function at a given point or index. We will start with monotonicity testing on sequences, or functions with domain $\{1,2, \ldots, n\}$. This problem has many real-world applications such as checking whether the books in a library are sorted alphabetically.

Goal: $c \log n$ time algorithm to determine whether a list of size n is sorted or ϵ-far from sorted.
Definition 1 A sequence of length n is ϵ-close to sorted if at most ϵn values can be deleted to make it sorted. A sequence is ϵ-far from sorted otherwise.

Here, we are talking about being sorted in increasing order only. Note that this problem is equivalent to determining whether the longest increasing subsequence of a list has length n or length less than $(1-\epsilon) n$. (This is because if k is the minimum number of values needed to be deleted to make the list sorted, the remaining $n-k$ values must form an increasing subsequence of the original list. Also, to minimize the number of deleted values, we maximize the length of the increasing subsequence, so $n-k$ is simply the length of the longest increasing subsequence.)

We have the standard requirements for our algorithm:

- Pass sorted lists.
- Fail lists that are ϵ-far from sorted with probability at least $3 / 4$.

This problem can be solved in $O\left(\epsilon^{-1} \log n\right)$ time, which is provably tight.

2.2 First attempt

Algorithm: we repeatedly pick a random entry and test that the entry and its right neighbour are in the correct order (i.e. pick random i and test that $y_{i} \leq y_{i+1}$).

However, here is one "bad" input type:

$$
1,2,3, \ldots, n / 4,1,2,3, \ldots, n / 4,1,2,3, \ldots, n / 4,1,2,3, \ldots, n / 4
$$

It is difficult for our algorithm to find the "breakpoint" since there are only $O(1)$ of them (exactly 3 in this case), so we require $O(n)$ queries to fail with constant probability. Note that this input is very far from sorted, as at least $\frac{3 n}{4}-3$ elements must be removed.

2.3 Second attempt

Algorithm: we pick many random entries and pass if all of them are in the correct order.
However, we again have a "bad" input type: swap adjacent neighbours, so we get

$$
2,1,4,3,6,5, \ldots, n, n-1
$$

Now, we will only fail if we pick two neighbours, so we require $O(\sqrt{n})$ queries to fail with constant probability by the birthday problem. Once again, note that this input is very far from sorted, as at least $\frac{n}{2}$ elements must be removed.

2.4 A minor simplification

Claim: we can assume the list elements are distinct, by treating the element x_{i} as the ordered pair $y_{i}=\left(x_{i}, i\right)$.

When comparing two ordered pairs, we compare the first element and tiebreak by the second element. Now, any increasing subsequence remains increasing, and any inversion (i.e. $i>j$ with $x_{i}<x_{j}$) remains an inversion, so the longest increasing subsequence does not change. Hence, solving the problem on the y_{i} 's yields the same answer as solving the problem on the x_{i} 's, so we can work with the distinct y_{i} 's moving forward.

2.5 A test that works

Algorithm: repeat the following $O(1 / \epsilon)$ times

1. Pick a random index i.
2. Query the value of y_{i}.
3. Perform a binary search for y_{i}.
4. If the binary search does not find y_{i} at location i (note that if we find y_{i}, it must be at location i by our assumption of distinctness), FAIL.
5. If the binary search finds any inconsistencies (i.e. elements in decreasing order), FAIL.
6. Otherwise, PASS.

The runtime is clearly $O\left(\epsilon^{-1} \log n\right)$, since each binary search takes $O(\log n)$ time. Now, we will prove correctness.

Definition 2 An index i is good if a binary search for y_{i} is successful (i.e. returns y_{i} at location i without finding any inconsistencies).

Our algorithm can be restated as picking $O(1 / \epsilon)$ random i 's and passing if and only if they are all good. If the list is sorted, then clearly all i 's are good (using distinctness), so the test always passes. Now, we will show that if a list is ϵ-far from sorted, it fails the test with high probability.

Key observation: good elements form an increasing subsequence.
Proof: suppose $i<j$ and i, j are both good. We will show $y_{i}<y_{j}$. Consider k, the least common ancestor of i, j in the binary search. At this location, we must have had y_{i} go left and y_{j} go right, since $i<j$ and by assumption, they take different paths at this point. Thus, $y_{i}<y_{k}<y_{j}$, as desired.

Thus, for any list that is ϵ-far from sorted, the longest increasing subsequence has length at most $(1-\epsilon) n$,
so there are at most $(1-\epsilon) n$ good indices. This means that at least ϵn indices are not good, so each iteration of the test fails with probability at least ϵ. Thus, after $2 / \epsilon=O(1 / \epsilon)$ iterations, the algorithm fails with probability at least

$$
1-(1-\epsilon)^{2 / \epsilon} \approx 1-\frac{1}{e^{2}}>0.75
$$

2.5.1 Note on adaptivity

Though we perform binary search during our algorithm which seems to be adaptive, it is actually very straightforward to implement it non-adaptively. For each randomly chosen y_{i}, we instead query the indices for binary search assuming that we end up at index i (this is equivalent to binary searching for i in the list $[1,2, \ldots, n])$, and fail if these values are not in increasing order. Since these queried indices are independent of the values y_{i}, this algorithm is thus non-adaptive.

3 Monotonicity testing on functions

Definition 3 A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is monotone if and only if increasing a bit of x does not decrease $f(x)$.

Note that the domain of f is a partially ordered set, not totally ordered like we were working with before.
Goal: determine whether f is monotone or ϵ-far from monotone (i.e. f has to change on more than ϵ-fraction of its points to become monotone).

Time complexity:

1. Today: $O(n / \epsilon)$, logarithmic in the size of the input, 2^{n}.
2. Newer: $\Theta\left(\sqrt{n} / \epsilon^{2}\right)$ for nonadaptive tests, $\Omega\left(n^{1 / 3}\right)$.

Definition 4 When looking at the n-dimensional hypercube, we say an increasing edge $x \rightarrow y$ is violated if $f(x)>f(y)$.

Idea: show that functions that are ϵ-far from monotone violate many edges.
Algorithm: EdgeTest (f, ϵ) : pick $2 n / \epsilon$ edges (x, y) uniformly at random from the hypercube, and reject if any (x, y) is violated. Otherwise, accept.

If f is monotone, EdgeTest always accepts. If f is ϵ-far from monotone, we will show that at least $\frac{\epsilon}{n}$-fraction of the edges (i.e. $\epsilon / n \cdot 2^{n-1} n=\epsilon 2^{n-1}$) are violated by f. Note that we have $n 2^{n-1}$ total edges since each of the 2^{n} nodes have n adjacent edges (one for each coordinate flip), and we divide by two since each edge is counted twice.

Now, let $V(f)$ denote the number of edges violated by f. We will show the contrapositive, that if $V(f)<\epsilon 2^{n-1}$, then f can be made monotone by changing fewer than $\epsilon 2^{n}$ values.

Lemma 1 Repair lemma: f can be made monotone by changing at most $2 \cdot V(f)$ values.
Proof idea: transform f into a monotone function by repairing edges in one dimension at a time. We repair a $1 \rightarrow 0$ edge by swapping it to become $0 \rightarrow 1$.

Claim: repairing all edges in dimension i does not increase V_{j} for all dimensions $j \neq i$.
Since we only look at two dimensions at a time (i and j), it is enough to prove this claim for squares, since the edges in dimensions i and j form 2^{n-2} disjoint squares (by varying the other $n-2$ coordinates).

Now, this is just casework. If both dimension i edges are swapped or neither are swapped, then the
resulting (unordered) pair of edges in dimension j is the same, so the number of violating edges in dimension j does not increase. Otherwise, if exactly one edge in dimension i is swapped, consider the other edge. If it is $v \rightarrow v$ for $v \in\{0,1\}$, then the resulting pair of edges in dimension j is the same again. If it is $0 \rightarrow 1$, then we actually fix the violating edge in dimension j and are left with one fewer violating edge.

Thus, repairing all edges in dimension i indeed does not increase V_{j} for all $j \neq i$, so we can iterate through the dimensions $1 \leq i \leq n$ and repair all edges in dimension i each time, and we must be left with no violating edges at the end. After repairing dimensions 1 through $i-1$, there are still at most V_{i} violating edges in dimension i, so we repair at most V_{i} edges on iteration i. Hence, the total number of repaired edges is at most $V_{1}+V_{2}+\cdots+V_{n}=V(f)$, so we can indeed transform f into a monotone function by changing at most $2 \cdot V(f)$ values (as each repaired edge changes two values). This concludes the proof of the lemma.

Finally, the repair lemma implies that if $V(f)<\epsilon 2^{n-1}$, then f can indeed be made monotone by changing fewer than $\epsilon 2^{n}$ values. Taking the contrapositive, this shows that if f is ϵ-far from monotone, then at least $\epsilon 2^{n-1}$ edges are violated by f, which is $\frac{\epsilon}{n}$-fraction of the total edges. Hence, if f is ϵ-far from monotone, each random edge in EdgeTest is violating with probability at least ϵ / n, so the probability that EdgeTest fails is at least

$$
1-(1-\epsilon / n)^{2 n / \epsilon} \approx 1-\frac{1}{e^{2}}>0.75
$$

