Lecture 13

Lecturer: Ronitt Rubinfeld

In this class we will give an algorithm for uniformity testing. For distributions p, q over a domain D, define the ℓ_{1} and ℓ_{2} distances as follows.

Definition 1 The ℓ_{1} and ℓ_{2} distances are given by,

- $\ell_{1}(p, q)=\sum_{x \in D}|p(x)-q(x)|$
- $\ell_{2}(p, q)=\sqrt{\sum_{x \in D}(p(x)-q(x))^{2}}$.

We also use $\|p\|_{2}$ to denote the ℓ_{2}-norm which is given by,

- $\|p\|_{2}=\sqrt{\sum_{x \in D} p(x)^{2}}$.

Let U denote the uniform distribution over D, i.e., $U(x)=\frac{1}{|D|}$ for all $x \in D$. Given sample access to a distribution p, the goal of uniformity testing is to:

- If $p=U$, pass with probability at least $2 / 3$.
- If $\operatorname{dist}(p, U)>\epsilon$, fail with probability at least $2 / 3$.

We will give algorithms for dist as both ℓ_{1} and ℓ_{2}. We start with ℓ_{2}. The algorithm is as follows.

1. Take $s=\Omega\left(\epsilon^{-4}\right)$ samples from p, x_{1}, \ldots, x_{s}
2. Set $\hat{c} \leftarrow$ to be the estimate of $\|p\|_{2}^{2}$ (described next).
3. If $\hat{c}<\frac{1}{n}+\frac{\epsilon^{2}}{2}$, pass. Otherwise fail.

The idea is that \hat{c} will be an estimate of the collision probability of p, which should be close to $1 / n$ if p is close to uniform. To get the estimate of $\|p\|_{2}^{2}$, we do the following,

1. For all i, j, set $\sigma_{i j=1}$ if $x_{i}=x_{j}$ and 0 otherwise.
2. Set $\hat{c} \leftarrow \frac{\sum_{i<j} \sigma_{i j}}{\binom{s}{2}}$.

We record some straightforward facts that will be helpful for our analysis.
Lemma 1 The following are true.

1. $\|p-U\|_{2}^{2}=\sum_{i \in D} p(i)^{2}-\frac{1}{n}$.
2. $\mathrm{E}[\hat{c}]=\|p\|_{2}^{2}=\mathrm{E}\left[\sigma_{i j}\right]$.
3. $\operatorname{Var}[\hat{c}]=\frac{\operatorname{Var}\left(\sum_{i<j} \sigma_{i j}\right)}{\binom{s}{2}}$.
4. $\left(\sum_{x \in D} p(x)^{3}\right)^{1 / 3} \leq\left(\sum_{x \in D} p(x)\right)^{1 / 2}$.
5. $s^{2} \leq 3\binom{s}{2}$.
6. $\binom{s}{3} \leq \frac{s^{3}}{6}$

From this lemma, we see that if $\left|\hat{c}-\left|\left|p \|_{2}^{2}\right|<\frac{\epsilon^{2}}{2}\right.\right.$, then the algorithm outputs the right answer. Indeed, by the first point, if $p=U$, then $\|p\|_{2}^{2}=\frac{1}{n}$ and we would get $\hat{c}<\frac{1}{n}+\frac{\epsilon^{2}}{2}$ resulting in pass as desired. Otherwise, if p is ϵ-far from uniform then the first point implies that $\|p\|_{2}^{2} \geq \frac{1}{n}+\epsilon^{2}$ and thus $\hat{c} \geq<\frac{1}{n}+\frac{\epsilon^{2}}{2}$ resulting in reject as desired. To complete our analysis, we will show that $\left|\hat{c}-\|p\|_{2}^{2}\right|<\frac{\epsilon^{2}}{2}$ with probability at least $2 / 3$ over the random samples x_{1}, \ldots, x_{s}. To this end, we bound the variance of \hat{c} and use Chebyshev's.

Lemma 2 We have,

$$
\operatorname{Var}\left[\sum_{i<j} \sigma_{i j}\right] \leq 4\left(\binom{s}{2}\|p\|_{2}^{2}\right)^{3 / 2}
$$

Proof First let $\overline{\sigma_{i j}}=\sigma_{i j}-\mathrm{E}\left[\sigma_{i j}\right]$. Then, $\mathrm{E}\left[\overline{\sigma_{i j}}\right]=0$. Moreover, we have that

$$
\begin{equation*}
\mathrm{E}\left[\overline{\sigma_{i j}} \overline{\sigma_{k l}}\right]=\mathrm{E}\left[\sigma_{i j} \sigma_{k l}\right]-\mathrm{E}\left[\sigma_{i j}\right]^{2} \leq \mathrm{E}\left[\sigma_{i j} \sigma_{k l}\right] \tag{1}
\end{equation*}
$$

We decompose the variance as,

$$
\operatorname{Var}\left(\sum_{i<j} \sigma_{i j}\right)=\mathrm{E}\left[\sum_{i<j}{\overline{\sigma_{i j}}}^{2}+\sum_{i<j, k<\ell, \text { all distinct }} \overline{\sigma_{i j}} \overline{\sigma_{k \ell}}+\sum_{i, j, k, \ell} \sum_{\text {distinct }} \overline{\sigma_{i j}} \overline{\sigma_{k \ell}}\right],
$$

and bound each term separately. For the first term,

$$
\mathrm{E}\left[\sum_{i<j}{\bar{\sigma}_{i j}}^{2}\right] \leq\binom{ s}{2}\|p\|_{2}^{2}
$$

using part 1 of Lemma 1 and (1).
For the second term,

$$
\mathrm{E}\left[\sum_{i<j} \overline{\sigma_{i j}} \overline{\sigma_{k \ell}}\right]=0
$$

by independence and the fact that $\mathrm{E}\left[\overline{\sigma_{i j}}\right]=0$.
For the third term, we can have $i<j$, and $k<\ell$ with 3 distinct in several ways. We could have, $i=k, j=\ell, j=k$, or $i=\ell$. However, it is not hard to see that the same bound will hold for each, so we simply give a bound for the sum over $i<j, k<\ell$ such that $i=k$.

$$
\begin{aligned}
\mathrm{E}\left[\sum_{i<j, i<\ell} \overline{\sigma_{i j}} \overline{\sigma_{k \ell}}\right] & \leq \mathrm{E}\left[\sum_{i<j, i<\ell} \sigma_{i j} \sigma_{i \ell}\right] \\
& \leq \sum_{i, j, \ell \text { distinct }} \mathrm{E}\left[1_{x_{i}=x_{j}=x_{\ell}}\right] \\
& \leq\binom{ s}{3} \sum_{x \in D} p(x)^{3} \\
& \leq \frac{s^{3}}{6}\left(\sum_{x \in D} p(x)^{2}\right)^{3 / 2} \\
& \leq \frac{\sqrt{3}}{2}\binom{s}{2}^{3 / 2}\left(\|p\|_{2}^{2}\right)^{3 / 2}
\end{aligned}
$$

where we use the fourth part of Lemma 1 in the first line, the sixth part to get the fourth line, and the fifth part to get the last line. As the same bound holds for the other cases with 3 distinct out of i, j, k, ℓ, we get an overall bound of

$$
\operatorname{Var}\left(\sum_{i<j} \sigma_{i j}\right) \leq\binom{ s}{2}\|p\|_{2}^{2}+4 \cdot \frac{\sqrt{3}}{2}\binom{s}{2}^{3 / 2}\left(\|p\|_{2}^{2}\right)^{3 / 2} \leq 4\left(\binom{s}{2}\|p\|_{2}^{2}\right)^{3 / 2}
$$

We now apply Chebyshev's to get the following.

Lemma 3

$$
\underset{x_{i}^{\prime} s}{\operatorname{Pr}}\left[\left|\hat{c}-\left|\left|p \|_{2}^{2}\right|>\epsilon^{2} / 2\right]<\frac{1}{3} .\right.\right.
$$

Proof Applying Chebyshev's yields,

$$
\begin{aligned}
\operatorname{Pr}_{x_{i}^{\prime} s}\left[\mid \hat{c}-\|p\|_{2}^{2}>\epsilon^{2} / 2\right] & \leq \frac{\operatorname{Var}(\hat{c})}{\left(\epsilon^{2} / 2\right)^{2}} \\
& \leq \frac{k\binom{s}{2}^{3 / 2}\left(\|p\|_{2}^{2}\right)^{3 / 2}}{\binom{s}{2}^{2} \epsilon^{4}} \\
& =O\left(\frac{1}{s \epsilon^{4}}\right)<1 / 3
\end{aligned}
$$

where k is some constant in $s=\Omega\left(\epsilon^{-4}\right)$, chosen so that the last inequality holds. Note that the first line uses fact 3 of Lemma 1 to go from $\operatorname{Var}\left(\sum \sigma_{i j}\right)$ to $\operatorname{Var}(\hat{c})$.

As discussed, this shows the correctness of the algorithm. We now describe how to a similar algorithm for ℓ_{1} distance. Notice that $\ell_{1}(p, U)=0$ is equivalent to $\ell_{2}(p, U)=0$ and $\|p\|_{2}^{2}=\frac{1}{n}$. On the other hand, if $\ell_{1}(p, U)>\epsilon$, then $\ell_{2}(p, U)>\frac{\epsilon}{\sqrt{n}}$ and thus $\|p\|_{2}^{2}>\frac{1}{n}+\frac{\epsilon^{2}}{n}$. Therefore we need to estimate $\|p\|_{2}^{2}$ to an within an additive error of $\epsilon^{2} /(2 n)$ and pass if and only if $\hat{c}<\frac{1}{n}+\frac{\epsilon^{2}}{2 n}$. Given the bound on $\|p\|_{2}^{2}$ in the ϵ-far case, this additive error can also be achieved by a multiplicative error of $1 \pm \epsilon^{2} / 3$. To accomplish this we run the same algorithm with $s=\Omega\left(\sqrt{n} \epsilon^{-4}\right)$. Then by Chebyshev's

$$
\begin{aligned}
\operatorname{Pr}_{x_{i}^{\prime} s}\left[\left|\hat{c}-\|p\|_{2}^{2}\right| \leq\left(\epsilon^{2} / 3\right)\|p\|_{2}^{2}\right] & \leq \frac{\operatorname{Var}(\hat{c})}{\left.\epsilon^{4}\|p\|^{2}\right) 2 / 9} \\
& \leq \frac{k^{\prime}}{\epsilon^{4}\|p\|_{2} s} \\
& \leq \frac{k^{\prime} \sqrt{n}}{\epsilon^{4} s} \\
& \leq \frac{1}{3}
\end{aligned}
$$

where we use the fact that $\|p\|_{2}>1 / \sqrt{n}$ to get the second line, and choose k^{\prime} appropriately to make obtain the last line.

