Lecture 3

Sublinear time approximation of average degree

Warning: this is a different algorithm than described in notes for lecture 2. hopefully simpler!!

Estimating Average Degree

Given $G=(V, E)$
$\varepsilon \in(0,1)$ approximation parameter
$\delta \in(0,1)$ confidence \leftarrow lets assume

$$
\delta=1 / 4
$$

Output \tilde{d} st $\operatorname{Pr}[|\tilde{d}-\tilde{d}| \leq \varepsilon \tilde{d}] \geq 1-\delta$
where $\bar{d}=\frac{m}{n}$ (average degree)
Assumption: (1) $\bar{d} \geq 1$
(2) given access to

- "degree queries":
given x outputs $\operatorname{deg}(x)$
- "neighbor queries":
given $\left(v_{i j}\right)$ output $j^{\text {th }}$ nbs of V

Last time:

Question: naive sampling needs $\Omega(n)$ samples??

Lower bound:
Distinguish

$$
\begin{array}{ll}
n \text {-cycle } \bar{d}=2 \quad & n-c \sqrt{n}-\text { cycle } \quad \bar{d} \approx 2+c^{2} \\
& +c \sqrt{n}-\text { clique }
\end{array}
$$

VS,

need $S(\sqrt{n})$ queries to distinguish?
ignore notes for algorithm last time tody will do simpler algorithm

Today:
Warm up: regular graphs
Assume each node has degree d

Algorithm: output d
Maybe this case is too

Better warmup: almost regular graphs
Assume each node has degree

$$
\text { in }[\Delta, 10 \Delta]
$$

Algorithm:

$$
k \leftarrow \frac{50}{\varepsilon^{2}} \ln (2 / \delta)
$$

For $i \leftarrow 1$ to k do

- pick $v_{i} \in_{u} V$
- $X_{i} \leftarrow \operatorname{deg}\left(v_{i}\right)$

Output $\tilde{d} \leftarrow \frac{1}{k} \sum_{i=1}^{k} X_{i}$
notation:

$$
x \in \epsilon_{n} D
$$ means pick x uniformly from set D

Runtime: $O\left(\frac{1}{\varepsilon^{2}} \ln \frac{1}{\delta}\right)$

Behavior:

Claim $E[\tilde{d}]=\bar{d}$
Pf

$$
\begin{aligned}
E[\tilde{d}] & =\frac{1}{k} \sum_{i=1}^{k} E\left[X_{i}\right]=E\left[X_{1}\right] \\
& \operatorname{lin}_{\substack{\text { exp }}} \quad \text { lid } \\
& =\sum_{v \in V} \frac{1}{n} \operatorname{deg}(v)=\frac{\sum \operatorname{deg}(v)}{n}=\bar{d}
\end{aligned}
$$

Claim $\operatorname{Pr}[|\bar{d}-\tilde{d}| \leq \varepsilon \bar{d}] \geq 1-\delta$
Pf
Will use following version of Chernoff Brad:
The let $Y_{1} \cdots Y_{k}$ be independent random variables

$$
\begin{aligned}
& \text { st. } Y_{i} \in[0,1]+Y=\sum_{i=1}^{k} Y_{i} \text {. For } b \geq 1 \\
& \operatorname{Pr}[|Y-E[Y]|>b] \leq 2 \cdot \exp \left(-2 b^{2} / k\right)
\end{aligned}
$$

so court use Chernoff
Note: X_{i}^{\prime} 's are not in $[0,1]$ but are in $[\Delta, 10 \Delta]$
let $Z_{i} \leftarrow \frac{x_{i}}{10 \Delta}$ then $Z_{i} \in[0,1]$

$$
\begin{aligned}
& z \leftarrow \sum_{i=1}^{k} z_{i} \quad \tilde{d}=\frac{10 \Delta}{k} \cdot z \\
& E[z]=\frac{k}{10 \Delta} \cdot E[\tilde{d}]=\frac{k \bar{d}}{10 \Delta} \\
&|\tilde{d}-\bar{d}| \geq \varepsilon \bar{d} \Leftrightarrow\left|\frac{10 \Delta}{k} z-\frac{10 \Delta}{k} E[z]\right| \geq \varepsilon \bar{d} \\
& E[\tilde{d}] \Leftrightarrow|z-E[z]| \geq \frac{k}{10 \cdot \Delta} \cdot \varepsilon \bar{d}
\end{aligned}
$$

Use Chernoff on $2^{\prime} s$

$$
\text { with } \quad b=\frac{k}{10 \Delta} \varepsilon \bar{d}
$$

$$
\begin{aligned}
\operatorname{Pr}[|z-E[z]| & \left.\geq \frac{k}{10 \Delta} \varepsilon \bar{d}\right] \leq 2 \cdot e^{-\left(\frac{2 k^{2} \varepsilon^{2} \bar{d}^{2}}{100 \Delta^{2} \cdot k}\right)} \\
& =2 e^{-\frac{1}{50} \cdot \frac{k \varepsilon^{2} \bar{d}^{2}}{\Delta^{2}}} \quad \bar{d} \geq \Delta \text { by } \\
& \leq 2 e^{-\frac{k \varepsilon^{2}}{50}} \quad \begin{array}{l}
\text { assumption on all } \\
\text { degrees } \geq \Delta
\end{array} \\
& =2 e^{-\frac{(56 / \operatorname{c\varepsilon })(\ln 2 / \delta) \cdot \varepsilon^{2}}{56}}=\delta
\end{aligned}
$$

General Case:
by Markov $\neq, \leq \frac{1}{C}$ nodes have degree $\geq c \cdot \bar{d}$. Can we use that?

- 50 most nodes
satisfy warmup the rest of He nodes case! cam have huge degrees!
- what about the rest?
define total order " α " on nodes:
def. $u \propto v$ if \uparrow assume distinct lo's

$$
\left.\begin{array}{rl}
\cdot \operatorname{deg}(u) & <\operatorname{deg}(v) \\
\text { or } \cdot \operatorname{deg}(u) & =\operatorname{deg}(v) \\
+ & \mathbb{D D}(u)
\end{array}\right) \mathbb{I D}(v) .
$$

$$
\operatorname{deg}^{t}(u)=\# \text { nbrs of } u \text { st. } u \propto v
$$

orienting edges from small to large, $\operatorname{deg}^{+}(4)$ counts "au t-edges"

Observation $\sum_{u \in V} \operatorname{deg}^{+}(u)=m=\frac{n}{2} \cdot \bar{d}$
(Since each edge only counted once instead of twice as in $\left.\sum_{u} \operatorname{deg}(u)\right)$
idea estimate average $\left(\operatorname{deg}^{+}(u)\right)$
problem? we can query $\operatorname{deg}(a)$ not $\operatorname{deg} t(u)$
benefit:
Lemma $\forall v \in V \quad \operatorname{deg}^{+}(v) \leq \sqrt{m}$
Proof
define $H \leq V$ to be $\sqrt{2} m$ nodes with highest rank (degree) wot α

$$
\forall v \in \mathbb{H}, \operatorname{deg}^{t}(v) \leq \sqrt{2} m \text { since }
$$ edges "leaving" v go to binger nodes

(which must also be in H)

$$
\forall v \in V \backslash H, \quad \operatorname{deg}^{t}(v) \leq \operatorname{deg}(v) \leq \sqrt{2 m}:
$$

Why? if not, $\operatorname{deg}(r)>\sqrt{2 m} \longleftarrow$ assume but all w in H have contradiction

$$
\operatorname{deg}(\omega) \geq \operatorname{deg}(v)>\sqrt{2 m}
$$

so total degree

$$
\begin{aligned}
& \gg \underbrace{|H| \cdot \sqrt{2} m}_{\text {contribution from } H}+\underbrace{\text { something positive }}_{\substack{\text { contributrm } \\
\text { from VTH }}} \\
& >\sqrt{2 m} \cdot \sqrt{2 m}=2 \cdot m
\end{aligned}
$$

but sum of degrees $=2 \cdot \mathrm{~m}$
Algorithm:

$$
\rightarrow \underset{\text { cund}}{\longrightarrow} \leftarrow
$$

Symbol

$$
\begin{aligned}
& \text { gambol "contradiction" } \\
& \text { of or " }
\end{aligned}
$$

$$
\text { if } \quad u_{i} \propto v_{i} \text { then } x_{i} \in 2 \operatorname{deg}\left(r_{i}\right)
$$ else $X_{i} \leftarrow 0$

return $\tilde{J}=\frac{1}{k} \sum_{i=1}^{k} x_{i}$

$$
\begin{align*}
& k \leftarrow \frac{16}{\varepsilon^{2}} \sqrt{n} \\
& \text { for } i=1 \text { to } k \\
& \text { pick } v_{i} \epsilon_{r} V \tag{1}\\
& \text { pick } u_{i} \epsilon_{r} N\left(v_{i}\right) \tag{2}
\end{align*}
$$

Question to think about:
Claim $E\left[X_{i}\right]=\bar{d}$ Why the "2"?

Pf

$$
\begin{aligned}
& E\left[X_{i}\right]=\sum_{v \in V} \operatorname{Pr}[v \text { chosen in (1) }] \cdot E\left[X_{i} \mid v \text { chosen inc(i) }\right] \\
& =\sum_{v \in V} \frac{1}{n} \cdot E\left[x_{i} \mid v \text { chosen in (1) }\right] \\
& =\frac{1}{n} \sum_{v \in V} \sum_{u \in N(v)} \operatorname{Pr}[u(\text { hoses in }(2) \mid v \text { chosen in }(1)]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{n} \cdot \sum_{v \in V} \operatorname{deg}^{t}(v)=\frac{2 m}{n}=\bar{d}
\end{aligned}
$$

But how many samples do we need to assure that we are close to expectation? Here is where we use graph properties!

Claim $\operatorname{Var}\left[X_{i}\right] \leq 4 \sqrt{2 m} \bar{d}$

$$
\text { If } \begin{aligned}
\operatorname{Var}\left[X_{1}\right] & =E\left[X_{i}^{2}\right]-E\left[X_{i}\right]^{2} \leq E\left[X_{i}^{2}\right] \quad \text { as above } \\
& =\frac{1}{n} \sum_{v \in V} \sum_{\substack{u \in N(v)}} \frac{1}{\operatorname{deg}(v)} \underbrace{2 \operatorname{deg}(v))^{2}}_{X_{i}^{2}} \\
& =\frac{4}{n} \sum_{v \in V} \underbrace{\operatorname{deg}^{+}(v)}_{\underline{\leq \sqrt{2} m}} \cdot \operatorname{deg}(v) \\
& \leq \frac{4}{n} \cdot \sqrt{2 m} \sum_{v \in V} \operatorname{deg}(v) \\
& \leq 4 \cdot \sqrt{2 m} \cdot \bar{d}
\end{aligned}
$$

2 useful facts about variance:

- Lemma let $Y=\frac{1}{k} \sum_{i=1}^{k} X_{i} \quad$ where X_{i}^{\prime} s are lid
so can $\longrightarrow \tan [Y]=\frac{1}{\operatorname{Var}[X] \quad \text { important }}$ reduce
rarimace by then $\operatorname{Var}[Y]=\frac{1}{k} \operatorname{Var}[X] \quad$ bot paircuise variance by sampling ravel. averaging
- Chebyshais $\neq: \operatorname{Pr}[|x-E[x]| \geq b] \leq \frac{\operatorname{Var}[x]}{b^{2}}$ is good

Lemma $\operatorname{Pr}[|\tilde{d}-\bar{d}| \leq \varepsilon \bar{d}] \geq 3 / 4$
Pf
$E[\tilde{d}]=\bar{d}$ by lin of expectation

$$
\begin{aligned}
\operatorname{Var}[\tilde{d}] \leq \frac{4 \cdot \sqrt{2 m}}{k} \cdot \bar{d} \\
\begin{aligned}
& \operatorname{Pr}[|\tilde{d}-\bar{d}| \geq \varepsilon \bar{d}]=\operatorname{Pr}[|\tilde{d}-E[\tilde{d}]| \geq \varepsilon \bar{d}] \\
& \leq \frac{\operatorname{Var}[\tilde{d}]}{(\varepsilon \bar{d})^{2}} \\
& \leq \frac{4 \sqrt{2 m}}{k} \cdot \bar{d} \\
& \varepsilon^{2} \bar{d}^{2}=\frac{4 \sqrt{2 m}}{\varepsilon^{2} \cdot \bar{d} \cdot k}{ }^{11} \\
&=\frac{4 \sqrt{2 m} \cdot n}{\varepsilon^{2} \cdot 2 m \cdot k}=\frac{4 n}{\varepsilon^{2} \cdot \sqrt{2 m} \cdot k} \uparrow \frac{2 m}{n} \\
&=\frac{\sqrt{n}}{4 \cdot \sqrt{2 m}} \\
& \leq \frac{1}{4} \quad \text { since } \sqrt{\frac{n}{2 m}}=\sqrt{\frac{1}{\bar{d}}} \\
& \frac{\leq 16}{\varepsilon^{2}} \sqrt{n}
\end{aligned} \\
\text { we assumed } \bar{d} \geqslant 1
\end{aligned}
$$

How do we improve probability of success?
see HW OI

