6.5240 Sublinear Time Algorithms

November 7, 2022

Lecture 16

Lecturer: Ronitt Rubinfeld
Scribe: Anson Hu

Today: hypothesis testing, the cover method.
Previously covered: given samples of a distribution p of domain size n, it is possible to check if

- $p=q$ for known q or ϵ-far in $O(\sqrt{n})$ samples
- p is ϵ-close to known q in L_{1} distance or ϵ-far in L_{2} distance in $O(n / \log n)$ samples
- $p=q$ for q given via samples or ϵ-far in L_{2} in $O\left(n^{2 / 3}\right)$ samples
- p is ϵ-close to q given via samples in L_{1} distance or ϵ-far in L_{2} distance in $O(n / \log n)$ samples

1 Hypothesis testing

Tool: Given a collection of distributions H, of which you have complete knowledge, and samples of a distribution p such that there exists q in H for which $\operatorname{dist}(p, q)$ is small, the goal is to output h in H such that $\operatorname{dist}(p, h)$ is small. Our metric is the number of samples in terms of H and the domain size.

Start with the simple case with $|H|=2 . h_{1}, h_{2}$ are given explicitly and p is taken via samples. The goal is to output whichever h_{i} is closer to p. If $\left\|h_{1}-h_{2}\right\|_{1} \leq \epsilon$, either one can be output.

Theorem 1 : Given p via samples, h_{1}, h_{2} explicitly, an ϵ^{\prime} parameter for accuracy, and a δ^{\prime} confidence parameter, there is an algorithm "Choose" which takes $O\left(\log \left(\frac{1}{\delta^{\prime}}\right) / \epsilon^{\prime 2}\right)$ samples and outputs one of $\left\{h_{1}, h_{2}\right\}$ which satisfies that if one of $\left\{h_{1}, h_{2}\right\}$ has $\left\|h_{i}-p\right\|_{1} \leq \epsilon^{\prime}$, then with probability $\geq 1-\epsilon^{\prime}$ the output is h_{j} such that $\left\|h_{j}-p\right\|_{1} \leq 12 \epsilon^{\prime}$.

We will use $\epsilon^{\prime} \approx \epsilon / 12$. (δ^{\prime} is used because down the line it will be needed to pass all tests in a union bound.)

1.1 Algorithm "Choose"

First, define $A=\left\{x \mid h_{1}(x)>h_{2}(x)\right\}$. Think about a simplified example where h_{1} and h_{2} only cross twice:

Call these regions R_{1}, R_{2}, R_{3}. Let $a_{1}=h_{1}(A)$ and $a_{2}=h_{2}(A)$. We can see that $a_{1}=R_{1}+R_{2}$, $a_{2}=R_{2}$, and $R_{1}=R_{3}=a_{1}-a_{2}$. Notice that $R_{1}=R_{3}$ because the sum of probabilities is equal to 1 for h_{1} and h_{2}, and therefore the "additional" probability R_{1} gained by h_{1} over A must be gained by h_{2} over the remainder of the domain.

The L_{1} distance between h_{1} and h_{2} is $R_{1}+R_{3}=2 R_{1}=2\left(a_{1}-a_{2}\right)$.
The algorithm "Choose" does the following:

1. if $a_{1}-a_{2} \leq 5 \epsilon^{\prime}$, declare a tie and return h_{1}. (No samples are taken.)
2. draw $m=\frac{2 \log \left(1 / \delta^{\prime}\right)}{\epsilon^{\prime 2}}$ samples $S_{1} \ldots S_{m}$ from p.
3. let $\left.\alpha=\frac{1}{m}|i| S_{i} \in A \right\rvert\,$. (In other words α is the fraction of samples in A.)
4. if $\alpha>a_{1}-(3 / 2) \epsilon^{\prime}$, return h_{1}, else if $\alpha<a_{2}+(3 / 2) \epsilon^{\prime}$ return h_{2}, else there is a tie and return h_{1}.

We need that $a_{1}-(3 / 2) \epsilon^{\prime}>a_{2}+(3 / 2) \epsilon^{\prime}$ to make these regions exclusive, which means that $a_{1}>$ $a_{2}+3 \epsilon^{\prime}$. This is enforced by step 1 .

Behavior

If h_{1} or h_{2} is ϵ^{\prime} close to p, then if there is a tie in step 1 , the L_{1} distance between the two is at most $10 \epsilon^{\prime}$ and then $\left\|p-H_{i}\right\|_{1} \leq 11 \epsilon^{\prime}$, so we are good.
(Side note: total variation distance is used in some papers; it just means half of L_{1} distance.)
Otherwise, we reach step 2, and L_{1} distance between the two is $>10 \epsilon^{\prime} . E[\alpha]=\operatorname{Pr}_{x \in p}[x \in A]=p(A)$. By Chernoff bound on the number of samples, with high probability $|\alpha-E[\alpha]|<\epsilon^{\prime} / 2 . h_{1}$ assigns a_{1} weight to A, and h_{2} assigns a_{2} weight to A. If p is ϵ^{\prime}-close to h_{1}, it assigns $\geq a_{1}-\epsilon^{\prime}$ weight to A, which implies $\alpha>a_{1}-\epsilon^{\prime}-\epsilon^{\prime} / 2=a_{1}-(3 / 2) \epsilon^{\prime}$. Therefore h_{1} is output with high probability. The same argument holds for h_{2} in the other direction. We have demonstrated that the algorithm has correct behavior.

1.2 A first attempt at arbitrary-size $|H|$

We will try to run this as a subroutine where we reuse samples when plugging into "Choose". The plan is to use union bound since the runs are dependent. The probability of a run being bad is at most δ^{\prime}, therefore we need $k \delta^{\prime}$ to be small, where k is the number of times we run it. Therefore we need $\delta^{\prime} \approx 1 / k$.

We can try a tournament method as such in the image:

However, this is not good, since at each level we gain a factor of 11 of error (for example, if $p=h_{1}$ but h_{2} passes, the distance of h_{2} could be up to about $11 \epsilon^{\prime}$. A similar argument holds as we advance down the tournament tree, so the final winner of the tournament could have as far as $\left\|p-h_{w i n n e r}\right\|_{1} \leq 11^{\log l} \epsilon^{\prime}$.

Now, we instead try to test all pairs. Then we can see that the distribution closest to p never loses, and we want to show that things 11 apart will lose to the winner. We will modify the choose spec: if $h_{i}>12 \epsilon^{\prime}$-far from p, then it will likely lose, and if $h_{i}>10 \epsilon^{\prime}$-far, then it is likely to tie or lose.

2 The cover method

Definition $2 C$ is an ϵ-cover of D, where both C and D are collections of distributions and C is smaller, if $\forall p \in D, \exists q \in C$ such that $\|p-q\|_{1} \leq \epsilon$.

Theorem 3 Given a cover C of D, there exists an algorithm, given $p \in D$, which takes $O\left(\frac{1}{\epsilon^{2}} \log |C|\right)$ samples of p and outputs $h \in C$ such that $\left\|h-p_{1}\right\|_{1} \leq 12 \epsilon$ with probability $\geq 9 / 10$.

Proof Run "Choose" on p with every pair $\left(q_{1}, q_{2}\right) \in C$, the best $q_{o p t}$ ties or wins all matches. If $q^{\prime} \geq 12 \epsilon$-far from p, then it is at least 11ϵ-far from $q_{o p t}$.

2.1 Examples

$\forall p$, use $\tilde{p} \leftarrow$ closest i / k, so $\|p-\tilde{p}\|_{1}<1 / k$.
$k=\Theta(1 / \epsilon) \rightarrow| | p-\tilde{p} \|_{1} \leq \epsilon,|C|=k+1=\Theta(1 / \epsilon)$, and therefore the number of samples taken by the cover method is $O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\epsilon}\right)$.

3-bucket distributions. $|C|=\Theta\left(1 / \epsilon^{2}\right)$, since we have to pick pairs of (α, β), and the algorithm takes $O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\epsilon}\right)$ samples.

Monotone distributions. By Birge's theorem, $C=\left\{i_{1} / k \ldots i_{\log n / \epsilon} / k\right\}$, where the is are in $\{0 \ldots k\}$. $|C|=\Theta\left(\frac{1}{e^{\log n!\epsilon}}\right)$, so the number of samples is $O\left(\frac{1}{\epsilon^{3}} \cdot \log n \cdot \log \frac{1}{\epsilon}\right)$.

Poisson binomial distribution. $X=\sum x_{i}$, where x_{i} is an indicator variable for a coin with bias p_{i}. The p_{i} are independent but not identically distributed. For example, where $p_{1}=1 / 2, p_{2}=1, p \ldots=0$, $\operatorname{Pr}[x=0]=0, \operatorname{Pr}[x=1]=1 / 2$.

