Monotonicity testing

Ronitt Rubinfeld
6.5240 Sublinear Time Algorithms

(slides on testing monotonicity of functions $f:\{0,1\}^n \to \{0,1\}$ from Sofya Raskhodnikova)

Alphabetized?

Sortedness of a sequence

• Given: list $y_1 y_2 \dots y_n$

• Question: is the list sorted?

Clearly requires n steps – must look at each y_i

Sortedness of a sequence

• Given: list $y_1 y_2 \dots y_n$

Question: can we quickly test if the list close to sorted?

What do we mean by ``quick''?

- query complexity measured in terms of list size *n*
- Our goal (if possible):
 - Very small compared to n, will go for clog n

What do we mean by "close"?

Definition: a list of size n is ε -close to sorted if can delete at most εn values to make it sorted. Otherwise, ε -far.

(ϵ is given as input, e.g., ϵ =1/5)

```
Sorted: 1 2 4 5 7 11 14 19 20 21 23 38 39 45 Close: 1 4 2 5 7 11 14 19 20 39 23 21 38 45 1 4 5 7 11 14 19 20 23 38 45 Far: 45 39 23 1 38 4 5 21 20 19 2 7 11 14 1 14
```

Requirements for algorithm:

- Pass sorted lists
- Fail lists that are ε-far.
 - Equivalently: if list likely to pass test, can change at most ϵ fraction of list to make it sorted

far?

What if list not sorted, but not

Probability of success > 3/4

(can boost it arbitrarily high by repeating several times and outputting "fail" if ever see a "fail", "pass" otherwise)

• Can test in $O(1/\epsilon \log n)$ time

(and can't do any better!)

A first try for an algorithm:

Pick random entry and test that entry and its right neighbor are in the correct order

First try (cont.):

- Proposed algorithm:
 - Pick random i and test that $y_i \le y_{i+1}$
- Bad input type:
 - 1,2,3,4,5,...n/4, 1,2,...n/4, 1,2,...n/4, 1,2,...n/4
 - Difficult for this algorithm to find "breakpoint"
 - But other tests work well on this input...

A second try for an algorithm:

Pick lots of random entries and pass if all in right order

Good input type:

1 2 4 5 7 11 14 19 20 21 23 38 39 45 46 50 57 60 61 80

2 19 23 46

A second try:

Pick lots of random entries and pass if all in right order

Bad input type:

1 2 4 5 7 11 14 19 20 21 1 2 4 5 7 11 14 19 20 21

4 14 2 19

A second try:

Pick lots of random entries and pass if all in right order

How many?

Another bad input type:

2 1 5 4 11 7 19 14 21 20 38 23 45 39 50 46 60 57 80 61

A second attempt:

- Proposed algorithm:
 - Pick random i < j and test that $y_i \le y_i$
- Bad input type:
 - n/4 groups of 4 decreasing elements
 4,3, 2, 1,8,7,6,5,12,11,10,9...,4k, 4k-1,4k-2,4k-3,...
 - Largest monotone sequence is n/4
 - must pick *i,j* in same group to see problem
 - need $\Omega(n^{1/2})$ samples. (also $O(n^{1/2})$ is enough)

A minor simplification:

- Assume list is distinct (i.e. $x_i \neq x_j$)
- Claim: this is not really easier
 - Why?

Can "virtually" append *i* to each x_i $x_1, x_2, ..., x_n \rightarrow (x_1, 1), (x_2, 2), ..., (x_n, n)$ $e.g., 1, 1, 2, 6, 6 \rightarrow (1, 1), (1, 2), (2, 3), (6, 4), (6, 5)$

Breaks ties without changing order

A test that works

• The test:

Test $O(1/\epsilon)$ times:

- Pick random i
- Look at value of y_i
- Do binary search for y_i
- Does the binary search find y_i at location i? If not, FAIL
- Does the binary search find any inconsistencies? If yes, FAIL
- Do we end up at location i? If not FAIL

Pass if never failed

- Running time: $O(\varepsilon^{-1} \log n)$ time
- Why does this work?

Behavior of the test:

- Define index i to be good if binary search for y_i successful
- O($1/\epsilon \log n$) time test (restated):
 - pick $O(1/\epsilon)$ i's and pass if they are all good
- Correctness:
 - If list is sorted, then all i's good (uses distinctness) → test always passes
 - If list likely to pass test, then at least $(1-\varepsilon)n$ i's are good.
 - Main observation: good elements form increasing sequence
 - Proof: for i<j both good need to show $y_i < y_j$
 - let k = least common ancestor of i,j
 - Search for i went left of k and search for j went right of k → y_i < y_k < y_i
 - Thus list is ϵ -close to monotone (delete $< \epsilon n$ bad elements)

Monotonicity of Functions

[A function $f: \{0,1\}^n \to \{0,1\}$ is monotone if increasing a bit of x does not decrease f(x).

(f has to change on many points to become monontone)?

• Edge $x \rightarrow y$ is violated by f if f(x) > f(y).

Time:

- Today: $O(n/\varepsilon)$, logarithmic in the size of the input, 2^n
- Newer: $\Theta(\sqrt{n}/\varepsilon^2)$ for nonadaptive tests, $\Omega\left(n^{\frac{1}{3}}\right)$

monotone

 $\frac{1}{2}$ -far from monotone

Monotonicity Test

Idea: Show that functions that are far from monotone violate many edges.

EdgeTest (f, ε)

- 1. Pick $2n/\varepsilon$ edges (x, y) uniformly at random from the hypercube.
- **2.** Reject if any (x, y) is violated (i.e. f(x) > f(y)). Otherwise, accept.

Analysis

- If f is monotone, EdgeTest always accepts.
- If f is ε -far from monotone, will show that $\geq \varepsilon/n$ fraction of edges (i.e., $\frac{\varepsilon}{n} \cdot 2^{n-1}n = \varepsilon 2^{n-1}$ edges) violated by f.
 - Let V(f) denote the number of edges violated by f.

Contrapositive: If $V(f) < \varepsilon \ 2^{n-1}$, f can be made monotone by changing $< \varepsilon \ 2^n$ values.

Repair Lemma

f can be made monotone by changing $\leq 2 \cdot V(f)$ values.

Repair Lemma: Proof Idea

Repair Lemma

f can be made monotone by changing $\leq 2 \cdot V(f)$ values.

Proof idea: Transform *f* into a monotone function by repairing edges in one dimension at a time.

Repairing Violated Edges in One Dimension

Swap violated edges $1 \rightarrow 0$ in one dimension to $0 \rightarrow 1$.

Let V_i = # of violated edges in dimension j

Claim. Swapping in dimension i does not increase V_i for all dimensions $j \neq i$

Enough to prove the claim for squares

Claim. Swapping in dimension i does not increase V_i for all dimensions $j \neq i$

• If no horizontal edges are violated, no action is taken.

Claim. Swapping in dimension i does not increase V_i for all dimensions $j \neq i$

• If both horizontal edges are violated, both are swapped, so the number of vertical violated edges does not change.

Claim. Swapping in dimension i does not increase V_i for all dimensions $j \neq i$

- Suppose one (say, top) horizontal edge is violated.
- If both bottom vertices have the same label, the vertical edges get swapped.

Claim. Swapping in dimension i does not increase V_i for all dimensions $j \neq i$

- Suppose one (say, top) horizontal edge is violated.
- If both bottom vertices have the same label, the vertical edges get swapped.
- Otherwise, the bottom vertices are labeled $0 \rightarrow 1$, and the vertical violation is repaired.

Claim. Swapping in dimension i does not increase V_i for all dimensions $j \neq i$

After we perform swaps in all dimensions:

- *f* becomes monotone
- # of values changed:

$$2 \cdot V_1 + 2 \cdot (\text{\# violated edges in dim 2 after swapping dim 1}) + 2 \cdot (\text{\# violated edges in dim 3 after swapping dim 1 and 2})$$

+ ...
$$\leq 2 \cdot V_1 + 2 \cdot V_2 + \cdots 2 \cdot V_n = 2 \cdot V(f)$$

Repair Lemma

Can improve the bound by a factor of 2.

Testing if a Functions $f: \{0,1\}^n \to \{0,1\}$ is monotone

Monotone or ε -far from monotone?

 $O(n/\varepsilon)$ time (logarithmic in the size of the input)

Testing Properties of High-Dimensional Functions

In polylogarithmic time, we can test a large class of properties of functions

 $f: \{1, ..., n\}^d \to \mathbb{R}$, including:

- Lipschitz property
- Bounded-derivative properties
- Unateness