
6.5240 Sublinear Time Algorithms October 17, 2022

Lecture 10
Lecturer: Ronitt A. Rubinfeld Scribe: Nitin Kumar

Last lecture, we looked at an algorithm for testing whether a dense graph is triangle-
free. This algorithm was fairly slow - can we do better? Can we get a runtime in
poly(1/ϵ)? This lecture will be dedicated to showing the answer is no:

Theorem 1. Any one-sided tester for a dense graph being triangle-free takes Ω(1/ϵΩ(log 1/ϵ))
time.

Call a graph bad if it is ϵ-far from being triangle-free (meaning > ϵn2 edges must be
deleted). As a refresher, a one-sided tester means that we always accept triangle-free
graphs, and that we reject bad graphs with probability at least 2/3.

How do we show a bound like this? First, we bound the probability of rejecting
a bad graph by the probability of finding a triangle among some randomly selected
vertices (i.e., the probability that the induced subgraph of the vertices contains a
triangle). Then, we will construct a bad graph G, but also requires many randomly
selected vertices to have a large probability of finding a triangle. Finally, to make an
arbitrarily large graph with the same properties, we will cleverly “blow up” G.

1. Making the Tester Nonadaptive

In Problem 3 of Homework 2, we showed that we can make a tester for any graph
property that uses O(q) queries into a nonadaptive tester that uses O(q2) queries
by picking O(q) random vertices and querying the induced subgraph of the random
vertices. The idea is that the particular vertices the tester asks for are unimportant,
since graph properties are preserved under isomorphism. Notably, this reduction pre-
serves one-sided error, since it does not change the probabilities of acceptance and
rejection.

Then, if there were a one-sided tester for triangle-freeness that runs in time t(n),
there is a nonadaptive one-sided tester that runs in O(t2) time. Further, since a
one-sided tester must be certain there is a triangle in order to reject, there must be a
triangle among O(t) random vertices of any bad graph with probability at least 2/3.
Thus, the following result implies Theorem 1:

Theorem 2. There exist arbitrarily large bad graphs that require sampling Ω(1/ϵΩ(log 1/ϵ))
random vertices to find a triangle with probability 2/3.

Suppose a graph G had t triangles. In q random samples, the probability of finding
a given triangle is

(
q
3

)
Θ(n−3) = Θ(q3n−3), so the expected number of triangles found

is Θ(tq3n−3). By Markov’s inequality, if tq3n−3 = o(1), meaning q = o(n3/t), then
the probability of finding a triangle is o(1). Thus, a nonadaptive tester must have
q = Ω(n3/t), so to prove Theorem 2, it suffices to have t = O(ϵΩ(log 1/ϵ)n3).

1

2

2. A Bad Graph with Few Triangles

We’ve reduced Theorem 1 to finding arbitrarily large bad graphs withO(ϵΩ(log 1/ϵ)n3)
triangles. In this section, we will find one bad graph with few triangles, which we will
later be able to extend to arbitrarily large graphs in Section 3.

2.1. Construction. Define [m] := {1, 2, . . . ,m}. Let X be a happy subset of [m],

meaning there are no distinct a, b, c ∈ X such that b =
a+ c

2
.

Then, we define a tripartite graph, with parts J,K, and L. We set |J | = m, |K| =
2m, |L| = 3m, and use the positive integers to number the vertices in each part.
Then, for each j ∈ [m] and x ∈ X we have an edge between vertex j in J and vertex
j + x in K and an edge between vertex j in J and vertex j + 2x in L, and for each
k ∈ [2m] and x ∈ X we have an edge between vertex k in K and k + x in L. The
number of vertices in this graph is 6m and the number of edges is 4m|X|.

Now, for each triangle, we can determine which x ∈ X generated each of its edges.
Let a ∈ X have generated the edge from J to K, b have generated the edge from J

to L, and c have generated the edge from K to L. We get that b =
a+ c

2
, so since X

is happy, we know a = b = c. This yields that each triangle is completely determined
by its starting point j and the x used to generate its edges. The graph therefore con-
tains m|X| disjoint triangles, which means we need to remove m|X| edges to make
the graph triangle-free. To make this graph ϵ-far from being triangle-free, we should
try to find a large X.

2.2. Finding a Large Happy X. The following lemma guarantees us a large happy
X ⊂ [m].

Lemma 3. There exists a happy X ⊂ [m] such that |X| ≥ m

e10
√
logm

.

Proof. Let d ≥ 2 and k := ⌊logd m⌋. Call little those integers whose base-d repre-
sentations have at most k digits, all of which are at most d/2. Note that every little
integer is less than dk ≤ dlogd m = m. Also, there are exactly ⌊d/2⌋k little integers.

Now, take any three distinct little integers a, b, c such that b =
a+ c

2
. Since b+ b =

a+c and there are no carries between digits in any of these sums, we recover that each
digit of b is the average of the corresponding digits of a and c. By Jensen’s inequality,
if we apply any strictly convex function to the digits, the function will not have the
same value on a, b, and c. This means that if we partition the little integers by the
sum of the squares of their digits, a, b, and c cannot all be in the same partition, so
each partition is happy! The number of partitions is at most k⌊d/2⌋2, so we can find

3

a partition of size at least
⌊d/2⌋k

k⌊d/2⌋2
. By setting d appropriately, we can achieve the

desired bound. (The details of setting parameters were omitted in lecture because
they are tedious and unimportant.) □

2.3. Analyzing the Construction. Let f(m) := e−10
√
logm, so that |X| = f(m)m.

Since the number of edges we must remove to make the graph triangle free is m|X| =

f(m)m2 and n = 6m, our graph is bad only if ϵ ≤ f(m)

36
. We also have 4m|X| =

4f(m)m2 edges.

This is problematic - a fixed ϵ gives us a lower bound on f(m) for a bad graph, but
f(m) decreases to 0 as m gets large, so our construction only works up to some fixed
m. Also, even if we were to make large graphs bad, the density of edges would go to
0, which means we shouldn’t be using the dense graph model.

We need some way to increase the density of edges, as well as the number of edges
needed to make the graph triangle-free. Luckily, we have some wiggle room: the
number of triangles in our construction is m|X| = o(n2), but we know it is okay to
have up to O(ϵΩ(log 1/ϵ)n3) triangles.

3. Blowing Up G

Let’s take stock: for some fixed ϵ, our goal is to build a graph with at least n
vertices and O(ϵO(log 1/ϵ)n3) triangles. From Section 2, if we pick the largest m such
that our construction is bad, then f(m) ≥ 36ϵ. This gives us a graph G with 6m
vertices, at least 144ϵm2 edges, and at least 36ϵm2 triangles.

To get a larger graph, consider blowing up G into G(S) in the following way: for
each vertex v in G, add S vertices v1, v2, . . . , vS to G(S), for some S > 1. For each
edge (u, v) in G, connect each ui to each vj in G(S), creating S2 edges.

Since we want at least n vertices, we’ll set S =
⌈ n

6m

⌉
. We have three things to

check: the graph must be dense, bad, and have few triangles. The details are some-
what tedious:

• The number of edges in G(S) is at least 144ϵm2S2 = Θ(ϵn2), which means that
using the dense model is okay.

• Each triangle in G turned into S3 triangles in G(S) (since we have S choices for
each of the three vertices), so there are 36ϵm2S3 triangles. Each edge in G(S)

is used in exactly S triangles (since there are S choices for the last vertex),
and there are no other triangles in G(S). Therefore, we must delete at least
36ϵm2S3

S
= ϵ(6mS)2 ≥ ϵn2 edges to make G triangle-free, so the graph is bad.

4

• There are Θ(ϵn3/m) triangles. Since f(m) = Θ(ϵ), we get thatm = Ω(1/ϵΩ(log 1/ϵ)),
so the number of triangles is O(ϵΩ(log 1/ϵ)n3).

Having achieved all our goals, we have shown the lower bound from Theorem 1.

