October 26, 2022

Lecture 13

Scribe: Kai Zheng

Lecturer: Ronitt Rubinfeld

In this class we will give an algorithm for uniformity testing. For distributions p, q over a domain D, define the ℓ_1 and ℓ_2 distances as follows.

Definition 1 The ℓ_1 and ℓ_2 distances are given by,

- $\ell_1(p,q) = \sum_{x \in D} |p(x) q(x)|$
- $\ell_2(p,q) = \sqrt{\sum_{x \in D} (p(x) q(x))^2}.$

We also use $||p||_2$ to denote the ℓ_2 -norm which is given by,

• $||p||_2 = \sqrt{\sum_{x \in D} p(x)^2}.$

Let U denote the uniform distribution over D, i.e., $U(x) = \frac{1}{|D|}$ for all $x \in D$. Given sample access to a distribution p, the goal of uniformity testing is to:

- If p = U, pass with probability at least 2/3.
- If $dist(p, U) > \epsilon$, fail with probability at least 2/3.

We will give algorithms for dist as both ℓ_1 and ℓ_2 . We start with ℓ_2 . The algorithm is as follows.

- 1. Take $s = \Omega(\epsilon^{-4})$ samples from p, x_1, \ldots, x_s
- 2. Set $\hat{c} \leftarrow$ to be the estimate of $||p||_2^2$ (described next).
- 3. If $\hat{c} < \frac{1}{n} + \frac{\epsilon^2}{2}$, pass. Otherwise fail.

The idea is that \hat{c} will be an estimate of the collision probability of p, which should be close to 1/n if p is close to uniform. To get the estimate of $||p||_2^2$, we do the following,

1. For all i, j, set $\sigma_{ij=1}$ if $x_i = x_j$ and 0 otherwise.

2. Set
$$\hat{c} \leftarrow \frac{\sum_{i < j} \sigma_{ij}}{\binom{s}{2}}$$
.

We record some straightforward facts that will be helpful for our analysis.

Lemma 1 The following are true.

1. $||p - U||_2^2 = \sum_{i \in D} p(i)^2 - \frac{1}{n}$. 2. $E[\hat{c}] = ||p||_2^2 = E[\sigma_{ij}]$. 3. $Var[\hat{c}] = \frac{Var(\sum_{i < j} \sigma_{ij})}{\binom{s}{2}}$. 4. $\left(\sum_{x \in D} p(x)^3\right)^{1/3} \le \left(\sum_{x \in D} p(x)\right)^{1/2}$. 5. $s^2 \le 3\binom{s}{2}$. 6. $\binom{s}{3} \le \frac{s^3}{6}$ From this lemma, we see that if $|\hat{c} - ||p||_2^2| < \frac{\epsilon^2}{2}$, then the algorithm outputs the right answer. Indeed, by the first point, if p = U, then $||p||_2^2 = \frac{1}{n}$ and we would get $\hat{c} < \frac{1}{n} + \frac{\epsilon^2}{2}$ resulting in pass as desired. Otherwise, if p is ϵ -far from uniform then the first point implies that $||p||_2^2 \ge \frac{1}{n} + \epsilon^2$ and thus $\hat{c} \ge < \frac{1}{n} + \frac{\epsilon^2}{2}$ resulting in reject as desired. To complete our analysis, we will show that $|\hat{c} - ||p||_2^2| < \frac{\epsilon^2}{2}$ with probability at least 2/3 over the random samples x_1, \ldots, x_s . To this end, we bound the variance of \hat{c} and use Chebyshev's.

Lemma 2 We have,

$$\operatorname{Var}\left[\sum_{i < j} \sigma_{ij}\right] \le 4 \left(\binom{s}{2} ||p||_2^2\right)^{3/2}$$

Proof First let $\overline{\sigma_{ij}} = \sigma_{ij} - \mathbf{E}[\sigma_{ij}]$. Then, $\mathbf{E}[\overline{\sigma_{ij}}] = 0$. Moreover, we have that

$$\mathbf{E}[\overline{\sigma_{ij}}\ \overline{\sigma_{kl}}] = \mathbf{E}[\sigma_{ij}\sigma_{kl}] - \mathbf{E}[\sigma_{ij}]^2 \le \mathbf{E}[\sigma_{ij}\sigma_{kl}]. \tag{1}$$

We decompose the variance as,

$$\operatorname{Var}\left(\sum_{i < j} \sigma_{ij}\right) = \operatorname{E}\left[\sum_{i < j} \overline{\sigma_{ij}}^2 + \sum_{i < j, k < \ell, \text{all distinct}} \overline{\sigma_{ij}} \, \overline{\sigma_{k\ell}} + \sum_{i, j, k, \ell \text{ 3 distinct}} \overline{\sigma_{ij}} \, \overline{\sigma_{k\ell}}\right],$$

and bound each term separately. For the first term,

$$\mathbf{E}\left[\sum_{i < j} \overline{\sigma_{ij}}^2\right] \le \binom{s}{2} ||p||_2^2,$$

using part 1 of Lemma 1 and (1).

For the second term,

$$\mathbf{E}\left[\sum_{i < j} \overline{\sigma_{ij}} \, \overline{\sigma_{k\ell}}\right] = 0,$$

by independence and the fact that $E[\overline{\sigma_{ij}}] = 0$.

For the third term, we can have i < j, and $k < \ell$ with 3 distinct in several ways. We could have, $i = k, j = \ell, j = k$, or $i = \ell$. However, it is not hard to see that the same bound will hold for each, so we simply give a bound for the sum over $i < j, k < \ell$ such that i = k.

$$E\left[\sum_{i < j, i < \ell} \overline{\sigma_{ij}} \ \overline{\sigma_{k\ell}}\right] \leq E\left[\sum_{i < j, i < \ell} \sigma_{ij} \sigma_{i\ell}\right]$$

$$\leq \sum_{i, j, \ell \text{ distinct}} E[1_{x_i = x_j = x_\ell}]$$

$$\leq \binom{s}{3} \sum_{x \in D} p(x)^3$$

$$\leq \frac{s^3}{6} \left(\sum_{x \in D} p(x)^2\right)^{3/2}$$

$$\leq \frac{\sqrt{3}}{2} \binom{s}{2}^{3/2} \left(||p||_2^2\right)^{3/2}.$$

where we use the fourth part of Lemma 1 in the first line, the sixth part to get the fourth line, and the fifth part to get the last line. As the same bound holds for the other cases with 3 distinct out of i, j, k, ℓ , we get an overall bound of

$$\operatorname{Var}\left(\sum_{i< j} \sigma_{ij}\right) \le {\binom{s}{2}} ||p||_2^2 + 4 \cdot \frac{\sqrt{3}}{2} {\binom{s}{2}}^{3/2} \left(||p||_2^2\right)^{3/2} \le 4 \left({\binom{s}{2}} ||p||_2^2\right)^{3/2}$$

We now apply Chebyshev's to get the following.

Lemma 3

$$\Pr_{x_i's}[|\hat{c} - ||p||_2^2| > \epsilon^2/2] < \frac{1}{3}.$$

Proof Applying Chebyshev's yields,

$$\begin{split} \Pr_{x'_i s}[|\hat{c} - ||p||_2^2 > \epsilon^2/2] &\leq \frac{\operatorname{Var}(\hat{c})}{(\epsilon^2/2)^2} \\ &\leq \frac{k {s \choose 2}^{3/2} (||p||_2^2)^{3/2}}{{s \choose 2}^2 \epsilon^4} \\ &= O\left(\frac{1}{s\epsilon^4}\right) < 1/3, \end{split}$$

where k is some constant in $s = \Omega(\epsilon^{-4})$, chosen so that the last inequality holds. Note that the first line uses fact 3 of Lemma 1 to go from $\operatorname{Var}(\sum \sigma_{ij})$ to $\operatorname{Var}(\hat{c})$.

As discussed, this shows the correctness of the algorithm. We now describe how to a similar algorithm for ℓ_1 distance. Notice that $\ell_1(p, U) = 0$ is equivalent to $\ell_2(p, U) = 0$ and $||p||_2^2 = \frac{1}{n}$. On the other hand, if $\ell_1(p, U) > \epsilon$, then $\ell_2(p, U) > \frac{\epsilon}{\sqrt{n}}$ and thus $||p||_2^2 > \frac{1}{n} + \frac{\epsilon^2}{n}$. Therefore we need to estimate $||p||_2^2$ to an within an additive error of $\epsilon^2/(2n)$ and pass if and only if $\hat{c} < \frac{1}{n} + \frac{\epsilon^2}{2n}$. Given the bound on $||p||_2^2$ in the ϵ -far case, this additive error can also be achieved by a multiplicative error of $1 \pm \epsilon^2/3$. To accomplish this we run the same algorithm with $s = \Omega(\sqrt{n}\epsilon^{-4})$. Then by Chebyshev's

$$\begin{split} \Pr_{x'_i s} \left[|\hat{c} - ||p||_2^2 | \leq (\epsilon^2/3) ||p||_2^2 \right] &\leq \frac{\operatorname{Var}(\hat{c})}{\epsilon^4 ||p||^2) 2/9} \\ &\leq \frac{k'}{\epsilon^4 ||p||_2 s} \\ &\leq \frac{k'\sqrt{n}}{\epsilon^4 s} \\ &\leq \frac{1}{3} \end{split}$$

where we use the fact that $||p||_2 > 1/\sqrt{n}$ to get the second line, and choose k' appropriately to make obtain the last line.