
Lecture 6 :

'

Property Testing
• Testing Planarity
• Partition oracles



Property Testing

All graphs
Pisa

E-close top subset of

graphs graphs
with property
p

Can we distinguish graphs in P

from graphs that are not in P?

not even E- close ?

God if G has property P , pass
if G { - far from P, fail

(if G is E- close
,
can either Pass or fail)

For today : def deg ≤d graph G is E-close to P

if can remove ≤ Edn edges to turn G into
some G

'
c- P



Planarity :

def a Planar graph can be drawn in plane
sit

. edges intersect only at endpts .

e. g.

planar not planar

cool-h.ms [Kuratowski]

G is planar iff does not contain

Ks or Ksp as minor

↑
↑ ↑ subgraph

complete complete repeatedly
graph on bipartite contract

5 nodes graph edges
with 3 into
nodes on nodes
side

York

>E-



Hyper finiteness

def G is (E
,
K) - hyperfine if

can remove ≤ En edges
+ remain with all connected components
of size ≤ K

.

← K can be fctn of E

remove fee edges & break up graph into

tiny pieces .

Importantly V-E,d
,
7 constant c st

.

every planar graph of max degree d
is led

, %-)
- hyperfine

Note subgraphs of deg ≤ d planar graphs
are atso deg ≤d planar graphs

also hyperfine



Why is hyperfiniteness useful ?

how in sublunar
time? G :

¥
↓
Partition G with parameter E. d *¥

÷¥¥i "t
G'← G minus edges between partitions *. /¥

4.* *a

nice properties of G
'

: '¥¥µ*
• G planar ⇒ G

'

planar
G'•
•

4T¥
• G

'
is very

similar to G :

¥
¥ *

•

differ by ≤ Ezid edges ¥.

*÷¥¥I *. *.

⇒ if G is E- far from planar *. ¥

then G
'
is §- far from planar ¥61 ¥

☒a •

i¥¥
" .

• All connected components in G
'

¥¥ •

are size 0( YET
↑ can test for planarity

in time indep of n

If there is no such partition of G
,
then G is not

planar ! ! but
,
can we find it in sub linear time?



Partition Oracle

(use slightly different parameters from previous)

input r ← node

output P[v] ← name of V 's partition
S.t.tt VE V (1) / P[v] / ≤ K {

partitions
small
&(2) P[v] connected connected

& if G planar then

(with prob ≥%) 19k,rk-E / Plattpay }/ ≤ E¥
~

Inedges crossing
partitions fraction

Note for planar graphs there is at least one P
,

but there could be
many possible partitions P.

the oracle doesn't have to decide " in advance
"

which partition to use
,
but must

stay consistent
.



Algorithm given partition oracle P

I assume it

always works
for planar G

I. Does P give partition that
" looks right

"

?

( e.g. few crossing edges)

• § ← estimate of # edges lyv) St.
P[u]≠P[v] to within additive error ≤Edf
with prob of failure /d) ≤ to

• if ↑ ≥ ≥gsdn , output
"

not planar"& halt

II. Test random partitions for planarity

• Choose § = 01£) random nodes

• tf SED if p[s] ≥k±"oÉ
Pls] not planar }

size ≤ K

so easy
to

output
" not planar

" shalt
⇔

•

Output "

planar
"



Runtime : Parti
: 01¥) calls to oracle

parte ! Old /{2) calls to determine PCs]

via BFS

Old /{3) total calls

Analysis : ( assure oracle works for planar G)

def C = {AN)EE / Plus #PIN}
"

edges that cross
between partitions

"

I. if G is planar , 7 good partition & by assumption
that oracle works

,
# edges crossing partition ≤ E¥

so E-[ f) E- Ed÷
⇒ (by Chernoff/ Hoeffding)f^≤ Edf + Edf =3¥n

with prob 29/10
⇒ algorithm continues to part I with prob ≥%

Also
,
FSEV

,
Pls] is Planar

⇒ output
"

Planar
"
with

prob ≥ 9/10



I. If G is E- far from planar :

cases Partition P doesn't satisfy / c) < edgy ;

sampling bounds ⇒ § > Edf - %" = ≥gedn
⇒ output

"

not planar
"

with prob ≥ 410

CASI P satisfies ¢/ < Eddy :

G'← G- with edges in C removed

note : G
'
is Ez- close to G

so 6 is E-far from planar,
⇒ G

'
is €2- far from planar

issue : we are picking random nodes in part II,
not random edges .

but graph is degree ≤d

since G
'

Ez - far from planar, must

change ≥ Ezidn edges ,
which touch ≥ Ein

nodes



so with prob ≥ Gin , pick node

in component which is not

A- minor free .

Be

Remaining issue :

How do we implement P ?

Plain :

1) Define global partitioning strategy
2) Figure out how to locally implement

/only find partition of given node
,

not whole solution)
.



Useful concept : Isolated Neighborhoods

def S is (Fk) - isolated neighborhood of nodevif :
4) VES

(2) S connected

(3) Is / ≤ K
(4) # edges connecting St 5 ≤ 81st

↑ 84 but

degree bound

only gives d. 1st

Observes in planar graphs, most nodes have

18,14 - isolated nbhds in any good partition
Ed→ 422

obvious ? yes, on average but

Planar G is hyperfine ⇒ 7 partition with

few total crossing edges ?

but maybe some partitions have lots of

edges coming out ? still most have

close to average . (Markos
'

≠)
* thinkat

home



Will need observation to be true

in context of evolving
"

step-by-step
"

partition .

Luckily , graph stays planar / hyperfinite as
evolve (remove nodes)



Global Partitioning Algorithm
entail thought
process

Let IT
,

- -.tn be nodes in random order

pep
BFS +0kFor i= t.in do
distance
of Ii

if II. still in graph then ↓
if I / 8,1s) - isolated nbhdoflti
in remaining graph

then s ← this nbhd

else s ← { Ii} ⇐ s is just one
node . hopefully
doesn't happen

often!

p←Pv{ 53

Remove S & adjacent edges from G

Behavior : few crossing edges ?

• S s.t. S is Ifk) - isolated contribute ≤ 81st edges
⇒ overall Eskil ≤ f. n

• S st
.
5- { II.} (one node)

need to show not too
many !!



Ntn
↓

Lemmas if 61--141=7 subgraph of planar 6=14 E)
St. IVY ≥ on

then ≤ % fraction of V
' don't have

18,1<1 - isolated nbhds for F- 4330
{need1<=0-1%3)

to use

stronger
settings
in

" importantPfidea G planar women
"

H

G
'

planar
H

G
'

hyper finite
↓

7 partition st. most nodes in 8)- isolated nbhd

1-
-

Markov's ≠

II. randomly chosen

↓

Whp II. in (ki) - isolated nbhd

Bos

so
,

not too many
"

singletons
"



Local Simulation of Partition Oracle

• input V

q assume access to random fctnltlv) s.t.IT : ✓→ In]

• Output P[v]

Algorithm on input v

I. recursively compute P[w] t wit .

ltlwkltlv) }d°
""
of

&
dist w from r ≤ 2k

these

I. if 7 ws.tv c- P[w] ←%) already
decided by

(A) then Pcv]=P[w] earlier w

else look for ( IgE) - isolated nbhdofr
(B) ( ignoring nodes in P[w] for smaller w's)

if find one
,

PLV] ← this nbhd

else P[v] ← {v3



Implementing algorithm :

step I :
DAIKI recursive computations on lower

ranked nodes
. Analysis similar

dock)to last lecture ⇒ 2 &k≈0
step I :(A) competed in step I

(B) figure out remaining nodes w/in

dist K from step I.
Brute force on graph of size ≤

Can do much better :

01kg441)
currently d possible
(may have been improved)


