Lecture 6:

- Property Testing
- Testing Planarity
- Partition oracles

Property Testing

Can we distinguish graphs in P from graphs that are not in P ? not even ε-close?

Goal if G has property P, pass if $G \varepsilon$-for from P, fall
(if G is ε-close, can either Pass airfoil)

For today: def dey sd graph G is ε-close to P if can $\underset{\substack{\text { remove } \\ \text { some }}}{\leq} \leq \mathcal{G d n}_{G^{\prime} \in P}$ edges to furn G into

Planarity:
def a Planar graph cam be drawn in plane st. edges intersect only at endpts.
egg.

planar

not planar

Cool The [Kuratowski]
G is planar iff does not contain

Hyper finiteness
def G is (ε, k)-hyperfinite if can remove $\leq \varepsilon n$ edges remain with all connected components of size $\leq k . \longleftarrow k$ can be fath of ε remove few edges a break up graph into tiny pieces.

Important The $\forall \varepsilon, d, \exists$ constant c st.
every planar graph of max degree d is $\left(\varepsilon d, c / \varepsilon^{2}\right)$-hyperfinite

Note subgraphs of dey $\leq d$ planar graphs are also deg $\leqslant d$ planar graphs \Rightarrow also hyperfinite

Why is hyperfiniteness useful?
${ }^{\text {how }}$ in sublimer tine?
Partition G with parameter $\frac{\varepsilon}{2} \cdot d$ $G^{\prime} \leftarrow G$ minus edges between partitions nice properties of G^{\prime} :

- G planar $\Rightarrow G^{\prime}$ planar
- G^{\prime} is very similar to $G:$ differ by $\leq \frac{\varepsilon}{2}$.d edges
\Rightarrow if G is ε-for from planer then G^{\prime} is $\frac{\varepsilon}{2}$-far from planar
- All connected components in G^{\prime}
 are size $O\left(1 / \varepsilon^{2}\right)$
© Con lest for planarity in time indep of n
If there is no such partitition of G, then G is not planar !! but, can we find it in sublinear-line?

Partition Oracle
(use slightly different parameters from peevirs)
input $v<$ node
output $P[r] \leftarrow$ name of $v^{\prime} s$ partition
st. $\forall v \in V$
(1) $|P[r]| \leqslant k$
ξ portions
(2) $P[v]$ connected
$\underset{\alpha}{s \text { small }}$ connected
α if G planar then

$$
\text { (with prob } \left.\geq \frac{9}{10}\right) \quad \left\lvert\,\{\underbrace{\{(\lfloor, v) \in E \mid P(a) \neq P(v)\} \left\lvert\, \leq \underbrace{\frac{\varepsilon d n}{4}}_{\substack{\text { small } \\
\text { fraction }}}\right.}_{\begin{array}{c}
\text { edges crossing } \\
\text { partitions }
\end{array}}\right.
$$

Note for planar graphs there is at least one $P_{\text {, }}$, but there could be many possible partitions P. the orack doesnt hare to decide "in advance" which partition to use, but must stay consistent.

Algorithm given partition oracle P
τ assume it
I. Does P give partition that "looks right"?
(e.g. few crossing edges)

- $\hat{f} \leftarrow$ estimate of \# edges (u, v) st.
$P[u] \neq P[v]$ to within additive error $\leq \frac{\varepsilon d n}{8}$ with prob of follure $(\delta) \leq \frac{1}{10}$
- if $\hat{f} \geq \frac{3}{8} \varepsilon d n$, output "not planar" + halt
I. Test random partitions for planarity
- Choose $S=O\left(\frac{1}{\varepsilon}\right)$ random nodes

$$
\text { - } \forall s \in S \text { if } P[s] \geq k \text { or }
$$

$P[s]$ not planar $\xi \begin{aligned} & \text { size } \leq k \\ & \text { so easy to }\end{aligned}$ output "not planar" shalt

- Output "planar"

Runtime: part I: $O\left(\frac{1}{\varepsilon^{2}}\right)$ calls to oracle
partII: $O\left(d / \varepsilon^{2}\right)$ calls to determine $P[s]$ via BFS
$O\left(d / \varepsilon^{3}\right)$ total calls
Analysis: (assure oracle works for planar G)
def $C \equiv\{(u, v) \in E \mid P(u) \neq P(v)\} \quad \begin{aligned} & \text { "edges that cross } \\ & \text { between partitions }\end{aligned}$ between partitions"
I. if G is planar, \exists good partition o by assumption that orack works, \#edges crossing partition $\leq \frac{\varepsilon d n}{4}$
So $E[\hat{f}] \leq \frac{\varepsilon d n}{4}$
\Rightarrow (by Chernoff/Hocffding) $\hat{f} \leq \frac{\varepsilon d n}{4}+\frac{\varepsilon d n}{8}=\frac{3 \varepsilon d n}{8}$
with prob $\geq 9 / 10$
\Rightarrow algorithm continues to part II with prob $\geq 9 / 10$
Also, $\forall s \in V, P[s]$ is Planar
\Longrightarrow output "Planar" with prob $\geq 9 / 10$
II. If G is ε-far from planer:

Case 1 Partition P doesn't satisfy $|c|<\frac{\varepsilon d n}{2}$:
sampling bounds $\Rightarrow \hat{f}>\frac{\varepsilon d n}{2}-\frac{\varepsilon d n}{8}=\frac{3}{8} \varepsilon d n$
\Rightarrow output "not planar" with prob $\geq 9 / 10$
case $2 P$ satisfies $|C|<\frac{\varepsilon d n}{2}$:
$G^{\prime} \leftarrow G$ with edges in C removed
note: G^{\prime} is $\frac{\varepsilon}{2}$-close to G
So G is ε-for from planar,
$\Rightarrow G^{\prime}$ is $\frac{\varepsilon}{2}$-for from planar
issue: we are picking rudom nodes in part II, not random edges.
but graph is degree $\leq d$
since $G^{\prime} \frac{\varepsilon}{2}$-far from planar, must change $\geq \frac{\varepsilon}{2} \cdot d_{n}$ edges, which touch $\geq \frac{\varepsilon}{2} \cdot n$ nodes

So with prob $\geq \frac{\varepsilon}{2} \cdot n$, pick node in component which is not H-minor free.

Remaining issue:
How do we implement P ?

Plan:

1) Define global partitioning strategy
2) Figure out how to locally implement Conly find partition of given node, not whole solution).

Useful concept: Isolated Neighbor hoods
def S is (δ, k)-isolated neighborhood of node v if:
(1) $v \in S$
(2) S connected
(3) $|s| \leqslant k$
(4) \#edges connecting $S+\bar{s} \leq \delta|s|$
$\uparrow \delta<1$ but degree bound only gives d.|s|
Observe in planar graphs, most nodes have
(δ, k)-isolated nbhds in any good partition $\varepsilon \cdot d \rightarrow)^{k} c / \varepsilon^{2}$
obvious? yes, on average but
Planar G is hyperfinte $\Rightarrow 7$ partition with few total crossing edges?
but maybe some partitions hare lots of edges coming out? still most have close to average. (Markoors \neq) * thimkat

Will need observation to be true in context of evolving "step-by-step" partition.
Luckily, graph stays planar $/$ hyperfinite as evolve (remus nodes)

Global Partitioning Algonthm \leftarrow mental thought
Let $\pi_{1} \ldots \pi_{n}$ be nodes in random order $p \leftarrow \varphi$
For $i=1 \ldots n$ do
if π_{i} still in graph then
if $\exists(\delta, k)$-isolated nbhd of π_{i}
in remaining graph
then $S \leftarrow$ this nhl
else $S \leftarrow\left\{\pi_{i}\right\} \Leftarrow S$ is just one node ho hopefilly then!

$$
P \leftarrow P \vee\{s\}
$$ doestht happen ot ten!.

Remove $S \neq$ adjacent edges from G

Behavior: few crossing edges?

- S st. S is (δ, k)-isolated contribute $\leq \delta|s|$ edges

$$
\Rightarrow \text { overall } \sum \delta\left|s_{i}\right| \leq \delta \cdot n
$$

- S st. $S=\left\{\pi_{i}\right\}$ (one node)
need to show not foo many!!

Lemma if $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ subgraph of planar $G=(V, E)$ s.t. $\left|v^{\prime}\right| \geq \delta_{n}$
then $\leq \frac{\varepsilon}{30}$ fraction of V^{\prime} don't have (δ, k)-isolated nohds for $\delta=\varepsilon / 30$

$$
\left.\begin{array}{l}
\delta=\varepsilon / 30 \\
k=\theta\left(1 / \varepsilon^{3}\right)
\end{array}\right\} \begin{aligned}
& \text { need } \\
& \text { to se } \\
& \text { stronger }
\end{aligned}
$$ settees

Pf idea G planar
\Downarrow
G' planar
G^{\prime} hyperfinite
\exists partition st. most nodes in $(K \delta)$-isolated nbhd $+\quad$ Markov's \neq
π_{i} randomly chosen \Downarrow
whop π_{i} in $(k \delta)$-isolated nbhod

So, not too mary "singletons"

Local Simulation of Partition Oracle

- input V
- assume access to random fath $\Pi(v)$ st. $\pi: V \rightarrow[n]$
- Output P[v]

Algorithm on input v
I. recursively compute $P[w] \quad \forall w$ st.

$$
\left.\begin{array}{l}
\pi(w)<\pi(v) \\
\text { dist } w \text { from } v \leq 2 k
\end{array}\right\} d \text { these }
$$

II. if $\exists w$ st $v \in P[w] \leftrightarrows P[v]$ already
(A) then $P[v]=P[w]$ decided by earlier w
else look for (k, δ)-isolated need of v
(B) (ignoring nodes in $P[\omega]$ for smaller $w ' s$) if find one, $P[v] \leftarrow$ this unbid else $P[v] \leftarrow\{v\}$

Implementing algorithm:
step I:
$d^{D(k)}$ recursive computations on lower ranked nodes. Analysis similar to last lecture $\left.\Rightarrow 2^{d^{(k)}}+k \approx d y_{\varepsilon^{3}}\right)$
Step II: (A) computed in step I
(B) figure out remaining nodes whin dist K from step I.
Brute force on graph of size $\leq d$

Can do much betteri
currently $O\left(\log ^{2}(1 / \varepsilon)\right)$
currently d possible
(may have been improved)

