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In this class we will give an algorithm for uniformity testing. For distributions p, ¢ over a domain D,
define the /1 and /5 distances as follows.

Definition 1 The {1 and {5 distances are given by,
o L(pa) = Xpep IP(z) — a(@)]
o 2(p,q) = /2 pep(p(z) — q(2))%

We also use ||p||2 to denote the £a-norm which is given by,

o llplle = /2sep P(x)*.

Let U denote the uniform distribution over D, i.e., U(z) = Wl for all x € D. Given sample access
to a distribution p, the goal of uniformity testing is to:

e If p = U, pass with probability at least 2/3.
o If dist(p,U) > ¢, fail with probability at least 2/3.
We will give algorithms for dist as both ¢; and /5. We start with ¢5. The algorithm is as follows.
1. Take s = Q(e~*) samples from p, z1,..., 7,
2. Set é + to be the estimate of ||p||3 (described next).
3. Ifée< % + %, pass. Otherwise fail.

The idea is that ¢ will be an estimate of the collision probability of p, which should be close to 1/n if p
is close to uniform. To get the estimate of ||p||3, we do the following,

1. For all ¢, 7, set 0y—1 if ; = x; and 0 otherwise.

Zi<j 9ij
(z)

We record some straightforward facts that will be helpful for our analysis.

2. Set ¢

Lemma 1 The following are true.
1. Hp_ U||§ = Ziepp(i)2 - %
2. Bl¢] = [Ipl3 = Eloy;].

3. Varfe) = P,

4 (Cacp @) < (Spepp@) ',

5. 52 <3(35).
0. () <%
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Indeed, by the first point, if p = U, then ||p||3 = % and we would get ¢ < % + % resulting in pass as

desired. Otherwise, if p is e-far from uniform then the first point implies that ||p||3 > L + €2 and thus

- n

From this lemma, we see that if |é — ||p[|3] < then the algorithm outputs the right answer.

e><t 4 < resulting in reject as desired. To complete our analysis, we will show that [¢ — [[p||2] < &
with probability at least 2/3 over the random samples 1, ..., 2. To this end, we bound the variance of
¢ and use Chebyshev’s.

Lemma 2 We have,
s 3/2
var | So | < ((5)g) -
1<J
Proof First let o;; = 0,; — E[0y;]. Then, E[g;;] = 0. Moreover, we have that
E[o7; o] = Eloyjon] — Eloi;]* < Eloijon)- (1)

We decompose the variance as,

Var Zaij =E ZUTjZ—i— Z 05 Oke + Z Tij Oke | »

i<j 1<J 1<j,k</,all distinct ,5,k,£ 3 distinct

and bound each term separately. For the first term,

. S
B0 | < (5) vl

i<j

using part 1 of Lemma 1 and (1).
For the second term,

E E T4 Okt =0,
i<j

by independence and the fact that E[a7;] = 0.

For the third term, we can have ¢ < j, and k < ¢ with 3 distinct in several ways. We could have,
i=k,j=1{ j=k, ori={ However, it is not hard to see that the same bound will hold for each, so
we simply give a bound for the sum over i < j, k < ¢ such that i = k.
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where we use the fourth part of Lemma 1 in the first line, the sixth part to get the fourth line, and the
fifth part to get the last line. As the same bound holds for the other cases with 3 distinct out of 4, j, k, £,
we get an overall bound of

s V3 /s 3/2 5 s 3/2
Var | o | < (5)Inl+a- 5 (5) i) <o ((5)sl)

1<j

We now apply Chebyshev’s to get the following.

Lemma 3

Pr(je —[[pl[3] > €*/2] <

i

W =

Proof Applying Chebyshev’s yields,
Var(¢)

A

Prfle — [[pll§ > €/2]

@ T (e2/2)?
5\3/2
< k(3) S(|2|p||§)3/2
(2) et

1
=0 <5€4> < 1/3,

where k is some constant in s = (e~*), chosen so that the last inequality holds. Note that the first line
uses fact 3 of Lemma 1 to go from Var(}_ o;;) to Var(¢). B

As discussed, this shows the correctness of the algorithm. We now describe how to a similar algorithm
for ¢, distance. Notice that ¢1(p,U) = 0 is equivalent to £2(p,U) = 0 and ||p||3 = . On the other hand,

n'

it £1(p,U) > ¢, then lo(p,U) > 7 and thus IIpll3 > L + % Therefore we need to estimate ||p|[|3 to an
within an additive error of €?/(2n) and pass if and only if ¢ < + + % Given the bound on ||p||3 in the

e-far case, this additive error can also be achieved by a multiplicative error of 1 £ €2/3. To accomplish
this we run the same algorithm with s = Q(y/ne~*). Then by Chebyshev’s

Var(¢)
e*llpll*)2/9
k/
= elpll2s
< kK'\/n
~ els
1

< =
-3

Pr{le = llpl3] < (/3)lIpl3] <

where we use the fact that ||p|la > 1/4/n to get the second line, and choose k' appropriately to make
obtain the last line.



