Monotonicity testing

Ronitt Rubinfeld
6.5240 Sublinear Time Algorithms
(slides on testing monotonicity of functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ from Sofya
Raskhodnikova)

Alphabetized?

 5TP

Sortedness of a sequence

- Given: list $y_{1} y_{2} \ldots y_{n}$
- Question: is the list sorted?
- Clearly requires n steps - must look at each y_{i}

Sortedness of a sequence

- Given: list $y_{1} y_{2} \ldots y_{n}$
- Question: can we quickly test if the list close to sorted?

What do we mean by "quick"?

- query complexity measured in terms of list size n
- Our goal (if possible):
- Very small compared to n, will go for clog n

What do we mean by "close"?

Definition: a list of size n is ε-close to sorted if can delete at most εn values to make it sorted. Otherwise, ε-far.
(ε is given as input, e.g., $\varepsilon=1 / 5$)

Sorted: 1224507111419202123383945
Close: 142507111419203923213845

Far: $\quad 453923138465212019271114$
$\begin{array}{llll}1 & 4 & 5 & 71114\end{array}$

Requirements for algorithm:

- Pass sorted lists

- Fail lists that are ε-far.

- Equivalently: if list likely to pass test, can change at most ε fraction of list to make it sorted

Probability of success > 3/4
(can boost it arbitrarily high by repeating several times and outputting "fail" if ever see a "fail", "pass" otherwise)

- Can test in $O(1 / \varepsilon \log n)$ time (and can't do any better!)

A first try for an algorithm:

Pick random entry and test that entry and its right neighbor are in the correct order

Good input type:
124457111419202123383945465057606180

GOOD:
Always passes!

First try (cont.):

- Proposed algorithm:
- Pick random i and test that $y_{i} \leq y_{i+1}$
- Bad input type:
- 1,2,3,4,5,..n/4, 1,2,...n/4, 1,2,...n/4, 1,2,...n/4
- Difficult for this algorithm to find "breakpoint"
- But other tests work well on this input...

A second try for an algorithm:

Pick lots of random entries and pass if all in right order

Good input type:
12447111419202123383945465057606180

2
19
23
46

A second try:

Pick lots of random entries and pass if all in right order

Bad input type:
$\begin{array}{lllllllllllllllll}1 & 2 & 4 & 5 & 7 & 11 & 14 & 19 & 20 & 21 & 1 & 2 & 4 & 5 & 7 & 11 & 14 \\ 19 & 20 & 21\end{array}$

A second try:

Pick lots of random entries and pass if all in right order

Another bad input type:
21541171914212038234539504660578061

A second attempt:

- Proposed algorithm:
- Pick random $i<j$ and test that $y_{i} \leq y_{j}$
- Bad input type:
- $n / 4$ groups of 4 decreasing elements

$$
4,3,2,1,8,7,6,5,12,11,10,9 \ldots, 4 k, 4 k-1,4 k-2,4 k-3, \ldots
$$

- Largest monotone sequence is $\mathrm{n} / 4$
- must pick i, j in same group to see problem
- need $\Omega\left(\mathrm{n}^{1 / 2}\right)$ samples. (also $O\left(n^{1 / 2}\right)$ is enough)

A minor simplification:

- Assume list is distinct (i.e. $x_{i} \neq X_{j}$)
- Claim: this is not really easier
- Why?

Can "virtually" append i to each x_{i}

$$
x_{1}, x_{2}, \ldots x_{n} \rightarrow\left(x_{1}, 1\right),\left(x_{2}, 2\right), \ldots,\left(x_{n}, n\right)
$$

$$
\text { e.g., 1,1,2,6,6 } \rightarrow(1,1),(1,2),(2,3),(6,4),(6,5)
$$

Breaks ties without changing order

A test that works

- The test:

Test $\mathrm{O}(1 / \varepsilon)$ times:

- Pick random i
- Look at value of y_{i}
- Do binary search for y_{i}
- Does the binary search find y_{i} at location i? If not, FAIL
- Does the binary search find any inconsistencies? If yes, FAIL
- Do we end up at location i? If not FAIL

Pass if never failed

- Running time: $O\left(\varepsilon^{-1} \log n\right)$ time
- Why does this work?

Behavior of the test:

- Define index i to be good if binary search for y_{i} successful
- $O(1 / \varepsilon \log n)$ time test (restated):
- pick $O(1 / \varepsilon)$ i's and pass if they are all good
- Correctness:
- If list is sorted, then all i's good (uses distinctness) \rightarrow test always passes
- If list likely to pass test, then at least (1-غ) n i's are good.
- Main observation: good elements form increasing sequence
- Proof: for $i<j$ both good need to show $y_{i}<y_{j}$
- let $k=$ least common ancestor of i, j
- Search for i went left of k and search for j went right of $k \rightarrow \quad y_{i}<y_{k}<y_{j}$
- Thus list is ε-close to monotone (delete $<\varepsilon n$ bad elements)

Monotonicity of Functions

[A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is monotone
if increasing a bit of x does not decrease $f(x)$.

- Is f monotone or ε-far from monotone
(f has to change on many points to become monontone)?
- Edge $x \rightarrow y$ is violated by f if $f(x)>f(y)$.

Time:

- Today: $O(n / \varepsilon)$, logarithmic in the size of the input, 2^{n}
- Newer: $\Theta\left(\sqrt{n} / \varepsilon^{2}\right)$ for nonadaptive tests, $\Omega\left(n^{\frac{1}{3}}\right)$

$\frac{1}{2}$-far from monotone

Monotonicity Test

Idea: Show that functions that are far from monotone violate many edges.

EdgeTest (f, ε)

1. Pick $2 n / \varepsilon$ edges (x, y) uniformly at random from the hypercube.
2. Reject if any (x, y) is violated (i.e. $f(x)>f(y)$). Otherwise, accept.

Analysis

- If f is monotone, EdgeTest always accepts.
- If f is ε-far from monotone, will show that $\geq \varepsilon / n$ fraction of edges (i.e., $\frac{\varepsilon}{n} \cdot 2^{n-1} n=\varepsilon 2^{n-1}$ edges) violated by f.
- Let $V(f)$ denote the number of edges violated by f.

Contrapositive: If $V(f)<\varepsilon 2^{n-1}$,
f can be made monotone by changing $<\varepsilon 2^{n}$ values.

Repair Lemma

f can be made monotone by changing $\leq 2 \cdot V(f)$ values.

Repair Lemma: Proof Idea

Repair Lemma
f can be made monotone by changing $\leq 2 \cdot V(f)$ values.

Proof idea: Transform f into a monotone function by repairing edges in one dimension at a time.

Repairing Violated Edges in One Dimension

Swap violated edges $1 \rightarrow 0$ in one dimension to $0 \rightarrow 1$.

Let $V_{j}=\#$ of violated edges in dimension j
Claim. Swapping in dimension i does not increase V_{j} for all dimensions $j \neq i$

Enough to prove the claim for squares

Proof of The Claim for Squares

Claim. Swapping in dimension i does not increase V_{j} for all dimensions $j \neq i$ ${ }_{\substack{\uparrow_{i}}}$

Swapping horizontal
dimension

- If no horizontal edges are violated, no action is taken.

Proof of The Claim for Squares

Claim. Swapping in dimension i does not increase V_{j} for all dimensions $j \neq i$

- If both horizontal edges are violated, both are swapped, so the number of vertical violated edges does not change.

Proof of The Claim for Squares

Claim. Swapping in dimension i does not increase V_{j} for all dimensions $j \neq i$

- Suppose one (say, top) horizontal edge is violated.
- If both bottom vertices have the same label, the vertical edges get swapped.

Proof of The Claim for Squares

Claim. Swapping in dimension i does not increase V_{j} for all dimensions $j \neq i$

Swapping horizontal
dimension

- Suppose one (say, top) horizontal edge is violated.
- If both bottom vertices have the same label, the vertical edges get swapped.
- Otherwise, the bottom vertices are labeled $0 \rightarrow 1$, and the vertical violation is repaired.

Proof of The Claim for Squares

Claim. Swapping in dimension i does not increase V_{j} for all dimensions $j \neq i$

After we perform swaps in all dimensions:

- f becomes monotone
- \# of values changed:
$2 \cdot V_{1}+2 \cdot(\#$ violated edges in dim 2 after swapping dim 1)
$+2 \cdot$ (\# violated edges in dim 3 after swapping dim 1 and 2)
$+\ldots \leq 2 \cdot V_{1}+2 \cdot V_{2}+\cdots 2 \cdot V_{n}=2 \cdot V(f)$
Repair Lemma
can be made monotone by changing $\leq 2 \cdot V(f)$ values.
- Can improve the bound by a factor of 2 .

Testing if a Functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is monotone

Monotone or
ε-far from monotone?

$$
\mathrm{O}(\mathrm{n} / \varepsilon) \text { time }
$$

(logarithmic in the size
of the input)

Testing Properties of High-Dimensional Functions

In polylogarithmic time, we can test a large class of properties of functions $f:\{1, \ldots, n\}^{d} \rightarrow \mathbb{R}$, including:

- Lipschitz property
- Bounded-derivative properties
- Unateness

