
Local generation of
combinatorial objects

Amartya Shankha Biswas (MIT), Ronitt Rubinfeld (MIT), Anak
Yodpinyanee (MIT)

Huge random objects:

How to generate?

Up front?

Locally…on the fly?

Generating large random graph
321

1

7654

2

3

4

5

6

7

0

0 1

1

0

0

0

1

00 100

0

0

0

0

0

0

1

8

9

98

1

1

00 000 0 10

10

10

1

01

1

0

1 0

0

0

1

1

0

1

0

1 0

Generate “on
the fly”?

What if d-regular?
support “next-

neighbor” queries?

A challenge:
How to handle dependencies?

Sources of dependencies:

Model, supported queries,…

Models

Two models for random generation of graphs

Huge pseudo-random
graphs/objects [Goldreich
Goldwasser Nussboim]

• Huge = exponential size
• User will not query more

than poly locations
• May be sufficient to generate

graph that “looks” random to
poly time algorithm?

Big random graphs/objects
[Even Levi Medina Rosen]
[Biswas R Yodpinyanee]

• Big = poly size
• Might eventually write down

the whole graph, but don’t
want to pay cost up-front

• End result should be random
according to the claimed
process

“On the fly” Sampler
[ELMR] [BRY]

Partially generated BIG
random object

(queries increase memory
use)

Local
generation
Algorithm

Random bits
User

query

response

“On the fly” Sampler

Partially generated BIG
random object

(queries increase memory
use)

Local
generation
Algorithm

Random bits
User

query

response

“On the fly” Sampler

Partially generated BIG
random object

(queries increase memory
use)

Local
generation
Algorithm

Random bits
User

query

response

Desiderata:

• Efficiency:
• Answer in sublinear (polylogarithmic?) time

• Distribution equivalence:
• Output distribution 𝜖𝜖-close (ℓ1-distance) to goal distribution

Possible queries on graphs:

• Vertex-pair (adjacency): Is edge (u,v) present?
• All-Neighbors: What are all neighbors of u?
• Degree: What is degree(u)?
• ith neighbor: What is ith neighbor of u?
• Next-neighbor: What is next neighbor of u?
• Random-neighbor: Output random neighbor of u?

considered by
[GGN] [NN]

[Even Levi Medina
Rosen 2017]

[Biswas R
Yodpinyanee]

can take random walk
in large degree

(random) graph!

G(n,p) graphs

Dense G(n,p) next-neighbor queries:

Algorithm idea:
Toss coins to fill in empty entries until toss a 1

Node
i’s

row

Node
i’s

row

Next-neighbor queries: directed graphs

Algorithm idea:
Pick length of 0-run according to hypergeometric distribution (via binary search on CDF):

∑𝑘𝑘=0𝑏𝑏−𝑎𝑎−1 𝑝𝑝 1 − 𝑝𝑝 𝑘𝑘 = 1 − 1 − 𝑝𝑝 𝑏𝑏−𝑎𝑎

Fill in next entry (i, j+k) with a 1

need to write
all 0s?

Node
i’s

row

Node
i’s

row

Just keep track of
1’s!

Next-Neighbor Query: what is u’s next
neighbor?
Dense case: 𝑝𝑝 ≥ 1/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(log𝑛𝑛)
• Algorithm:

• Start at last found neighbor
• Go down row, flipping coins to fill

empty entries, until find neighbor.

• Time 𝑂𝑂(1/𝑝𝑝).

Sparse case: 𝑝𝑝 ≤ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(log𝑛𝑛)/𝑛𝑛
• Algorithm: Use “all neighbor” query [Naor

Nussboim 07]
• Time 𝑂𝑂(𝐸𝐸[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑]) = 𝑂𝑂(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑 𝑛𝑛)

Intermediate case: (e.g. 𝑝𝑝 = 1
√𝑛𝑛

)
• “run length encoding” Idea: Sample

length of 0’s run according to
hypergeometric distribution 𝑝𝑝 1 − 𝑝𝑝 𝑖𝑖

• Challenge: some entries already filled
in!Can we do 𝑝𝑝(1/𝑝𝑝) for

𝑝𝑝 = 𝑝𝑝(1)?

For next-neighbor queries:
Undirected graphs

Algorithm idea:
Pick length of 0-run according to hypergeometric distribution:

∑𝑘𝑘=0𝑏𝑏−𝑎𝑎−1 𝑝𝑝 1 − 𝑝𝑝 𝑘𝑘 = 1 − 1 − 𝑝𝑝 𝑏𝑏−𝑎𝑎

Fill in next entry (i, j+k) with a 1

𝑑𝑑𝑝𝑝𝑟𝑟 𝑖𝑖

𝑑𝑑𝑝𝑝𝑟𝑟 𝑖𝑖

𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑛𝑛
𝑗𝑗

yields
correct

distribution?

need to write
all 0s?

some are
determined

by other
neighbor?

Only need to keep
track of 1’s:

Not so many!

Rule: first flip of
edge (u,v) is what

counts

Implementation of next neighbor queries:
(assume no adjacency queries)

• For each node i maintain:
1. last seen neighbor j (row entries 1..j are determined, and j is a “1”)
2. list of “1”s coming before j (everything else is “0”)
3. remaining“1”s via min-heap
4. Keep track of “0”s on row implicitly

Only keep track of 1’s
+ notify other
neighbor about 1’s

𝑑𝑑𝑝𝑝𝑟𝑟 𝑖𝑖

𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑛𝑛
𝑗𝑗

{2,6} {15}

Skip-sampling for next-neighbor queries

Algorithm:
• pick k according to geometric distribution
• If j+k > next 1 in i’s heap, output next 1 in i’s heap
• else if (i,j+k) previously decided to be 0 by j+k then re-roll

• else add (i, j+k) to heaps for i and j+k

𝑑𝑑𝑝𝑝𝑟𝑟 𝑖𝑖

𝑑𝑑𝑝𝑝𝑟𝑟 𝑖𝑖

𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑛𝑛
𝑗𝑗

why correct
distribution?

some are
determined

by other
neighbor?

if “1”, then
neighbor has told

i about it

if before next
“1” and land

here, pick new
length starting

from here

Rule: first flip of
edge (u,v) is what

counts

Not so many 1’s so
have time to deal

with them!

Random-Neighbor Query: output random
neighbor of i
Dense case: 𝑝𝑝 ≥ 1/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(log𝑛𝑛)
• Algorithm:

• repeat until find neighbor:
• pick random j
• do vertex pair query on (𝑖𝑖, 𝑗𝑗)

• Time 𝑂𝑂(1/𝑝𝑝).

Sparse case: 𝑝𝑝 ≤ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(log𝑛𝑛)/𝑛𝑛
• Algorithm: Use “all neighbor” query

[Naor Nussboim 07]
• Time 𝑂𝑂(𝐸𝐸[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑]) = 𝑂𝑂(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑 𝑛𝑛)

Intermediate case: (e.g. 𝑝𝑝 = 1
𝑛𝑛

)
???
we don’t even know degree?

Can we do 𝑝𝑝(1/𝑝𝑝)
for 𝑝𝑝 = 𝑝𝑝(1)?

Implementation of Random-Neighbor
queries via Bucketing and skip-sampling

Plan: Equipartition each row into contiguous buckets such that:
Expected # of neighbors in a bucket is a constant
⇒ w.h.p. 1/3 of buckets are non-empty
⇒ w.h.p. no bucket has more than log n neighbors

(drumroll…)
⇒ can write down all log𝑛𝑛 neighbors for each bucket! (assuming you can
figure them out)

How many buckets?
𝑝𝑝𝑛𝑛, each of size 1/𝑝𝑝

Note that both size and
number of buckets can

be big

Random Neighbors with rejection sampling

Keep list of 1’s,
then can pick nbr

quickly

How to fill a bucket?
• Bucket may be indirectly filled in certain locations

• "1" entries reported when created
• "0" entries not reported but can query from complementary bucket

• First, fill bucket ignoring existing entries

• Fix to conform to “first flip”:
• Re-insert all indirectly filled (red) "1" entries: {2,8}
• For each new (green) "1" entry: remove if coincides with indirectly filled

"0" entries

Graph models supporting typical graph queries:

G(n,p)

Community structure: Stochastic Block Model

Small world graphs

Random walks

Large 1D Random Walk (on the line)

with probability 1/2

with probability 1/2

What if we only care about a few
positions?

Query Height(t) returns position of walk at time t

Query

with probability 1/2

with probability 1/2

t

Queries appear in arbitrary order

Query

Response

with probability 1/2

with probability 1/2

Query Height(t) returns position of walk at time t

What if we only care about a few
positions?

Consistent with Large 1D Random Walk

Queries appear in arbitrary order

Query

Response

with probability 1/2

with probability 1/2

local generation of hypergeometric distribution
[Gilbert Ghuha Indyk Kotidis Muthukrishnan Strauss]

[Goldreich Goldwasser Nussboim]

Random walks:
… ()(())(()(()(()))) …
… ()(())(()(()(()))) …
… ()(())(()(()(()))) …

… ()(())(()(()(()))) …
… ()(())(()(()(()))) …

• Random walks on the line
• Random Catalan objects

• Random Dyck paths
• Well bracketed expressions
• Random Rooted Trees

[Biswas R Yodpinyanee]

Polylogarthmic time
queries:

• Random walks on the line
• Random Catalan objects

• Random Dyck paths
• Well bracketed expressions
• Random Rooted Trees

• Height queries
• Bracket-Nesting-Depth queries

• First-Return queries
• Matching-Bracket queries

… ()(())(()(()(()))) …
… ()(())(()(()(()))) …
… ()(())(()(()(()))) …

… ()(())(()(()(()))) …
… ()(())(()(()(()))) …

[Biswas R Yodpinyanee]

• Given G, start vertex s, what is location of random walk at
time t?

• Query time upper bounds:
• Polylog time for hypercube, cycle, Cayley graphs, structured

graphs (tensor and Cartesian products)
• �𝑂𝑂 1

1−𝜆𝜆
𝑛𝑛 for spectral expansion λ

• Lower bound: Ω 𝑛𝑛 for random graphs

Random walks on graphs
[Biswas Pyne R]

https://graphstream-project.org

Generating Random Colorings
of Large Graphs

• Input graph: G
• Maximum Degree: Δ
• Number of colors: 𝑞𝑞 > Δ (here 𝑞𝑞 > 12 Δ)

• Output: Uniformly random valid coloring of G

• Query: Color of node v?

Random Colorings of Large Graphs

Sublinear probes to G?

• Basic (sequential) Markov Chain for 𝑞𝑞 > 2Δ [Jerrum]:
• Random node v picks random color
• Update v to new color if no conflict with neighbors

• On query Color(v,t) = Color of node v at time t
• When was v last picked? which color did it choose? Conflict?
• For all w nbr of v: color of w at that time?

• Query w’s previous random choice
• Colors of w’s neighbors at that time?

First try

Ω Δ𝑡𝑡 ? Ω Δ𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 ?Ω 𝑛𝑛 ?

𝑂𝑂(𝑛𝑛 log𝑛𝑛) steps
(sequential)

• Distributed Markov Chain round [Feng Sun Yin]
[Fischer Ghaffari] [Feng Hayes Yin]:

• n nodes simultaneously choose random colors
“proposals”

• Update color if
• no conflict with any neighbor’s current color or

new proposal,
• no neighbor proposal conflicts with current color

Modified Glauber Dynamics

Need O(log n) rounds

• Distributed Markov Chain round [Feng Sun Yin]
[Fischer Ghaffari] [Feng Hayes Yin]:

• n nodes simultaneously choose random colors
“proposals”

• Update color if
• no conflict with any neighbor’s current color or

new proposal,
• no neighbor proposal conflicts with current color

Modified Glauber Dynamics

Need O(log n) rounds
[Parnas Ron] Δ𝑂𝑂(log 𝑛𝑛)queries?

Distributed Markov Chain round [Feng Sun Yin] [Fischer Ghaffari]
• n nodes simultaneously choose random colors “proposals”
• Update color if (1) no conflict with any neighbor’s current color or new

proposal and (2) no neighbor proposal conflicts with current color

Subpolynomial time algorithm: [Biswas R Yodpinyanee]
insight: just make sure that neighbor isn’t colored with color c!

• For each neighbor jump back to previous time color c
was proposed.

• Increment forward to see if overwritten

Modified Glauber Dynamics

Exponent improves
with bigger q

Much smaller
dependency chains

Some other (prior) works

Implementation of Huge Pseudo-Random
Objects
• Huge pseudorandom functions/permutations/balls-in-bins [Goldreich-

Goldwasser-Micali’86][Luby-Rackoff ‘88][Naor-Reingold ’97][Mansour-Rubinstein-
Vardi-Xie ’12]

• Model introduced and formalized in [Goldreich-Goldwasser-Nussboim 2003]
• Generators for random functions, codes, graphs,…
• Generators provide queries to random graphs with specified property

• e.g. Planted Hamiltonian cycle, clique, colorability, connectedness, bipartiteness
• Focus on indistinguishability under small number of queries and poly time. (see also

[Naor Nussboim Tromer 05] [Alon Nussboim 07])
• Give important primitives

• e.g. Sampling from binomial distribution, interval-sum queries for functions (see
also [Gilbert, Guha, Indyk, Kotidis, Muthukrishnan, Strauss 2002]

• d-regular graph implementations [Naor Nussboim 07]

Locally Implementing Preferential Attachment
Graphs [Even-Levi-Medina-Rosen 2017]

• Graphs generated:
• Highly sequential random process
• Sparse, but degree not bounded

• Queries:
• Adjacency
• Introduce next-neighbor query (implement with

polylog(n) resources)

• Guarantee:
• Close in statistical distance to correct distribution

Give local
implementation
without reconstructing
full history!!

polylogarithmic time for q ≈ 2Δ?

Open problem:

Future directions

Other random objects?

Support degree, ith neighbor queries in graphs?

Lower bounds on space?

	Local generation of �combinatorial objects
	Slide Number 2
	Generating large random graph
	A challenge:�How to handle dependencies?�
	Models
	Two models for random generation of graphs
	“On the fly” Sampler �[ELMR] [BRY]�
	“On the fly” Sampler �
	“On the fly” Sampler �
	Desiderata:
	Possible queries on graphs:
	G(n,p) graphs
	Dense G(n,p) next-neighbor queries:
	Next-neighbor queries: directed graphs
	Next-Neighbor Query: what is u’s next neighbor?
	For next-neighbor queries:�Undirected graphs
	Implementation of next neighbor queries:�(assume no adjacency queries)
	Skip-sampling for next-neighbor queries
	Random-Neighbor Query: output random neighbor of i
	Implementation of Random-Neighbor queries via Bucketing and skip-sampling
	Random Neighbors with rejection sampling
	How to fill a bucket?
	Graph models supporting typical graph queries:�
	Random walks
	Large 1D Random Walk (on the line)
	What if we only care about a few positions?
	What if we only care about a few positions?
	Consistent with Large 1D Random Walk
	Random walks:
	Polylogarthmic time queries:
	Random walks on graphs�[Biswas Pyne R]
	Generating Random Colorings �of Large Graphs
	Random Colorings of Large Graphs
	First try
	Modified Glauber Dynamics
	Modified Glauber Dynamics
	Modified Glauber Dynamics
	Some other (prior) works
	Implementation of Huge Pseudo-Random Objects
	Locally Implementing Preferential Attachment Graphs [Even-Levi-Medina-Rosen 2017]
	Open problem:
	Future directions

