
6.5240 Sublinear Time Algorithms November 21, 2022

Lecture 20

Lecturer: Ronitt Rubinfeld Scribe: Yuchong Pan

1 Greedy List Coloring

Today, we discuss a sublinear time algorithm for graph coloring.

Definition 1. A proper c-coloring of a graph G = (V,E) assigns a color cv from a palette (e.g.,
{1, . . . , C}) to each v ∈ V such that cu 6= cv for all (u, v) ∈ E.

In this lecture, we assume that the maximum degree of a vertex in G is ∆, and C = ∆ + 1
(or maybe C = 2∆). Note that (∆ + 1)-coloring is easy via greedy. We call this greedy algorithm
GreedyListColoring and give it in Algorithm 1. Note that GreedyListColoring takes O(|E|) time.

1 foreach v ∈ V do
2 L(v)← {1, . . . ,∆ + 1}
3 foreach v ∈ V (in an arbitrary order) do
4 if L(v) = ∅ then
5 return fail
6 else
7 cv ← any color in L(v)
8 remove cv from L(u) for all neighbors u of v

Algorithm 1: A greedy algorithm, called GreedyListColoring, for finding a (∆ + 1)-coloring
in a graph G = (V,E).

The model we consider supports the following three types of queries on a graph G = (V,E):

• Degree queries: Given u ∈ V , what is deg(u)?

• Pair queries: Given u, v ∈ V , is it true that (u, v) ∈ E?

• Neighbor queries: Given u ∈ V and k ∈ N, what is the kth neighbor of u?

2 Palette Sparsification

We introduce a technique called palette sparsification to improve the running time of graph coloring.
The goal is to prove the following theorem.

Theorem 2. One can find a (∆ + 1)-coloring of an n-vertex graph in Õ(n
√
n) time.

The idea of palette sparsification is the following:

For each vertex v ∈ V in an n-vertex graph G = (V,E), sample k = Θ(log n) colors from
{1, . . . ,∆ + 1} to get L(v).

(1)

The following lemma is the main observation, which we state without giving a proof. In Section 4,
we prove a weakened version which relaxes (∆ + 1)-coloring to 2∆-coloring.

1

Lemma 3. With high probability, a graph G = (V,E) can be colored by (1) such that cv ∈ L(v) for
all v ∈ V via GreedyListColoring.

In what follows, we denote Gsparse = (V,Esparse), where Esparse = {(u, v) ∈ E : L(u)∩L(v) 6= ∅}.
Figure 1 gives an example of Gsparse.

×

×

Figure 1: An example of palette sparsification, where edges absent from Gsparse are crossed off, and
each vertex is colored by the colors in its palette.

It turns out that Gsparse does not contain many edges.

Lemma 4. With high probability, |Esparse| = O(n log2 n).

Proof. Fix u ∈ V . Without loss of generality, suppose that L(u) = {1, . . . , k}. For all v ∈ N(u)
and i ∈ {1, . . . , k}, set

Xv,i =

{
1, if i ∈ L(v),
0, otherwise.

Let

X =

k∑
i=1

∑
v∈N(u)

Xv,i.

Since
∑

v∈N(u)Xv,i is the number of edges due to color i, then X is an upper bound on deg(u) in
Gsparse. Note that E[Xv,i] = k/(∆ + 1) for all v ∈ N(u) and i ∈ {1, . . . , k}. Hence,

E[X] = E

 k∑
i=1

∑
v∈N(u)

Xv,i

 =
k∑
i=1

∑
v∈N(u)

E [Xv,i] ≤ k ·∆ ·
k

∆ + 1
< k2.

Since k = Θ(log n), then E[deg(u)] ≤ O(log2 n). (One can show “with high probability” with
additional work.)

3 A Sublinear Time Algorithm for Graph Coloring

Assuming Lemma 3, we give a sublinear time algorithm for finding a (∆ + 1)-coloring of a graph:

1. Construct the palette of each vertex using (1).

2. Construct Gsparse: For each color c ∈ {1, . . . ,∆ + 1}, find Xc = {v ∈ V : c ∈ L(v)} (do
this while doing step 1). Query all pairs of vertices in each Xc to find Esparse: suppose that
Xc = {vi1 , . . . , vi`}; for distinct j, k ∈ [`], query if (vij , vik) ∈ E, and if so, add it to Esparse.

3. Perform GreedyListColoring on Gsparse.

2

Step 1 takes O(n log n) time. Step 3 takes O(|Esparse|) = O(n log2 n) time. For each color c,

E
[
|Xc|2

]
=
∑
u,v∈V
u6=v

E [1u, v both choose color c] =

(
n

2

)(
k

∆ + 1

)2

= O

(
n2 log2 n

∆2

)
.

Hence, the running time to query all pairs in each Xc is at most

(∆ + 1) ·O
(
n2 log2 n

∆2

)
= Õ

(
n2

∆

)
.

It follows that the total running time is Õ(n2/∆). This proves Theorem 2.

Proof of Theorem 2. If ∆ ≤
√
n, then we use GreedyListColoring with O(|E|) ≤ O(n∆) ≤ O(n

√
n)

time. If ∆ >
√
n, then we use palette sparsification with Õ(n2/∆) ≤ Õ(n2/

√
n) = Õ(n3/2) time.

4 Relaxing Lemma 3 to 2∆-Coloring

In this section, we prove a weakened version of Lemma 3 which relaxes (∆ + 1)-coloring to 2∆-
coloring. Other parts in the proof of Theorem 2 remain the same, hence giving an Õ(n3/2) time
algorithm for finding a 2∆-coloring of an n-vertex graph.

Lemma 5. With high probability, a graph G = (V,E) can be colored by (1) with ∆ + 1 replaced by
2∆ such that cv ∈ L(v) for all v ∈ V via GreedyListColoring.

Proof. When attempting to color a vertex v, we say that a color c ∈ {1, . . . , 2∆} is good if c ∈ L(v)
initially and c is not used to color any previous neighbor of v. If L(v) contains any good color c,
then we can color v successfully. Since L(v) is chosen independently of its neighbors, we can think
of choosing L(v) “now.” Since v has at most ∆ neighbors, then

Pr[L(v) contains no good color] ≤
(

∆
k

)(
2∆
k

) =
∆(∆−1)···(∆−k+1)

k!
(2∆)(2∆−1)···(2∆−k+1)

k!

<
1

2k
=

(
1

2

)Θ(logn)

=
1

nα
,

for some constant α. By the union bound,

Pr[there exists a vertex v such that L(v) has no good color] ≤ 1

nα′ ,

for some constant α′ (e.g., α′ = 3). Hence, with high probability, the algorithm never fails. It
follows that G has a legal list coloring with high probability.

We note that the proof of Lemma 5 indeed generalizes to (1 + δ)∆-coloring for any constant
δ > 0 which does not depend on ∆.

3

	Greedy List Coloring
	Palette Sparsification
	A Sublinear Time Algorithm for Graph Coloring
	Relaxing Lemma 3 to 2-Coloring

