Local generation of combinatorial objects

Amartya Shankha Biswas (MIT), Ronitt Rubinfeld (MIT), Anak Yodpinyanee (MIT)

Huge random objects:

How to generate?

Up front?

Locally...on the fly?

Generating large random graph

	1	2	3	4	5	6	7	8	9	10
1			0	1	0		0			
2			0	1	0		0	1		1
3	0	0		0	0	0	0	0	1	
4	1	1	0		0		0	1		
5	0	0	0	0		1	1			
6			0		1				0	
7	0	0	0	0	1					
8		1	0	1						0
9			1			0				
10		1						0		

Generate "on the fly"?
 What if d-regular? support "nextneighbor" queries?

A challenge: How to handle dependencies?

Sources of dependencies:
Model, supported queries,...

Models

Two models for random generation of graphs

$$
\begin{array}{|l}
\hline \text { Huge pseudo-random } \\
\text { graphs/objects [Goldreich } \\
\text { Goldwasser Nussboim] } \\
\text { - Huge = exponential size } \\
\text { - User will not query more } \\
\text { than poly locations } \\
\text { - May be sufficient to generate } \\
\text { graph that "looks" random to } \\
\text { poly time algorithm? }
\end{array}
$$

Big random graphs/objects
[Even Levi Medina Rosen]
[Biswas R Yodpinyanee]

- Big = poly size
- Might eventually write down the whole graph, but don't want to pay cost up-front
- End result should be random according to the claimed process

"On the fly" Sampler [ELMR] [BRY]

Random bits

"On the fly" Sampler

Random bits

"On the fly" Sampler

Random bits

Desiderata:

- Efficiency:
- Answer in sublinear (polylogarithmic?) time
- Distribution equivalence:
- Output distribution ϵ-close (ℓ_{1}-distance) to goal distribution

Possible queries on graphs:

- Vertex-pair (adjacency): Is edge (u, v) present?
- All-Neighbors: What are all neighbors of u ?
considered by [GGN] [NN]
- Degree: What is degree (u) ?
- ith neighbor: What is ith neighbor of u ?
[Even Levi Medina
- Next-neighbor: What is next neighbor of u ?

Rosen 2017]

- Random-neighbor: Output random neighbor of u?
can take random walk in large degree
[Biswas R Yodpinyanee]

$G(n, p)$ graphs

Dense $G(n, p)$ next-neighbor queries:

Algorithm idea:
Toss coins to fill in empty entries until toss a 1

Next-neighbor queries: directed graphs

Next-Neighbor Query: what is u's next neighbor?

Dense case: $p \geq 1 /$ poly $(\log n)$

- Algorithm:
- Start at last found neighbor
- Go down row, flipping coins to fill empty entries, until find neighbor.
- Time $O(1 / p)$.

Can we do $o(1 / p)$ for

$$
p=o(1) ?
$$

Sparse case: $p \leq p o l y(\log n) / n$

- Algorithm: Use "all neighbor" query [Naor Nussboim 07]
- Time $O(E[$ degree $])=O($ polylog $n)$

Intermediate case: (e.g. $p=\frac{1}{\sqrt{n}}$)

- "run length encoding" Idea: Sample length of O's run according to hypergeometric distribution $p(1-p)^{i}$
- Challenge: some entries already filled in!

Implementation of next neighbor queries: (assume no adjacency queries)

- For each node i maintain:

1. last seen neighbor j (row entries $1 . . j$ are determined, and j is a " 1 ")
2. list of " 1 "s coming before j (everything else is " 0 ")
3. remaining" 1 "s via min-heap
4. Keep track of " 0 "s on row implicitly

Only keep track of 1's + notify other neighbor about 1's

Random-Neighbor Query: output random neighbor of i

Dense case: $p \geq 1 / \operatorname{poly}(\log n)$

- Algorithm:
- repeat until find neighbor:
- pick random j
- do vertex pair query on (i, j)
- Time $O(1 / p)$.

Can we do $o(1 / p)$

$$
\text { for } p=o(1) ?
$$

Sparse case: $p \leq \operatorname{poly}(\log n) / n$

- Algorithm: Use "all neighbor" query [Naor Nussboim 07]
- Time $O(E[$ degree $])=O($ polylog $n)$

Intermediate case: (e.g. $p=\frac{1}{\sqrt{n}}$) ???
we don't even know degree?

Implementation of Random-Neighbor queries via Bucketing and skip-sampling

Plan: Equipartition each row into contiguous buckets such that:
Expected \# of neighbors in a bucket is a constant
\Rightarrow w.h.p. 1/3 of buckets are non-empty
\Rightarrow w.h.p. no bucket has more than log n neighbors
(drumroll...)
\Rightarrow can write down all $\log n$ neighbors for each bucket! (assuming you can figure them out)

How many buckets?

$$
p n, \text { each of size } 1 / p
$$

Note that both size and number of buckets can be big

Random Neighbors with rejection sampling

Bucketing:

expected \#neighbors in a bucket
$=\Theta(1)$ expected, $\leq \mathcal{O}(\log n)$ w.h.p.

\rightarrow Step 1 pick a uniform random bucket
"fill" this bucket if needed

0011011100

Step 2 pick a uniform random neighbor u
\hookrightarrow return or reject
Step 3 return u with probability $\frac{\text { \#neighbors in the bucket }}{\mathcal{O}(\log n)}$

- otherwise, try again
$\mathbb{P}[$ return $u]=\frac{1}{\# \text { buckets }} \times \frac{1}{\# \text { neighbors in bucket }} \times \frac{\# \text { neighbors in bucket }}{\mathcal{O}(\log n)} \approx \frac{\Omega(1 / \log n)}{\# \text { neighbors of } v}$
$\mathbb{P}[$ return any neighbor $] \approx \Omega(1 / \log n) \Rightarrow \mathcal{O}(\log n)$ iterations suffice

How to fill a bucket?

- Bucket may be indirectly filled in certain locations
- "1" entries reported when created
- "0" entries not reported but can query from complementary bucket

$?$	1	$?$	$?$	$?$	0	$?$	1	0	$?$	$?$

- First, fill bucket ignoring existing entries

0	0	1	0	0	1	1	0	0	1	0

- Fix to conform to "first flip":
- Re-insert all indirectly filled (red) "1" entries: $\{2,8\}$
- For each new (green) "1" entry: remove if coincides with indirectly filled "0" entries

0	1	1	0	0	\nless	1	1	0	1	0

Graph models supporting typical graph queries:

$$
G(n, p)
$$

Community structure: Stochastic Block Model
Small world graphs

Random walks

Large 1D Random Walk (on the line)

What if we only care about a few positions?

Query Height(t) returns position of walk at time \mathbf{t}
with probability $1 / 2$
with probability $1 / 2$

What if we only care about a few positions?

Query Height(t) returns position of walk at time \mathbf{t}
with probability $1 / 2$
with probability $1 / 2$

Queries appear in arbitrary order

Consistent with Large 1D Random Walk

Queries appear in arbitrary order

local generation of hypergeometric distribution [Gilbert Ghuha Indyk Kotidis Muthukrishnan Strauss]
[Goldreich Goldwasser Nussboim]

Random walks:

- Random walks on the line
- Random Catalan objects
- Random Dyck paths
- Well bracketed expressions
- Random Rooted Trees
[Biswas R Yodpinyanee]

Polylogarthmic time queries:

- Random walks on the line
- Random Catalan objects
- Random Dyck paths
- Well bracketed expressions
- Random Rooted Trees
[Biswas R Yodpinyanee]
- Height queries
- Bracket-Nesting-Depth queries
- First-Return queries
- Matching-Bracket queries

Random walks on graphs
 [Biswas Pyne R]

- Given G, start vertex s, what is location of random walk at time t?
- Query time upper bounds:
- Polylog time for hypercube, cycle, Cayley graphs, structured graphs (tensor and Cartesian products)
- $\tilde{O}\left(\frac{1}{1-\lambda} \sqrt{n}\right)$ for spectral expansion λ
- Lower bound: $\Omega(\sqrt{n})$ for random graphs

Generating Random Colorings of Large Graphs

Random Colorings of Large Graphs

- Input graph: G
- Maximum Degree: Δ

- Number of colors: $q>\Delta$ (here $q>12 \Delta$)
- Output: Uniformly random valid coloring of G

- Query: Color of node v?

Sublinear probes to G?

First try

- Basic (sequential) Markov Chain for $q>2 \Delta$ [Jerrum]:
- Random node v picks random color
- Update v to new color if no conflict with neighbors


```
O( }n\operatorname{log}n)\mathrm{ steps
    (sequential)
```


- On query Color $(v, t)=$ Color of node v at time t
- When was v last picked? which color did it choose? Conflict?
- For all w nbr of v : color of w at that time?
- Query w's previous random choice
- Colors of w's neighbors at that time?

$$
\Omega\left(\Delta^{t}\right) ? \Omega\left(\Delta^{\log n}\right) ? \Omega(n) \text { ? }
$$

Modified Glauber Dynamics

- Distributed Markov Chain round [Feng Sun Yin] [Fischer Ghaffari] [Feng Hayes Yin]:
- n nodes simultaneously choose random colors "proposals"
- Update color if
- no conflict with any neighbor's current color or new proposal,
- no neighbor proposal conflicts with current color

Modified Glauber Dynamics

- Distributed Markov Chain round [Feng Sun Yin]
 [Fischer Ghaffari] [Feng Hayes Yin]:
- n nodes simultaneously choose random colors "proposals"
- Update color if
- no conflict with any neighbor's current color or new proposal,
- no neighbor proposal conflicts with current color

> Need $\mathrm{O}(\log n)$ rounds
> [Parnas Ron] $\rightarrow \Delta^{O(\log n)}$ queries?

Modified Glauber Dynamics

Distributed Markov Chain round [Feng Sun Yin] [Fischer Ghaffari]

- n nodes simultaneously choose random colors "proposals"
- Update color if (1) no conflict with any neighbor's current color or new proposal and (2) no neighbor proposal conflicts with current color

Subpolynomial time algorithm: [Biswas R Yodpinyanee] insight: just make sure that neighbor isn't colored with color c!

- For each neighbor jump back to previous time color c was proposed.
- Increment forward to see if overwritten

Some other (prior) works

Implementation of Huge Pseudo-Random
 Objects

- Huge pseudorandom functions/permutations/balls-in-bins [Goldreich-Goldwasser-Micali'86][Luby-Rackoff '88][Naor-Reingold '97][Mansour-Rubinstein-Vardi-Xie '12]
- Model introduced and formalized in [Goldreich-Goldwasser-Nussboim 2003]
- Generators for random functions, codes, graphs,...
- Generators provide queries to random graphs with specified property
- e.g. Planted Hamiltonian cycle, clique, colorability, connectedness, bipartiteness
- Focus on indistinguishability under small number of queries and poly time. (see also [Naor Nussboim Tromer 05] [Alon Nussboim 07])
- Give important primitives
- e.g. Sampling from binomial distribution, interval-sum queries for functions (see also [Gilbert, Guha, Indyk, Kotidis, Muthukrishnan, Strauss 2002]
- d-regular graph implementations [Naor Nussboim 07]

Locally Implementing Preferential Attachment Graphs [Even-Levi-Medina-Rosen 2017]

- Graphs generated:
- Highly sequential random process
- Sparse, but degree not bounded
- Queries:
- Adjacency
- Introduce next-neighbor query (implement with polylog(n) resources)
- Guarantee:
- Close in statistical distance to correct distribution

Give local
implementation
without reconstructing full history!!

Open problem:

polylogarithmic time for $\mathrm{q} \approx 2 \Delta$?

Future directions

Other random objects?

Support degree, ith neighbor queries in graphs?

Lower bounds on space?

