
6.5240 Sublinear Time Algorithms November 7, 2022

Lecture 16
Lecturer: Ronitt Rubinfeld Scribe: Anson Hu

Today: hypothesis testing, the cover method.
Previously covered: given samples of a distribution p of domain size n, it is possible to check if

• p = q for known q or ϵ-far in O(
√
n) samples

• p is ϵ-close to known q in L1 distance or ϵ-far in L2 distance in O(n/ log n) samples

• p = q for q given via samples or ϵ-far in L2 in O(n2/3) samples

• p is ϵ-close to q given via samples in L1 distance or ϵ-far in L2 distance in O(n/ log n) samples

1 Hypothesis testing

Tool: Given a collection of distributions H, of which you have complete knowledge, and samples of a
distribution p such that there exists q in H for which dist(p, q) is small, the goal is to output h in H
such that dist(p, h) is small. Our metric is the number of samples in terms of H and the domain size.

Start with the simple case with |H| = 2. h1, h2 are given explicitly and p is taken via samples. The
goal is to output whichever hi is closer to p. If ||h1 − h2||1 ≤ ϵ, either one can be output.

Theorem 1 : Given p via samples, h1, h2 explicitly, an ϵ′ parameter for accuracy, and a δ′ confidence
parameter, there is an algorithm “Choose” which takes O(log(1

δ′)/ϵ
′2) samples and outputs one of {h1, h2}

which satisfies that if one of {h1, h2} has ||hi − p||1 ≤ ϵ′, then with probability ≥ 1− ϵ′ the output is hj

such that ||hj − p||1 ≤ 12ϵ′.

We will use ϵ′ ≈ ϵ/12. (δ′ is used because down the line it will be needed to pass all tests in a union
bound.)

1.1 Algorithm “Choose”

First, define A = {x|h1(x) > h2(x)}. Think about a simplified example where h1 and h2 only cross
twice:

1

Call these regions R1, R2, R3. Let a1 = h1(A) and a2 = h2(A). We can see that a1 = R1 + R2,
a2 = R2, and R1 = R3 = a1 − a2. Notice that R1 = R3 because the sum of probabilities is equal to 1
for h1 and h2, and therefore the ”additional” probability R1 gained by h1 over A must be gained by h2

over the remainder of the domain.
The L1 distance between h1 and h2 is R1 +R3 = 2R1 = 2(a1 − a2).
The algorithm “Choose” does the following:

1. if a1 − a2 ≤ 5ϵ′, declare a tie and return h1. (No samples are taken.)

2. draw m = 2 log(1/δ′)
ϵ′2 samples S1 . . . Sm from p.

3. let α = 1
m |i|Si ∈ A|. (In other words α is the fraction of samples in A.)

4. if α > a1 − (3/2)ϵ′, return h1, else if α < a2 + (3/2)ϵ′ return h2, else there is a tie and return h1.

We need that a1 − (3/2)ϵ′ > a2 + (3/2)ϵ′ to make these regions exclusive, which means that a1 >
a2 + 3ϵ′. This is enforced by step 1.

Behavior
If h1 or h2 is ϵ′ close to p, then if there is a tie in step 1, the L1 distance between the two is at most

10ϵ′ and then ||p−Hi||1 ≤ 11ϵ′, so we are good.
(Side note: total variation distance is used in some papers; it just means half of L1 distance.)
Otherwise, we reach step 2, and L1 distance between the two is > 10ϵ′. E[α] = Prx∈p[x ∈ A] = p(A).

By Chernoff bound on the number of samples, with high probability |α − E[α]| < ϵ′/2. h1 assigns a1
weight to A, and h2 assigns a2 weight to A. If p is ϵ′-close to h1, it assigns ≥ a1 − ϵ′ weight to A,
which implies α > a1 − ϵ′ − ϵ′/2 = a1 − (3/2)ϵ′. Therefore h1 is output with high probability. The same
argument holds for h2 in the other direction. We have demonstrated that the algorithm has correct
behavior.

1.2 A first attempt at arbitrary-size |H|
We will try to run this as a subroutine where we reuse samples when plugging into “Choose”. The plan
is to use union bound since the runs are dependent. The probability of a run being bad is at most δ′,
therefore we need kδ′ to be small, where k is the number of times we run it. Therefore we need δ′ ≈ 1/k.

We can try a tournament method as such in the image:

However, this is not good, since at each level we gain a factor of 11 of error (for example, if p = h1 but
h2 passes, the distance of h2 could be up to about 11ϵ′. A similar argument holds as we advance down
the tournament tree, so the final winner of the tournament could have as far as ||p−hwinner||1 ≤ 11log lϵ′.

Now, we instead try to test all pairs. Then we can see that the distribution closest to p never loses,
and we want to show that things 11 apart will lose to the winner. We will modify the choose spec: if
hi > 12ϵ′-far from p, then it will likely lose, and if hi > 10ϵ′-far, then it is likely to tie or lose.

2

2 The cover method

Definition 2 C is an ϵ-cover of D, where both C and D are collections of distributions and C is smaller,
if ∀p ∈ D, ∃q ∈ C such that ||p− q||1 ≤ ϵ.

Theorem 3 Given a cover C of D, there exists an algorithm, given p ∈ D, which takes O(1
ϵ2 log |C|)

samples of p and outputs h ∈ C such that ||h− p1||1 ≤ 12ϵ with probability ≥ 9/10.

Proof Run “Choose” on p with every pair (q1, q2) ∈ C, the best qopt ties or wins all matches. If
q′ ≥ 12ϵ-far from p, then it is at least 11ϵ-far from qopt.

2.1 Examples

Finding the bias of a coin. The coin has domain {0, 1} and D = [0, 1]. Use C = {0, 1/k, 2/k . . . k/k}.
∀p, use p̃← closest i/k, so ||p− p̃||1 < 1/k.
k = Θ(1/ϵ)→ ||p− p̃||1 ≤ ϵ, |C| = k+1 = Θ(1/ϵ), and therefore the number of samples taken by the

cover method is O(1
ϵ2 log

1
ϵ).

3-bucket distributions. |C| = Θ(1/ϵ2), since we have to pick pairs of (α, β), and the algorithm takes
O(1

ϵ2 log
1
ϵ) samples.

Monotone distributions. By Birge’s theorem, C = {i1/k . . . ilogn/ϵ/k}, where the is are in {0 . . . k}.
|C| = Θ(1

elog n/ϵ), so the number of samples is O(1
ϵ3 · log n · log

1
ϵ).

Poisson binomial distribution. X =
∑

xi, where xi is an indicator variable for a coin with bias pi.
The pi are independent but not identically distributed. For example, where p1 = 1/2, p2 = 1, p . . . = 0,
Pr[x = 0] = 0,Pr[x = 1] = 1/2.

3

