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Huge random objects:

How to generate?

Up front?

Locally…on the fly?



Generating large random graph
321
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Generate “on 
the fly”? 

What if d-regular? 
support “next-

neighbor” queries?



A challenge:
How to handle dependencies?

Sources of dependencies:

Model, supported queries,…



Models



Two models for random generation of graphs 

Huge pseudo-random 
graphs/objects [Goldreich
Goldwasser Nussboim]

• Huge = exponential size
• User will not query more 

than poly locations
• May be sufficient to generate 

graph that “looks” random to 
poly time algorithm?

Big random graphs/objects 
[Even Levi Medina Rosen] 
[Biswas R Yodpinyanee]

• Big = poly size
• Might eventually write down 

the whole graph, but don’t 
want to pay cost up-front

• End result should be random 
according to the claimed 
process



“On the fly” Sampler 
[ELMR] [BRY]

Partially generated BIG
random object

(queries increase memory 
use)

Local 
generation 
Algorithm

Random bits
User

query

response
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“On the fly” Sampler 

Partially generated BIG
random object

(queries increase memory 
use)

Local 
generation 
Algorithm

Random bits
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response



Desiderata:

• Efficiency:
• Answer in sublinear (polylogarithmic?) time 

• Distribution equivalence:
• Output distribution 𝜖𝜖-close (ℓ1-distance)  to goal distribution



Possible queries on graphs:

• Vertex-pair (adjacency):  Is edge (u,v) present?
• All-Neighbors:  What are all neighbors of u?
• Degree:   What is degree(u)?
• ith neighbor:   What is ith neighbor of u?
• Next-neighbor:  What is next neighbor of u?
• Random-neighbor:  Output random neighbor of u?

considered by 
[GGN] [NN]

[Even Levi Medina 
Rosen 2017]

[Biswas R 
Yodpinyanee]

can take random walk 
in large degree 

(random) graph!



G(n,p) graphs



Dense G(n,p) next-neighbor queries:

Algorithm idea:  
Toss coins to fill in empty entries until toss a 1

Node
i’s

row

Node
i’s

row



Next-neighbor queries:  directed graphs 

Algorithm idea:  
Pick length of 0-run according to hypergeometric distribution (via binary search on CDF):

∑𝑘𝑘=0𝑏𝑏−𝑎𝑎−1 𝑝𝑝 1 − 𝑝𝑝 𝑘𝑘 = 1 − 1 − 𝑝𝑝 𝑏𝑏−𝑎𝑎

Fill in next entry (i, j+k) with a 1

need to write 
all 0s?

Node
i’s

row

Node
i’s

row

Just keep track of 
1’s!



Next-Neighbor Query:  what is u’s next 
neighbor?
Dense case: 𝑝𝑝 ≥ 1/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(log𝑛𝑛)
• Algorithm:

• Start at last found neighbor
• Go down row, flipping coins to fill 

empty entries, until find neighbor.  

• Time 𝑂𝑂(1/𝑝𝑝).  

Sparse case: 𝑝𝑝 ≤ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(log𝑛𝑛)/𝑛𝑛
• Algorithm:  Use “all neighbor” query  [Naor

Nussboim 07]
• Time 𝑂𝑂(𝐸𝐸[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑]) = 𝑂𝑂(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑 𝑛𝑛)

Intermediate case: (e.g. 𝑝𝑝 = 1
√𝑛𝑛

)
• “run length encoding” Idea:  Sample 

length of 0’s run according to 
hypergeometric distribution 𝑝𝑝 1 − 𝑝𝑝 𝑖𝑖

• Challenge:  some entries already filled 
in!Can we do 𝑝𝑝(1/𝑝𝑝) for 

𝑝𝑝 = 𝑝𝑝(1)?



For next-neighbor queries:
Undirected graphs

Algorithm idea:  
Pick length of 0-run according to hypergeometric distribution:

∑𝑘𝑘=0𝑏𝑏−𝑎𝑎−1 𝑝𝑝 1 − 𝑝𝑝 𝑘𝑘 = 1 − 1 − 𝑝𝑝 𝑏𝑏−𝑎𝑎

Fill in next entry (i, j+k) with a 1

𝑑𝑑𝑝𝑝𝑟𝑟 𝑖𝑖

𝑑𝑑𝑝𝑝𝑟𝑟 𝑖𝑖

𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑛𝑛
𝑗𝑗

yields 
correct 

distribution?

need to write 
all 0s?

some are 
determined 

by other 
neighbor?

Only need to keep 
track of 1’s:

Not so many!

Rule:  first flip of 
edge (u,v) is what 

counts



Implementation of next neighbor queries:
(assume no adjacency queries)

• For each node i maintain:
1. last seen neighbor j (row entries 1..j are determined, and j is a “1”)
2. list of “1”s coming before j (everything else is “0”)
3. remaining“1”s via min-heap 
4. Keep track of “0”s on row implicitly

Only keep track of 1’s 
+ notify other 
neighbor about 1’s

𝑑𝑑𝑝𝑝𝑟𝑟 𝑖𝑖

𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑛𝑛
𝑗𝑗

{2,6} {15}



Skip-sampling for next-neighbor queries

Algorithm:
• pick k according to geometric distribution
• If j+k > next 1 in i’s heap, output next 1 in i’s heap
• else if (i,j+k) previously decided to be 0 by j+k then re-roll 

• else add (i, j+k) to heaps for i and j+k

𝑑𝑑𝑝𝑝𝑟𝑟 𝑖𝑖

𝑑𝑑𝑝𝑝𝑟𝑟 𝑖𝑖

𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑛𝑛
𝑗𝑗

why correct 
distribution?

some are 
determined 

by other 
neighbor?

if “1”, then 
neighbor has told 

i about it

if before next 
“1” and land 

here, pick new 
length starting 

from here

Rule:  first flip of 
edge (u,v) is what 

counts

Not so many 1’s  so 
have time to deal 

with them!



Random-Neighbor Query:  output random 
neighbor of i
Dense case: 𝑝𝑝 ≥ 1/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(log𝑛𝑛)
• Algorithm:

• repeat until find neighbor:
• pick random j
• do vertex pair query on (𝑖𝑖, 𝑗𝑗)

• Time 𝑂𝑂(1/𝑝𝑝).  

Sparse case: 𝑝𝑝 ≤ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(log𝑛𝑛)/𝑛𝑛
• Algorithm:  Use “all neighbor” query  

[Naor Nussboim 07]
• Time 𝑂𝑂(𝐸𝐸[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑]) = 𝑂𝑂(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑 𝑛𝑛)

Intermediate case: (e.g. 𝑝𝑝 = 1
𝑛𝑛

)
???
we don’t even know degree?

Can we do 𝑝𝑝(1/𝑝𝑝)
for 𝑝𝑝 = 𝑝𝑝(1)?



Implementation of Random-Neighbor 
queries via Bucketing and skip-sampling

Plan:  Equipartition each row into contiguous buckets such that:
Expected # of neighbors in a bucket is a constant
⇒ w.h.p. 1/3 of buckets are non-empty
⇒ w.h.p. no bucket has more than log n neighbors

(drumroll…)
⇒ can write down all log𝑛𝑛 neighbors for each bucket! (assuming you can 
figure them out)

How many buckets?  
𝑝𝑝𝑛𝑛, each of size 1/𝑝𝑝

Note that both size and 
number of buckets can 

be big



Random Neighbors with rejection sampling

Keep list of 1’s, 
then can pick nbr

quickly



How to fill a bucket?
• Bucket may be indirectly filled in certain locations

• "1" entries reported when created
• "0" entries not reported but can query from complementary bucket

• First, fill bucket ignoring existing entries 

• Fix to conform to “first flip”:
• Re-insert all indirectly filled (red) "1" entries:  {2,8}
• For each new (green) "1" entry:  remove if coincides with indirectly filled 

"0" entries



Graph models supporting typical graph queries:

G(n,p)

Community structure: Stochastic Block Model

Small world graphs



Random walks



Large 1D Random Walk (on the line)

with probability 1/2

with probability 1/2



What if we only care about a few 
positions?

Query Height(t) returns position of walk at time t

Query

with probability 1/2

with probability 1/2

t



Queries appear in arbitrary order

Query

Response

with probability 1/2

with probability 1/2

Query Height(t) returns position of walk at time t

What if we only care about a few 
positions?



Consistent with Large 1D Random Walk

Queries appear in arbitrary order

Query

Response

with probability 1/2

with probability 1/2

local generation of hypergeometric distribution 
[Gilbert Ghuha Indyk Kotidis Muthukrishnan Strauss]

[Goldreich Goldwasser Nussboim]



Random walks:
… ()(())(()(()(()))) … 
… ()(())(()(()(()))) … 
… ()(())(()(()(()))) … 

… ()(())(()(()(()))) … 
… ()(())(()(()(()))) … 

• Random walks on the line
• Random Catalan objects

• Random Dyck paths
• Well bracketed expressions
• Random Rooted Trees

[Biswas R Yodpinyanee]



Polylogarthmic time 
queries:

• Random walks on the line
• Random Catalan objects

• Random Dyck paths
• Well bracketed expressions
• Random Rooted Trees

• Height queries
• Bracket-Nesting-Depth queries

• First-Return queries
• Matching-Bracket queries

… ()(())(()(()(()))) … 
… ()(())(()(()(()))) … 
… ()(())(()(()(()))) … 

… ()(())(()(()(()))) … 
… ()(())(()(()(()))) … 

[Biswas R Yodpinyanee]



• Given G, start vertex s, what is location of random walk at 
time t?

• Query time upper bounds:
• Polylog time for hypercube, cycle, Cayley graphs, structured 

graphs (tensor and Cartesian products)
• �𝑂𝑂 1

1−𝜆𝜆
𝑛𝑛 for spectral expansion λ

• Lower bound:  Ω 𝑛𝑛 for random graphs

Random walks on graphs
[Biswas Pyne R]

https://graphstream-project.org



Generating Random Colorings 
of Large Graphs



• Input graph: G
• Maximum Degree: Δ
• Number of colors: 𝑞𝑞 > Δ (here 𝑞𝑞 > 12 Δ )

• Output: Uniformly random valid coloring of G

• Query:  Color of node v?

Random Colorings of Large Graphs

Sublinear probes to G?



• Basic (sequential) Markov Chain for 𝑞𝑞 > 2Δ [Jerrum]:
• Random node v picks random color
• Update v to new color if no conflict with neighbors

• On query Color(v,t) = Color of node v at time t
• When was v last picked? which color did it choose? Conflict?
• For all w nbr of v: color of w at that time?

• Query w’s previous random choice 
• Colors of w’s neighbors at that time? 

First try

Ω Δ𝑡𝑡 ? Ω Δ𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 ?Ω 𝑛𝑛 ?

𝑂𝑂( 𝑛𝑛 log𝑛𝑛) steps 
(sequential)



• Distributed Markov Chain round [Feng Sun Yin] 
[Fischer Ghaffari] [Feng Hayes Yin]:

• n nodes simultaneously choose random colors 
“proposals”

• Update color if 
• no conflict with any neighbor’s current color or 

new proposal, 
• no neighbor proposal conflicts with current color

Modified Glauber Dynamics

Need O(log n) rounds 



• Distributed Markov Chain round [Feng Sun Yin] 
[Fischer Ghaffari] [Feng Hayes Yin]:

• n nodes simultaneously choose random colors 
“proposals”

• Update color if 
• no conflict with any neighbor’s current color or 

new proposal, 
• no neighbor proposal conflicts with current color

Modified Glauber Dynamics

Need O(log n) rounds 
[Parnas Ron]  Δ𝑂𝑂(log 𝑛𝑛)queries? 



Distributed Markov Chain round [Feng Sun Yin] [Fischer Ghaffari]
• n nodes simultaneously choose random colors “proposals”
• Update color if (1) no conflict with any neighbor’s current color or new 

proposal and (2) no neighbor proposal conflicts with current color

Subpolynomial time algorithm: [Biswas R Yodpinyanee] 
insight: just make sure that neighbor isn’t colored with color c!

• For each neighbor jump back to previous time color c 
was proposed.

• Increment forward to see if overwritten

Modified Glauber Dynamics

Exponent improves 
with bigger q

Much smaller 
dependency chains



Some other (prior) works



Implementation of Huge Pseudo-Random 
Objects
• Huge pseudorandom functions/permutations/balls-in-bins  [Goldreich-

Goldwasser-Micali’86][Luby-Rackoff ‘88][Naor-Reingold ’97][Mansour-Rubinstein-
Vardi-Xie ’12]

• Model introduced and formalized in [Goldreich-Goldwasser-Nussboim 2003]
• Generators for random functions, codes, graphs,…
• Generators provide queries to random graphs with specified property

• e.g. Planted Hamiltonian cycle, clique, colorability, connectedness, bipartiteness
• Focus on indistinguishability under small number of queries and poly time.  (see also 

[Naor Nussboim Tromer 05] [Alon Nussboim 07])
• Give important primitives

• e.g. Sampling from binomial distribution, interval-sum queries for functions (see 
also [Gilbert, Guha, Indyk, Kotidis, Muthukrishnan, Strauss 2002]

• d-regular graph implementations [Naor Nussboim 07]



Locally Implementing Preferential Attachment 
Graphs [Even-Levi-Medina-Rosen 2017]

• Graphs generated:
• Highly sequential random process
• Sparse, but degree not bounded

• Queries:
• Adjacency
• Introduce next-neighbor query (implement with 

polylog(n) resources)

• Guarantee:  
• Close in statistical distance to correct distribution

Give local 
implementation 
without reconstructing 
full history!!



polylogarithmic time for q ≈ 2Δ?

Open problem:



Future directions

Other random objects?

Support degree, ith neighbor queries in graphs?

Lower bounds on space?
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