
6.5240 Sublinear Time Algorithms November 16, 2022

Lecture 19
Lecturer: Ronitt Rubinfeld Scribe: Stan Zhang

1 Definitions

Definition 1 Given graph G = (V,E), a “k-spanner” is a subgraph H = (V,E′), E′ ⊂ E such that
∀v, u, distH(u, v) ≤ k distG(u, v). Equivalently, H is a k-spanner if for all (u, v) ∈ G \H, exists a path
from u to v in H with length ≤ k.

Theorem 2 ∀k, there exists a 2k − 1 spanner with at most O(n1+1/k) edges. Furthermore, this bound
is tight for k = 2, 3, 5. The Erdos-Girth conjecture states that this bound is tight for all k.

2 Model

2.1 Access to G

Neighbor probes: Given (u, i) output ith neighbor of u
Adjacency probes: Given (u, v) output whether or not (u, v) ∈ G. If (u, v) ∈ G then the probe outputs
j, the index of the location of (u, v). The probe outputs “no” if (u, v) ̸∈ G.
Degree probes: Given u output deg(u)

2.2 Desired Algorithm Performance

We present a LCA for 3-spanner with Õ(n3/2) edges (setting k = 2 in Theorem 1.1 shows that such a
spanner exists). Our algorithm allows us to query whether or not a given edge (u, v) is in the spanner
in Õ(n3/4). The best known algorithm takes Õ(n1/2) queries (Arviv and Levi).

The point of a spanner is to make a dense graph more sparse. Thus, spanners are most pertinent
to high-degree graphs.

3 Global Algorithm

3.1 First Attempt

Each node in V decides to be a “center” with probability c, iid. If u, v such that (u, v) ∈ G are both
connected to the same center then can delete (u, v).
Problem 1: Can we delete enough edges this way?
Problem 2: Can we figure out fast enough if u, v are connected to the same center?
For the rest of the lecture, we assume that the max degree is n3/4. This case is still nontrivial, and the
general case builds on these ideas.

3.2 Global Construction of 3-Spanners [Baswana Sen 2007]

We present a global algorithm that constructs a spanner of Õ(n3/2) edges. Pick S ⊆ V such that
|S| = Θ(

√
n log n). We call S the cluster centers. Each node independently puts itself in S with proba-

bility Θ(logn√
n
).

1

https://arxiv.org/pdf/2105.04847.pdf
https://onlinelibrary.wiley.com/doi/epdf/10.1002/rsa.20130

Useful Observation:∀u ∈ V such that deg(u) ≥
√
n, there is ≥ 1 − 1

n chance that u is adjacent
to a node v ∈ S. Using union bound, there is high probability that ∀u ∈ V with deg(u) ≥

√
n, u is

adjacent to some node v ∈ S.

3.2.1 Constructing H

1.If deg(u) <
√
n, add all edges (u, v) where v ∈ S

2.If deg(u) ≥
√
n, add edge from u to some node in S (such a node exists with high probability by the

useful observation).
3.If deg(u) ≥

√
n, add 1 edge from u to some node in every adjacent cluster.

1) adds at most n
√
n edges, as every low degree node has at most

√
n edges, meaning that we add

at most
√
n edges for each node.

2) adds at most n edges, as we add at most 1 edge for every node.

3) adds at most n
√
n log n clusters as |S| = Θ(

√
n log n) and for every node we add at most 1 edge

to every node in S.

In total, we add at most Õ(n3/2) edges.

We have a spanner with Õ(n3/2), but what is the stretch? Suppose (u, v) ∈ G \ H. If u, v are in
the same cluster center, then they both keep edge to center 3, and distH(u, v) = 2. If (u, v) are in
different clusters, then v must have kept to some z in u’s cluster by step 3 of the construction. Then,
if z ̸= cu, then there is a path of length 3 from u to v: u → cu → z → v, where cu the center of the
cluster u is in, and if z = cu, then there is a path of length 2 from u to v: u → cu → v. In any case,
distH(u, v) ≤ 3, as desired.

4 Converting Global Algorithm to LCA

Question: Given (u, v) ∈ G, is it in H?
Rule 1: If (u, v) are low-degree, then the answer is “yes”. We can query deg(u),deg(v), and if either
are less than

√
n, then we’re done.

Rule 2: If (u, v) have high-degree. If v is u’s center or vice versa, then say Yes.
Rule 3: If (u, v) is the chosen edge from u to v’s cluster, or from v to u’s cluster, then say Yes.
If none of the rules are satisfied, then say “No”.

4.1 First Center Attempt

For each high-degree node u, we choose the first center in the list of u’s neighbors to be u’s cluster.
Furthermore, for each u, v such that v is a center and u is adjacent to v’s cluster, chosen edge from u to
v’s cluster is the first incident node w in v’s cluster.

2

4.1.1 Rule 2

We can figure out if v the cluster center of u in O(
√
n) queries because with we hit a cluster center in

the first O(
√
n) elements with high probability due to the fact that all of them are independent coin

tosses (this follows from the same analysis as the useful observation).

4.1.2 Rule 3

This is problematic. On querying (u, v), we want to keep the edge if v introduces u to another cluster
(eg v is the first node incident to u that is in the same cluster as v). The problem is that the algorithm
is deg(u) ×

√
n, because for each incident node we need to check if it is in the same cluster as v.

Alternatively, we can look at all the nodes connected to cv, and see which ones are connected to u that
come before v. Either way, it takes deg(u)×

√
n queries, which is too much.

4.2 Multiple Center Attempt

For each high-degree node u, we connect u to all centers in the first
√
n locations. In other words,

Su = {v|vis in the first
√
n locations of u and v is a center}. For rule 3, we keep edge (u, v) if v intro-

duces u to any cluster in Sv.

Observation: For all u such that deg(u) ≥
√
n, 1 ≤ |Su| from the useful obesrvation, but it is also

unlikely that |Su| > log2 n by Chernoff.

4.2.1 Rule 2

At most O(log2 n) edges are kept per node, or at most O(n log2 n) total. To verify if v is in Su, just see
if both v is a center and v is in the first

√
n elements in u’s adjacency list, using adjacency probe. This

takes O(1) time. We can compute Su in
√
n steps – go down the first

√
n locations of u, and see which

of these decided to be centers.

4.2.2 Rule 3

First, we find Sv in O(
√
n) steps. Then, for each w ∈ Sv, check if there exists x that comes before v in

u’s adjacency list such that w is the center of x (we for each x we can check in 1 query by checking the
index of w in x)- if so, then cross w off. If there exists a w that is not crossed off, then v introduces u
to w, and thus we keep (u, v). Otherwise, v does not introduce u to any w, and thus we discard (u, v).

This takes Õ(deg(u)) queries - there are at most log2 n cluster centers in Sv, and for each of these
cluster centers w ∈ Sv we check at most the entire adjacency list of u up to v (meaning at most deg(u)
elements), making 1 query for each possible x that comes before v in the adjacency list to see if Sv is the
cluster center of x. Since we assumed that deg(u) = O(n3/4), this algorithm has the desired performance
of Õ(n3/4) queries.

3

	Definitions
	Model
	Access to G
	Desired Algorithm Performance

	Global Algorithm
	First Attempt
	Global Construction of 3-Spanners [Baswana Sen 2007]
	Constructing H

	Converting Global Algorithm to LCA
	First Center Attempt
	Rule 2
	Rule 3

	Multiple Center Attempt
	Rule 2
	Rule 3

