Lecture 20
Lecturer: Ronitt Rubinfeld
Scribe: Yuchong Pan

1 Greedy List Coloring

Today, we discuss a sublinear time algorithm for graph coloring.
Definition 1. A proper c-coloring of a graph $G=(V, E)$ assigns a color c_{v} from a palette (e.g., $\{1, \ldots, C\})$ to each $v \in V$ such that $c_{u} \neq c_{v}$ for all $(u, v) \in E$.

In this lecture, we assume that the maximum degree of a vertex in G is Δ, and $C=\Delta+1$ (or maybe $C=2 \Delta$). Note that $(\Delta+1)$-coloring is easy via greedy. We call this greedy algorithm GreedyListColoring and give it in Algorithm 1. Note that GreedyListColoring takes $O(|E|)$ time.

```
foreach \(v \in V\) do
    \(L(v) \leftarrow\{1, \ldots, \Delta+1\}\)
foreach \(v \in V\) (in an arbitrary order) do
    if \(L(v)=\emptyset\) then
        return fail
    else
        \(c_{v} \leftarrow\) any color in \(L(v)\)
        remove \(c_{v}\) from \(L(u)\) for all neighbors \(u\) of \(v\)
```

Algorithm 1: A greedy algorithm, called GreedyListColoring, for finding a ($\Delta+1$)-coloring in a graph $G=(V, E)$.

The model we consider supports the following three types of queries on a graph $G=(V, E)$:

- Degree queries: Given $u \in V$, what is $\operatorname{deg}(u)$?
- Pair queries: Given $u, v \in V$, is it true that $(u, v) \in E$?
- Neighbor queries: Given $u \in V$ and $k \in \mathbb{N}$, what is the $k^{\text {th }}$ neighbor of u ?

2 Palette Sparsification

We introduce a technique called palette sparsification to improve the running time of graph coloring. The goal is to prove the following theorem.

Theorem 2. One can find a $(\Delta+1)$-coloring of an n-vertex graph in $\tilde{O}(n \sqrt{n})$ time.
The idea of palette sparsification is the following:
For each vertex $v \in V$ in an n-vertex graph $G=(V, E)$, sample $k=\Theta(\log n)$ colors from $\{1, \ldots, \Delta+1\}$ to get $L(v)$.

The following lemma is the main observation, which we state without giving a proof. In Section 4 , we prove a weakened version which relaxes $(\Delta+1)$-coloring to 2Δ-coloring.

Lemma 3. With high probability, a graph $G=(V, E)$ can be colored by (1) such that $c_{v} \in L(v)$ for all $v \in V$ via GreedyListColoring.

In what follows, we denote $G_{\text {sparse }}=\left(V, E_{\text {sparse }}\right)$, where $E_{\text {sparse }}=\{(u, v) \in E: L(u) \cap L(v) \neq \emptyset\}$. Figure 1 gives an example of $G_{\text {sparse }}$.

Figure 1: An example of palette sparsification, where edges absent from $G_{\text {sparse }}$ are crossed off, and each vertex is colored by the colors in its palette.

It turns out that $G_{\text {sparse }}$ does not contain many edges.
Lemma 4. With high probability, $\left|E_{\text {sparse }}\right|=O\left(n \log ^{2} n\right)$.
Proof. Fix $u \in V$. Without loss of generality, suppose that $L(u)=\{1, \ldots, k\}$. For all $v \in N(u)$ and $i \in\{1, \ldots, k\}$, set

$$
X_{v, i}= \begin{cases}1, & \text { if } i \in L(v) \\ 0, & \text { otherwise }\end{cases}
$$

Let

$$
X=\sum_{i=1}^{k} \sum_{v \in N(u)} X_{v, i} .
$$

Since $\sum_{v \in N(u)} X_{v, i}$ is the number of edges due to color i, then X is an upper bound on $\operatorname{deg}(u)$ in $G_{\text {sparse }}$. Note that $\mathbb{E}\left[X_{v, i}\right]=k /(\Delta+1)$ for all $v \in N(u)$ and $i \in\{1, \ldots, k\}$. Hence,

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{k} \sum_{v \in N(u)} X_{v, i}\right]=\sum_{i=1}^{k} \sum_{v \in N(u)} \mathbb{E}\left[X_{v, i}\right] \leq k \cdot \Delta \cdot \frac{k}{\Delta+1}<k^{2} .
$$

Since $k=\Theta(\log n)$, then $\mathbb{E}[\operatorname{deg}(u)] \leq O\left(\log ^{2} n\right)$. (One can show "with high probability" with additional work.)

3 A Sublinear Time Algorithm for Graph Coloring

Assuming Lemma 3, we give a sublinear time algorithm for finding a $(\Delta+1)$-coloring of a graph:

1. Construct the palette of each vertex using (1).
2. Construct $G_{\text {sparse }}$: For each color $c \in\{1, \ldots, \Delta+1\}$, find $X_{c}=\{v \in V: c \in L(v)\}$ (do this while doing step 11. Query all pairs of vertices in each X_{c} to find $E_{\text {sparse }}$: suppose that $X_{c}=\left\{v_{i_{1}}, \ldots, v_{i_{\ell}}\right\}$; for distinct $j, k \in[\ell]$, query if $\left(v_{i_{j}}, v_{i_{k}}\right) \in E$, and if so, add it to $E_{\text {sparse }}$.
3. Perform GreedyListColoring on $G_{\text {sparse }}$.

Step 1 takes $O(n \log n)$ time. Step 3 takes $O\left(\left|E_{\text {sparse }}\right|\right)=O\left(n \log ^{2} n\right)$ time. For each color c,

Hence, the running time to query all pairs in each X_{c} is at most

$$
(\Delta+1) \cdot O\left(\frac{n^{2} \log ^{2} n}{\Delta^{2}}\right)=\tilde{O}\left(\frac{n^{2}}{\Delta}\right) .
$$

It follows that the total running time is $\tilde{O}\left(n^{2} / \Delta\right)$. This proves Theorem 2 ,
Proof of Theorem 2. If $\Delta \leq \sqrt{n}$, then we use GreedyListColoring with $O(|E|) \leq O(n \Delta) \leq O(n \sqrt{n})$ time. If $\Delta>\sqrt{n}$, then we use palette sparsification with $\tilde{O}\left(n^{2} / \Delta\right) \leq \tilde{O}\left(n^{2} / \sqrt{n}\right)=\tilde{O}\left(n^{3 / 2}\right)$ time.

4 Relaxing Lemma 3 to 2Δ-Coloring

In this section, we prove a weakened version of Lemma 3 which relaxes $(\Delta+1)$-coloring to 2Δ coloring. Other parts in the proof of Theorem 2 remain the same, hence giving an $\tilde{O}\left(n^{3 / 2}\right)$ time algorithm for finding a 2Δ-coloring of an n-vertex graph.

Lemma 5. With high probability, a graph $G=(V, E)$ can be colored by (1) with $\Delta+1$ replaced by 2Δ such that $c_{v} \in L(v)$ for all $v \in V$ via GreedyListColoring.

Proof. When attempting to color a vertex v, we say that a color $c \in\{1, \ldots, 2 \Delta\}$ is good if $c \in L(v)$ initially and c is not used to color any previous neighbor of v. If $L(v)$ contains any good color c, then we can color v successfully. Since $L(v)$ is chosen independently of its neighbors, we can think of choosing $L(v)$ "now." Since v has at most Δ neighbors, then

$$
\operatorname{Pr}[L(v) \text { contains no good color }] \leq \frac{\binom{\Delta}{k}}{\binom{2 \Delta}{k}}=\frac{\frac{\Delta(\Delta-1) \cdots(\Delta-k+1)}{k!}}{\frac{(2 \Delta)(2 \Delta-1) \cdots(2 \Delta-k+1)}{k!}}<\frac{1}{2^{k}}=\left(\frac{1}{2}\right)^{\Theta(\log n)}=\frac{1}{n^{\alpha}},
$$

for some constant α. By the union bound,

$$
\operatorname{Pr}[\text { there exists a vertex } v \text { such that } L(v) \text { has no good color }] \leq \frac{1}{n^{\alpha^{\prime}}}
$$

for some constant α^{\prime} (e.g., $\alpha^{\prime}=3$). Hence, with high probability, the algorithm never fails. It follows that G has a legal list coloring with high probability.

We note that the proof of Lemma 5 indeed generalizes to $(1+\delta) \Delta$-coloring for any constant $\delta>0$ which does not depend on Δ.

