October 19, 2022

Lecture 11

Lecturer: Ronitt A. Rubinfeld

Scribe: Ethan Zahid

1 Overview

This lecture looked at two main things. First it defined Yao's principle, which tells us that an average case deterministic lower bound on query complexity is a randomized worst case lower bound on query complexity. Next we considered the problem of determining whether a string is the concatenation of two palindromes and lower bounded the query complexity of any algorithm that solves this problem as $\Omega(\sqrt{n})$.

2 Yao's Principle

Theorem 1 Suppose there exists a distribution \mathcal{D} on pass/fail inputs such that any deterministic decider with $\leq t$ query complexity is wrong with probability $p \geq \frac{1}{3}$ on input uniformly randomly chosen from \mathcal{D} . Then t is a lower bound on the complexity of a randomized decider for the same query.

Proof Consider a problem over inputs \mathcal{X} and \mathcal{A} be the set of all possible deterministic algorithms that solve the problem. For $a \in \mathcal{A}, x \in \mathcal{X}$ let c(a, x) be the cost of running algorithm a on input x. Then Yao's principle claims that for $A \in \mathcal{A}, X \in \mathcal{X}$ chosen from some distributions on \mathcal{A}, \mathcal{X}

$$\max_{x \in \mathcal{X}} E[c(A, x)] \ge \min_{a \in \mathcal{A}} E[c(a, X)]$$

which is just a special case of von Neumann's minimax theorem.

3 Palindrome Concatenation

3.1 Problem

Note that the problem of determining whether or not a string x is a palindrome is pretty simple. We repeatedly sample i from [n] and check that $x_i = x_{n+1-i}$ and reject if this is ever not the case. By making $O(\frac{1}{\epsilon})$ we can get a very good algorithm since for a string that is ϵ -far from being a palindrome, each sample has probability at least ϵ of causing the algorithm to reject and so after $\frac{1}{\epsilon}$ samples you expect the algorithm to reject. What about determining whether or not a string x is the concatenation of two palindromes?

Let $L_n = \{w | w \in \{0,1\}^n, w = vv^R uu^R\}$ be the set of strings that are the concatenation of two palindromes. Define w to be ϵ -close to L_n if $\exists w' \in L_n$ such that w, w' differ in $\leq \epsilon n$ places.

Theorem 2 An algorithm A must make $\Omega(\sqrt{n})$ queries if it satisfies that

$$\forall x \in L_n \ \Pr[A(x) = \operatorname{Pass}] \ge \frac{2}{3}$$

 $\forall x \ \epsilon \text{-far from } L_n \ \Pr[A(x) = \operatorname{Fail}] \ge \frac{2}{3}$

The rest of the notes will be dedicated to proving the above theorem.

3.2 Distributions

First we define three distributions as follows

Distribution N

• Output uniformly randomly from all strings ϵ -far from L_n

Distribution P

- Pick $k \in \left[\frac{n}{6} + 1, \frac{n}{3}\right]$
- Generate random v,u such that $|v|=k, |u|=\frac{n}{2}-k$
- Output $vv^R uu^R$

Distribution \mathcal{D}

• Output from N with probability $\frac{1}{2}$ and from P with probability $\frac{1}{2}$

3.3 Error

Any deterministic algorithm A works by making successive queries and decides what query to make next based on the result of the previous queries. Using t queries there are 2^t sequences of queries/results we can make (assuming binary results to queries), call these 2^t queries the root-leaf paths of A. Each of these 2^t leaves will output pass or fail according to A.

Now for a leaf l we define the following two errors of l

- $E^{-}(l) = \{ \text{inputs } w \text{ } \epsilon \text{-far from } L_n \text{ that reaches } l \}$
- $E^+(l) = \{ \text{inputs } w \in L_n \text{ that reaches } l \}$

Total Error on
$$\mathcal{D} = \sum_{\text{pass } l} \Pr[w \in E^-(l)] + \sum_{\text{fail } l} \Pr[w \in E^+(l)]$$

Claim 3 If t = o(n), $\forall l$ at depth t

$$\Pr_D[w \in E^-(l)] \ge \left(\frac{1}{2} - o(1)\right) \cdot 2^{-t}$$

Proof Since there are $2^{n/2}$ choices for u, v and $\frac{n}{2}$ choices for k

$$|L_n| \le 2^{n/2} \cdot \frac{n}{2}$$

Let P_n be the set of w that are ϵ -close to L_n , if for each element of L_n we consider all strings we can get by changing it in r places for $r \in [\epsilon n]$ we get all elements of P_n , therefore

$$|P_n| \le 2^{n/2} \cdot \frac{n}{2} \cdot \sum_{r=0}^{\epsilon n} \binom{n}{r} \le 2^{n/2} \cdot \frac{n}{2} \cdot \epsilon n \cdot \binom{n}{\epsilon n}$$

Since $\binom{n}{r}$ for $r \in [\epsilon n]$ is maximized at $r = \epsilon n$. Next see that an application of Stirling's Approximation gives the bound

$$\binom{n}{k} \leq \left(\frac{en}{k}\right)^{k}$$
$$2^{n/2} \cdot \frac{n}{2} \cdot \epsilon n \cdot \binom{n}{\epsilon n} \leq 2^{n/2} \cdot \frac{\epsilon n^{2}}{2} \cdot \left(\frac{1}{\epsilon}\right)^{\epsilon n} \cdot e^{\epsilon n}$$
$$2^{n/2} \cdot \frac{\epsilon n^{2}}{2} \cdot \left(\frac{1}{\epsilon}\right)^{\epsilon n} \cdot e^{\epsilon n} \leq 2^{n/2} \cdot 2^{\log \frac{\epsilon n^{2}}{2}} \cdot 2^{\log \left(\frac{1}{\epsilon}\right)^{\epsilon n}} \cdot 2^{\log e^{\epsilon n}}$$
$$\leq 2^{n/2} \cdot 2^{\log \epsilon + 2\log n} \cdot 2^{\epsilon n \log \frac{1}{\epsilon}} \cdot 2^{2\epsilon n}$$
$$< 2^{n/2 + 2\epsilon n \log \frac{1}{\epsilon}}$$

Next see that of the 2^n inputs in $\{0,1\}^n$ exactly 2^{n-t} reaches any specific leaf l. This is because each of the t decisions in our query tree splits the input space in half until 2^{-t} of the 2^n inputs reach l. This means that

$$|E^{-}(l)| \ge 2^{n-t} - |P_n| \ge 2^{n-t} - 2^{n/2+2\epsilon n \log \frac{1}{\epsilon}} = (1 - o(1)) \cdot 2^{n-t}$$
$$\Pr_D[w \in E^{-}(l)] = \frac{1}{2} \cdot \frac{|E^{-}(l)|}{|N|} \ge \frac{1}{2} \cdot \frac{(1 - o(1)) \cdot 2^{n-t}}{2^n} = \left(\frac{1}{2} - o(1)\right) \cdot 2^{-t}$$

where the $\frac{1}{2}$ comes from the probability we choose from N.

Claim 4 If $t = o(\sqrt{n}), \forall l \text{ at depth } t$

$$\Pr_D[w \in E^+(l)] \ge \left(\frac{1}{2} - o(1)\right) \cdot 2^{-t}$$

Proof In our algorithm, for any input we make t queries. If we consider all $\binom{t}{2}$ pairs of these 2 queries, for each pair of queries there is clearly at most 2 values of k for which the two queries are symmetric around either k or $\frac{n}{2} + k$. Then the number of k such that no two of the t queries are symmetric around k or $\frac{n}{2} + k$ is $\geq \frac{n}{6} - 2\binom{t}{2} = \frac{n}{6}(1 - o(1))$ for $t = o(\sqrt{n})$. In addition, for each of these values of k there are $2^{n/2}$ inputs from L_n which are evenly split up amongst the 2^t leaves (since the queries are not symmetric around $k, \frac{n}{2} + k$) and so each leaf l has $|E^+(l)| = \frac{n}{6}(1 - o(1)) \cdot 2^{\frac{n}{2} - t}$. Now see that

$$\Pr_{D}[w \in E^{+}(l)] = \sum_{w} \sum_{k} \Pr_{D}[w|k] \cdot \Pr[\text{choose } k] \cdot \mathbf{1}_{w \in E^{+}(l)}$$
$$\Pr_{D}[w|k] = \frac{1}{2} Pr_{P}[w|k] = \frac{1}{2} \cdot 2^{-n/2}, \quad \Pr[\text{choose } k] = \frac{1}{\frac{n}{6}} = \frac{6}{n}$$
$$\Pr_{D}[w \in E^{+}(l)] = \sum_{w} \sum_{k} \frac{1}{2} \cdot 2^{-n/2} \cdot \frac{6}{n} \cdot \mathbf{1}_{w \in E^{+}(l)} = \frac{1}{2} \cdot \frac{(1 - o(1)) \cdot \frac{n}{6} \cdot 2^{n/2 - l}}{\frac{n}{6} \cdot 2^{n/2}} = \left(\frac{1}{2} - o(1)\right) \cdot 2^{-l}$$

3.4 Conclusion

If $t = o(\sqrt{n})$ then the total error satisfies

Total Error on
$$\mathcal{D} = \sum_{\text{pass } l} \Pr[w \in E^{-}(l)] + \sum_{\text{fail } l} \Pr[w \in E^{+}(l)]$$

Total Error on $\mathcal{D} \ge \sum_{\text{pass } l} \left(\frac{1}{2} - o(1)\right) \cdot 2^{-t} + \sum_{\text{fail } l} \left(\frac{1}{2} - o(1)\right) \cdot 2^{-t}$
Total Error on $\mathcal{D} \ge \sum_{l} \left(\frac{1}{2} - o(1)\right) \cdot 2^{-t}$
Total Error on $\mathcal{D} \ge \left(\frac{1}{2} - o(1)\right) \cdot 2^{-t}$

And so by Yao's Principle any algorithm A that passes $w \in L_n$ with probability $\geq \frac{2}{3}$ and fails $w \epsilon$ -far from L_n with probability $\geq \frac{2}{3}$ must use $\Omega(\sqrt{n})$ queries, proving the theorem.