
6.5240 Sublinear Time Algorithms November 14, 2022

Lecture 18
Lecturer: Ronitt Rubinfeld Scribe: Jacob Teo

In this lecture, we continue discussing the local computation algorithm for the maximal independent set
problem.

1 Review

1.1 Maximal Independent Set (MIS)

Definition 1 Given a graph G = (V,E) with maximum degree d, a set of nodes U ⊆ V is a maximal
independent set (MIS) if

• ∀u1, u2 ∈ U, (u1, u2) /∈ E (“independent”)

• ∄w ∈ V \ U such that U ∪ {w} is independent (“maximal”)

Note that this is different from the maximum independent set, which is NP-Hard. There are many
possible maximal independent sets, and one can be found by any simple greedy algorithm.

1.2 Local Computation Model

In a general local computation model, we are trying to compute a queried subset of a large output, given
a large input. In this case, we have a large graph G and we want to answer a query like “is node i in
the MIS?” with a local computation algorithm (LCA). We want our algorithm to satisfy:

• Consistency: there must exist some MIS of G that is consistent with the result of all queries.

• Sublinear time: a query should only access an asymptotically small subset of the graph.

1.3 Parnas-Ron Reduction

Suppose we have a k-round distributed algorithm to compute the MIS. Then the output to a single node
depends only on its radius-k ball in G, and hence the Parnas-Ron reduction (first covered in Lecture 4)
allows us to convert a k-round distributed algorithm to a sequential dk-time algorithm for answering a
query to a single node.

1.4 Luby’s Algorithm

We first present Luby’s (modified) distributed algorithm for MIS.

Algorithm 1

1. MIS ← ∅

2. Set status of all nodes to live

3. We repeat k times in parallel:

(a) Each live node v performs this independently: With probability 1
2d , color self red, else

color self blue. Send color to all neighbors.

(b) If v is red and all its live neighbors are blue:

• Add v to MIS

• Set v and all its neighbors to dead (equivalently, remove them from the graph).

1

In the original version of Luby’s algorithm, we repeat until all nodes are dead, and output the resulting
MIS. For the purpose of analyzing the local computation algorithm later, we assume that nodes continue
to select their color, but do not send the color to their neighbors.

Let X be the number of phases needed. Then we have the following (refer to Lecture 17 for more details):

Lemma 2 Pr[X ≥ 8 log n] ≤ 1
n

Corollary 3 Exp[X] = O(d log n)

Lemma 4 For any node v, Pr[v is live and added to MIS in a round] ≥ 1
4d .

Corollary 5 For any node v, Pr[v is live after 4kd rounds] ≤ e−k.

Our goal is to use the Parnas-Ron reduction to obtain a sublinear-time LCA. However, if our number
of phases has a log n term, then the resulting sequential algorithm must take Ω(n) time.

Idea: If we ran Luby’s algorithm for fewer rounds, some nodes would still be live. Intuitively, these
surviving nodes would be spread out across the graph, and hence form small (sublinear-size), independent
connected components. We can then process these components individually.

2 Local Computation Algorithm for MIS

We define a new local algorithm, Luby-Status or LS(v). This runs Luby’s algorithm described above for
k = O(d log d) rounds and returns the status of node v. There are 3 possible outputs:

• v is live

• v is in MIS

• v is not in MIS

With the Parnas-Ron reduction, we can compute LS(v) in dO(d log d) time. We now define our LCA:

Algorithm 2: MIS(v)

1. Run the sequential version of LS(v). If the output is “in MIS” or “not in MIS”, output that
and halt.

2. Otherwise, v is live.

(a) Perform a BFS to find the connected component of v consisting only of live nodes.

(b) Compute lexicographically smallest MIS M ′ for that connected component

(c) Output whether v is in M ′.

The reason we want the lexicographically smallest MIS is because our algorithm has to be consistent, and
hence the MIS that our algorithm yields should be uniquely defined by the set of nodes in the connected
component, and this can be done quickly. For example, we can define a greedy algorithm where we start
from the lowest-label node, and at any node we visit neighbors in increasing label order. This yields a
deterministic output, and runs in O((size of component) · d log d) (taking into account the need to sort
neighbors by label).

2

2.1 Dealing with randomness

Something to note is that while the algorithm itself is randomized, the result should be consistent and
reproducible (in a given round and for a given node, the color should always be the same). Thus, the
output of a given MIS(v) should always be the same. To achieve this, we assume access to a “repository”
of pre-generated random bits that are used for any random operation, and the same bits are accessed for
each unique random operation. By doing this, the probabilistic bounds are maintained, yet the output
is consistent.

2.2 Runtime analysis

Let S denote the size of the connected component of v consisting only of live nodes. We consider the
time of each individual step:

• Step 1 takes dO(d log d) time.

• In step 2a, each node visits at most d neighbors and we must run sequential-LS to check whether
each visited node is live, hence the runtime is (S · d) · dO(d log d).

• Step 2b runs in S · d log d time.

• Step 2c in constant time.

In total, the runtime is S · dO(d log d) (after absorbing factors into the exponent).

2.3 Bounding component size

Now, we claim that setting k = O(d log d), then with high probability, all connected components of live
nodes will be of size O(polylog(d) · log n). For each node v, consider the indicator variable

Av =

{
1 if v survives all rounds

0 otherwise

We are interested in components of nodes where Av = 1. However, this is hard to work with since there
is a lot of dependence between values of A and it depends on the round history. Thus, we consider a
different indicator variable defined as follows:

Bv =

{
1 if ∄ a round such that v colors itself red, and all neighbors color themselves blue

0 otherwise

Notice that Av = 1 =⇒ Bv = 1. Hence, it suffices to bound the size of connected components of nodes
where Bv = 1.

Lemma 6 Let dist(u, y) be the shortest distance between nodes u and y. If dist(u, y) ≥ 3, then Bu and
By are independent.

Proof For a node u, the event Bu depends only on the randomness of itself and its neighbors N(u).
For two nodes u, v where dist(u, v) ≥ 3, {u} ∪N(u) and {v} ∪N(v) are disjoint.

Lemma 7 Pr[Bv = 1] ≤ 1
8d3

3

Proof Making use of Lemma 4, we have: Pr[Bv = 1] ≤ (1− 1
4d)

c·d log d ≤ 1
8d3 if we set c ≥ 20.

We now outline the idea of the proof. If we had a large connected component of live nodes (Bv = 1),
then we would be able to find a large subset of nodes of pairwise distance at least 3, making all the
individual Bv’s independent. We can then apply union bound to show that the probability that all of
the Bv’s are 1 is very low.

Let H denote a graph on the nodes of G, where we have an edge in H between nodes u and v if
distG(u, v) = 3. Note that H has max degree d3.

Lemma 8 If there exists a surviving connected component S of size ≥ wd3 in G, then there must exist
a surviving connected component T of size ≥ w in H.

Proof We construct this set T greedily. We first pick an arbitrary node u ∈ S. While there are still
nodes in S:

• Add u to T .

• Remove from S all nodes v such that distG(u, v) ≤ 2 (including u).

• Pick a new node u such that dist(u, v) = 3 for some v ∈ T .

Note that at most d+ d2 < d3− 1 (for d > 1) nodes are removed for every node added to T , and T must

be connected in H. Hence we have |T | ≥ |S|
d3 ≥ w.

Note that after k = O(d log d) rounds of Luby’s algorithm, the probability that a component of size w
survives in H is ≤

(
1

8d3

)w
(since by Lemma 6, Bv’s in H are independent and Pr[Bv = 1] ≤ 1

8d3).

To bound the probability of size-wd3 components in G, it suffices to bound the probability of size-w
components in H. Notice that a size-w component can be defined by one of its spanning trees, and
hence the number of possible size-w components is upper-bounded by the number of size-w subtrees.

2.4 Counting subtrees

We want to bound the number of subtrees to perform our union bound. We first begin with a known
fact bounding the number of possible unique tree shapes.

Theorem 9 The number of non-isomorphic rooted trees of w nodes ≤ 4w.

Proof Consider the sequence of nodes visited in a DFS from the root, where each step either goes
down or up one level of the tree, with a total of 2(w− 1) steps. We can encode this as a length 2(w− 1)
bit string, and hence #trees ≤ 22(w−1) ≤ 4w.

Corollary 10 The number of size-w trees in a graph G with N nodes and max degree D graph is
≤ N(4D)w.

Proof Suppose we try to enumerate all trees (double-counting is fine since we want an upper bound).
We choose a node in G to be the root (N choices), choose a size-w rooted tree shape (≤ 4w choices)
and choose a placement of the tree on G. For the placement, consider starting with the root node and
adding a child node in the tree one by one. For each node added, we have at most D choices of which
node in G to assign to it. Hence, we have

Number of choices ≤ N · 4w ·Dw = N(4D)w

4

2.5 Final result

Now taking union bound over each possible connected component (c.c.), and using the fact that H has
max degree d3, we have:

Pr[∃ c.c. of size w surviving in H] ≤ (# size-w c.c. in H) · Pr[size w c.c. survives]

≤ (# size-w subtrees in H) ·
(

1

8d3

)w

≤ n · (4d3)w ·
(

1

8d3

)w

=
n

2w
≤ 1

n

for w = Ω(log n). Thus,

Pr[∃ surviving component of size Ω(d3 log n) in G] ≤ 1

n

and hence with high probability, our algorithm runs in dO(d log d) · log n time.

5

	Review
	Maximal Independent Set (MIS)
	Local Computation Model
	Parnas-Ron Reduction
	Luby's Algorithm

	Local Computation Algorithm for MIS
	Dealing with randomness
	Runtime analysis
	Bounding component size
	Counting subtrees
	Final result

