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Lecture 12
Lecturer: Ronitt Rubinfeld Scribe: Kenneth Moon

Starting with this lecture, we will begin a new topic: testing properties of distribu-
tions. We often want to know many different properties about distributions from
which we can only realistically see a small sample. For instance, we might want
to know how many butterfly species exist in the world (the size of the support of
a distribution), or whether some lottery numbers show up more often than others
(distribution uniformity). In this lecture, we will focus on testing uniformity.

1 Definition of Testers on Distributions

We have previously seen testers on discrete objects such as graphs or lists. In those
cases, we specified the criteria for testers by ensuring (with some constant probability)
that the tester will reject inputs that look very different from inputs which satisfy
the given property. Similarly, for testers on distributions, we need some way to
quantify how different two distributions are, and reject distributions that are very
different from distributions satisfying a given property. There are many measures of
“different-ness” but in this lecture we will focus on the L1 and L2 metric. They can
be defined in a generalized way as follows:

Definition 1 For any p, the Lp metric between two distributions P1 and P2 over
domain D is:

||P1 − P2||n =

(∑
i∈D

|PrP∼P1 [P = i]− PrQ∼P2 [Q = i]|p
) 1

p

Now, it is important to address some nuances of the L1 and L2 metrics. Although
they are defined similarly, their values can be very different for the same pair of
distributions in unintuitive ways. For example, consider two distributions on [2n]: one
is evenly distributed on numbers from 1 to n, while the other is evenly distributed on
numbers from n+ 1 to 2n. These distributions seem to be very different: they never
even overlap. The L1 metric seems to confirm this, giving a distance of 2 between the
distributions. However, the L2 metric gives a result of 2√

n
, vanishingly small.

With these metrics, we can formally define a tester of some property of distributions
as follows.

Definition 2 A tester for property Π is an algorithm which takes independent ran-
dom samples from input distribution P and outputs a decision to accept or reject it.
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The tester is parameterized by a distance function of distributions dist and a threshold
ϵ. It must have the following guarantees:

• If P ∈ Π, it must accept with probability at least 2
3
.

• If minP ′∈Π dist(P ,P ′) > ϵ, it must reject with probability at least 2
3
.

The complexity of the tester is defined as the number of i.i.d. samples which must
be drawn from an input distribution before the tester makes a decision.

2 Lower Bounds for Testing Uniformity in L1

Let us now focus on testing uniformity for distributions over a support of size n. By
our previous definition, we want an algorithm that takes some i.i.d. samples from an
input distribution and outputs a decision such that uniform distributions are accepted
at least 2

3
of the time, while distributions that are ϵ-far from the uniform distribution

are rejected at least 2
3
of the time.

2.1 Naive Algorithm Bound

We will begin by proving a lower bound for the following naive algorithm which relies
on computing the empirical distribution given m samples over a support S. The
algorithm is a tester in the L1 metric.

Algorithm 1 Plug-in algorithm

Initialize count(x) for all x ∈ S to 0.
for i ∈ [m] do

Sample Xi ∼ P
Increment count(Xi)

end for
Let Pe be the distribution such that PrP∼Pe [P = x] = count(x)

m
.

Reject if ||Pe − UD||1 > ϵ; accept otherwise

Now, we shall prove the following theorem:

Theorem 3 E[||Pe − P||1] ≤
√

n
m

Proof Let p(x) = PrP∼P [P = x], the probability we draw x from our input distri-
bution.

E[||Pe − P||1] =
∑
x∈S

E

[∣∣∣∣count(x)m
− p(x)

∣∣∣∣]
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By Jensen’s inequality:

E

[∣∣∣∣count(x)m
− p(x)

∣∣∣∣] ≤
√√√√E

[(
count(x)

m
− p(x)

)2
]

Furthermore, the expected value of count(x)
m

is p(x), thus:

E

[(
count(x)

m
− p(x)

)2
]
= Var

(
count(x)

m

)
count(x) is the sum of independent Bernoulli variables with parameter p(x), which
means its variance is mp(x)(1− p(x)). So:

E[||Pe − P||1] ≤
∑
x∈S

√
p(x)(1− p(x))

m

≤
∑
x∈S

√
p(x)

m

By the Cauchy-Schwarz inequality:(∑
x∈S

√
p(x)

m

)2

≤ n ·
∑
x∈S

(√
p(x)

m

)2

≤
n ·
∑

x∈S p(x)

m

≤ n

m

Thus: ∑
x∈S

√
p(x)

m
≤
√

n

m

E[||Pe − P||1] ≤
√

n

m

Now, note that this is terrible. If m ∈ o
(
n
ϵ2

)
, the expected value of our deviation from

the true distribution is ω(ϵ). This suggests that it is reasonable to expect that even a
distribution which is ϵ-far from uniform can be confused with a uniform distribution.
Thus, this naive algorithm must take at least Ω

(
n
ϵ2

)
samples.
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2.2 General Lower Bound

We will not derive a rigorous proof for the general lower bound for testing uniformity
in L1, but we will give some intuition. Note that until the tester witnesses an element
in the support more than once, the tester cannot infer anything meaningful about
the probability of each element appearing, at least among the elements that have
appeared so far. This is due to the fact that all the labels could be permuted, yet the
distance of the underlying distribution from uniform would be unchanged.

Now, recall the birthday paradox: in a uniform distribution, it takes Ω(
√
n) samples

for a collision to happen with Ω(1) probability. It turns out that it is possible to
construct a distribution by slightly perturbing the uniform distribution to become
ϵ-far from uniform in L1, yet still maintain this bound. Thus, Ω(

√
n) samples are

needed for any tester in L1.

3 Uniformity Tester in L2

Let us now turn our attention to the L2 metric. First, note that the L2 metric is
intrinsically related to the collision probability; that is, the probability that we draw
two independent samples which have the same value. This can be used to bound the
collision probability of distributions that are ϵ-far from uniform:

Theorem 4 If distribution P has domain [n] and is ϵ-far from uniform in L2, then
it has a collision probability of at least ϵ2 + 1

n
.

Proof Let p(i) be the probability that X = i if X ∼ P . Then:

||P − U[n]||22 =
n∑

i=1

(
p(i)− 1

n

)2

=
n∑

i=1

p(i)2 − 2

n

n∑
i=1

p(i) +
n∑

i=1

1

n

Note that
∑n

i=1 p(i) = 1. Thus:

||P − U[n]||22 =

(
n∑

i=1

p(i)2

)
− 1

n

Now, using ϵ-far’s definition:

||P − U[n]||22 > ϵ2

n∑
i=1

p(i)2 > ϵ2 +
1

n
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Note that
∑n

i=1 p(i)
2 is equivalent to the collision probability of P .

This naturally leads to the following idea: what if we tried to estimate the collision
probability to indirectly estimate how far a distribution is from uniform?

To estimate collision probability, we can count how many colliding pairs there are in
a given sample of size s, and average it over the total number of pairs which is

(
s
2

)
.

We will call this our empirical collision rate or ĉ (whereas the true collision rate is c).
We then set a threshold: if ĉ > 1

n
+∆ for some ∆, we reject the distribution.

3.1 Analysis

Our tester must balance between two opposing demands: accepting uniform distribu-
tion, while rejecting ϵ-far ones. To accept uniform distributions, we must guarantee
with some constant probability that ĉ ≤ 1

n
+ ∆. Since 1

n
is the collision probability

of uniform distributions, this is the same as demanding that our estimator is within
∆ of the true collision probability.

Now, to reject ϵ-far distributions, we must have ĉ > 1
n
+ ∆. Since the colliding

probability of our distribution must be more than 1
n
+ ϵ2 by Theorem 4, this is the

same as demanding that our estimator is within ϵ2−∆ of the true collision probability.
To balance these demands, it is clear we must set ∆ to ϵ2

2
.

However, how do we get such a guarantee on our estimator? We can’t use Chernoff
bounds, since the pairs we choose are not independent. Let us use Chebyshev bounds
instead. To use this bound, we need to find Var(ĉ). Let σi,j be the indicator variable
for the event that the ith and jth sample collide. Then, ĉ = 1

(s2)

∑
i,j σi,j. So:

Var(ĉ) =
1(
s
2

)2Var
(∑

i,j

σi,j

)

Let σ̄i,j = σi,j − E[σi,j]. Then, by the definition of variance:

Var

(∑
i,j

σi,j

)
= E

(∑
i,j

σ̄i,j

)2


By linearity of expectation, we can expand expression to cover cases where pairs
overlap completely, partially overlap, and are independent:

= E

[∑
i,j

σ̄2
i,j

]
+ E

[∑
i,j,k,l

σ̄i,jσ̄k,l

]
+ E

[∑
i,j,k

σ̄i,jσ̄j,k

]
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Note that the indices in each sum are unique. For example, in the second sum, i, j, k
and l are all different numbers.

This may look scary because there are O(n4) terms. However, we will show that most
of them don’t matter. Let us bound the first sum:

E

[∑
i,j

σ̄2
i,j

]
≤ E

[∑
i,j

σ2
i,j

]
≤
∑
i,j

E
[
σ2
i,j

]
≤
∑
i,j

E [σi,j]

≤
(
s

2

)
· c

Now, let us take a look at the second sum. Since σ̄i,j and σ̄k,l are independent (i, j, k, l
are all unique), E[σ̄i,jσ̄k,l] = E[σ̄i,j]E[σ̄k,l], which is 0 since the expectation of all σ̄
is 0. This is promising since we just wiped out most of the terms in the sum! We
will show a bound on the third sum next lecture, which will give us the tester’s
complexity.
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