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In this class we will give an algorithm for uniformity testing. For distributions p, q over a domain D,
define the ℓ1 and ℓ2 distances as follows.

Definition 1 The ℓ1 and ℓ2 distances are given by,

• ℓ1(p, q) =
∑

x∈D |p(x)− q(x)|

• ℓ2(p, q) =
√∑

x∈D(p(x)− q(x))2.

We also use ||p||2 to denote the ℓ2-norm which is given by,

• ||p||2 =
√∑

x∈D p(x)2.

Let U denote the uniform distribution over D, i.e., U(x) = 1
|D| for all x ∈ D. Given sample access

to a distribution p, the goal of uniformity testing is to:

• If p = U , pass with probability at least 2/3.

• If dist(p, U) > ϵ, fail with probability at least 2/3.

We will give algorithms for dist as both ℓ1 and ℓ2. We start with ℓ2. The algorithm is as follows.

1. Take s = Ω(ϵ−4) samples from p, x1, . . . , xs

2. Set ĉ←− to be the estimate of ||p||22 (described next).

3. If ĉ < 1
n + ϵ2

2 , pass. Otherwise fail.

The idea is that ĉ will be an estimate of the collision probability of p, which should be close to 1/n if p
is close to uniform. To get the estimate of ||p||22, we do the following,

1. For all i, j, set σij=1 if xi = xj and 0 otherwise.

2. Set ĉ←−
∑

i<j σij

(s2)
.

We record some straightforward facts that will be helpful for our analysis.

Lemma 1 The following are true.

1. ||p− U ||22 =
∑

i∈D p(i)2 − 1
n .

2. E[ĉ] = ||p||22 = E[σij ].

3. Var[ĉ] =
Var(

∑
i<j σij)

(s2)
.

4.
(∑

x∈D p(x)3
)1/3 ≤ (∑x∈D p(x)

)1/2
.

5. s2 ≤ 3
(
s
2

)
.

6.
(
s
3

)
≤ s3

6
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From this lemma, we see that if |ĉ − ||p||22| < ϵ2

2 , then the algorithm outputs the right answer.

Indeed, by the first point, if p = U , then ||p||22 = 1
n and we would get ĉ < 1

n + ϵ2

2 resulting in pass as
desired. Otherwise, if p is ϵ-far from uniform then the first point implies that ||p||22 ≥ 1

n + ϵ2 and thus

ĉ ≥< 1
n + ϵ2

2 resulting in reject as desired. To complete our analysis, we will show that |ĉ− ||p||22| < ϵ2

2
with probability at least 2/3 over the random samples x1, . . . , xs. To this end, we bound the variance of
ĉ and use Chebyshev’s.

Lemma 2 We have,

Var

∑
i<j

σij

 ≤ 4

((
s

2

)
||p||22

)3/2

.

Proof First let σij = σij − E[σij ]. Then, E[σij ] = 0. Moreover, we have that

E[σij σkl] = E[σijσkl]− E[σij ]
2 ≤ E[σijσkl]. (1)

We decompose the variance as,

Var

∑
i<j

σij

 = E

∑
i<j

σij
2 +

∑
i<j,k<ℓ,all distinct

σij σkℓ +
∑

i,j,k,ℓ 3 distinct

σij σkℓ

 ,

and bound each term separately. For the first term,

E

∑
i<j

σij
2

 ≤ (s
2

)
||p||22,

using part 1 of Lemma 1 and (1).
For the second term,

E

∑
i<j

σij σkℓ

 = 0,

by independence and the fact that E[σij ] = 0.
For the third term, we can have i < j, and k < ℓ with 3 distinct in several ways. We could have,

i = k, j = ℓ, j = k, or i = ℓ. However, it is not hard to see that the same bound will hold for each, so
we simply give a bound for the sum over i < j, k < ℓ such that i = k.

E

 ∑
i<j,i<ℓ

σij σkℓ

 ≤ E

 ∑
i<j,i<ℓ

σijσiℓ


≤

∑
i,j,ℓ distinct

E[1xi=xj=xℓ
]

≤
(
s

3

)∑
x∈D

p(x)3

≤ s3

6

(∑
x∈D

p(x)2

)3/2

≤
√
3

2

(
s

2

)3/2 (
||p||22

)3/2
.
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where we use the fourth part of Lemma 1 in the first line, the sixth part to get the fourth line, and the
fifth part to get the last line. As the same bound holds for the other cases with 3 distinct out of i, j, k, ℓ,
we get an overall bound of

Var

∑
i<j

σij

 ≤ (s
2

)
||p||22 + 4 ·

√
3

2

(
s

2

)3/2 (
||p||22

)3/2 ≤ 4

((
s

2

)
||p||22

)3/2

.

We now apply Chebyshev’s to get the following.

Lemma 3

Pr
x′
is
[|ĉ− ||p||22| > ϵ2/2] <

1

3
.

Proof Applying Chebyshev’s yields,

Pr
x′
is
[|ĉ− ||p||22 > ϵ2/2] ≤ Var(ĉ)

(ϵ2/2)2

≤
k
(
s
2

)3/2
(||p||22)3/2(

s
2

)2
ϵ4

= O

(
1

sϵ4

)
< 1/3,

where k is some constant in s = Ω(ϵ−4), chosen so that the last inequality holds. Note that the first line
uses fact 3 of Lemma 1 to go from Var(

∑
σij) to Var(ĉ).

As discussed, this shows the correctness of the algorithm. We now describe how to a similar algorithm
for ℓ1 distance. Notice that ℓ1(p, U) = 0 is equivalent to ℓ2(p, U) = 0 and ||p||22 = 1

n . On the other hand,

if ℓ1(p, U) > ϵ, then ℓ2(p, U) > ϵ√
n
and thus ||p||22 > 1

n + ϵ2

n . Therefore we need to estimate ||p||22 to an

within an additive error of ϵ2/(2n) and pass if and only if ĉ < 1
n + ϵ2

2n . Given the bound on ||p||22 in the
ϵ-far case, this additive error can also be achieved by a multiplicative error of 1 ± ϵ2/3. To accomplish
this we run the same algorithm with s = Ω(

√
nϵ−4). Then by Chebyshev’s

Pr
x′
is

[
|ĉ− ||p||22| ≤ (ϵ2/3)||p||22

]
≤ Var(ĉ)

ϵ4||p||2)2/9

≤ k′

ϵ4||p||2s

≤ k′
√
n

ϵ4s

≤ 1

3

where we use the fact that ||p||2 > 1/
√
n to get the second line, and choose k′ appropriately to make

obtain the last line.
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