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1 Background from Last Lecture

Last lecture, it was shown that there is an algorithm such that if a function f is ϵ-close to some linear
function g, then we may ”self-correct” f to g in O( 1β ) calls to f such that we may output the function

g with probability at least 1 − β. Therefore, we may test if a function is linear through O( 1β ) calls
to f such that if f is linear, we always pass and if f is ϵ-far, then the self tester fails with probabil-
ity at least 1−β. Further, it is also known that the self-corrector does not know the value of the function.

Consider the class of Probablistic Checkable Proofs (PCP). This class, denoted PCP (r, q), is the
statement that using r random bits and q queries to the proof, there exists some proof such that any
verifier will accept an instance of the question if it is true, and there is no proof that will be accepted
by a verifier with probability at least 1

4 if we do not have an instance of the question. The goal using
this information is to show that NP ⊆ PCP (O(n3), O(1)). This is relatively surprising given that only
a constant number of queries and polynomial random bits are needed to have an instance of a problem
such as 3-SAT, which we will look at today.

Denote the inner product x · y =
∑

i xi · yi and then the outer product of two n-bit vectors x and y
as x ◦ y = (x1y1, x1y2, ..., xnyn). Then it was shown that if a ̸= b, as two n-bit vectors, then it is true
that P [a · r ̸= b · r] ≥ 1

2 , for any r = {0, 1}n. Further, if A,B are two n × n matrices with A · B ̸= C,
then P [A ·B · r ̸= C · r] ≥ 1

2 , for any n dimensional vector r.

2 3SAT Satisfied

We wish to utilize the above facts shown in the previous lecture to prove this. First, we want to write
down all possible values of the product. This is done via arithmetization, where some boolean formula F
is written as A(F ), which is an algebraic expression in Z2. A clause should evaluate to 1 if true and 0 if
false, with xi being xi and xi = 1−xi. From boolean algebra, α∧β = α ·β, also α∨β = 1−(1−α)(1−β),
and α ∨ β ∨ γ = 1− (1− α)(1− β)(1− γ). Then a only satisfies F if and only if A(F )(a) = 1.

Now let input F be represented as ∧iCi which are Ci = (yi1 ∨ yi2 ∨ yi3), so that we may arithmetize.
So now we take C(x) = (Ĉ1(x), Ĉ2(x), ..., Ĉk(x)). which has each of the Ĉi is the complement of the
arithmetization of Ci, and evaluate to 0 if an assignment validates it. Thus, if some x satisfies F , then
C(x) = (0, 0, ..., 0). This creates a scenario where each of the A(Ĉi(x)) will be a polynomial of degree at
most 3, and further the verifier will know each coefficient of the polynomial. Our argument must show
that we may convince the verifier that all of these polynomials are 0 without sending the assignment,
and while only looking at a constant number of locations in the proof.

The solution presented will try to use the theorem presented earlier and take C(x) · r and then set b
equal to the zero vector. If C(x) is 0, then we should always have C(x) · r = 0 · r, otherwise we may apply
the theorem from before which would state that the probability that the two vectors are not equal is at
least 1

2 , particularly equal to 1
2 in modulo 2.
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2.1 High Level Proof

What does C(a) ·r look like? Well we have that
∑

i riĈi(a) = Γ+
∑

i aiαi+
∑

ij aiajβij+
∑

ijk aiajakδijk
all in mod 2, and the verifier knows the values of each α, β, γ, and Γ. This is because verifier may compute
these in the allotted space. However, the verifier does not know that assignment values.

As a high level thought, we will write down all degree 1, 2, and 3 assignments of the function. Proof
π contains all linear assignments of a. We write α : F 2

2 → F2 with α(x) =
∑

aixi = aTx write ta-
ble of α for all x. These are all linear functions evaluated at a. We also write all degree 2 functions
of a. This is β : Fn2

2 → F2. So β(y) =
∑

aiajyij = (a ◦ a)T y. Repeating this for degree 3 gives

γ(z) =
∑

aiajzijk = (a ◦ a ◦ a)T z, and so to describe the truth table of this is going to be in space 2n
3

so that is the size of this proof. The proof will contain the description of each of these functions for any
given possible values of x, y, and z. Also note that each of these functions are linear in x, y, z, and so we
may apply the linear function self-correcting properties from before.

Now the verifier must validate that ensure that each of the truth tables are consistent with one
another and linear. It then must see whether or not an assignment will correspond to 0 for some assign-
ment. It is first checked whether the function is in good form.

2.2 Outline of Proof

We know from the algorithm presented before, we may check if each of the tables for α, β, and γ may
be checked for 1/8-approximation to linear functions using constant query time to get a constant in the
probability that it is checked. Therefore, this utilizes O(1) queries. Denote sc− Ã, sc− B̃, and sc− C̃
as the self-checked tables for each of the degrees of functions, such that the algorithm is run and they
are properly corrected to linear functions.

To check that these each correspond, only pass if sc−B̃ = sc−Ã◦sc−Ã and sc−C̃ = sc−B̃◦sc−Ã.
This will verify that the assignments align with the desired coefficients. We will show this works.

First, randomly pick x1, x2, x, y, and then

sc− Ã(x1) · sc− Ã(x2) =
∑

aix1i ◦
∑

aix2i =
∑
i,j

aix1iajx2j =
∑
i,j

bi,jx1ix2j = sc− B̃(x1 ◦ x2).

Additionally,

sc− Ã(x) · sc− B̃(y) =
∑

aixi ◦
∑

bijyij =
∑
i,j,k

aixibjkyjk =
∑
i,j,k

ci,j,kxiyjk = sc− C̃(x ◦ y).

Then, if a ◦ a ̸= b, it can be seen that P [(a ◦ a)r ̸= br] = 1
2 for any r via our fact. Therefore, the

probability that we will fail testing by simply checking (a ◦ a)r ̸= br for some r will be greater than 1
4

which is the desired.

Now going back to the proof, we seek the verifier validate linearity and consistency. It is known that
linearity may follow here if we choose a β small enough that a union bound will see the table unlikely
to ever see an error. Further, it is already shown that with high enough probability, we can verify that
the different tables upon being self-corrected will be consistent.

All that is left to do is the satisfiablility check. Imagine taking an r ∈ Fn
2 . Then we may compute

each of the coefficients that are written in the table, and self correct these using the function from earlier.
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Then, plugging the r in should always give us 0 if the function is satisfiable and otherwise at some point
would give us 1, each with probability 1/2. Therefore, after some constant number of queries, it may be
seen that we fail anything that is not satisfiable with probability at least 3/4 and will always accept a
proof that should pass it, thus showing that 3SAT is in PCP (O(n3), O(1)).

An interesting aside is that this problem happens to be in PCP (O(log n), O(1)), but the proof is too
difficult for this class.
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