

Other problems considered '.

Estimate entropy, sopport size Independence? represented well via K-histogram?

monotone hazard rate

Ð

Ð 0

What we want! Given hyper explicit P via samples procedure that outputs hi that is closer to p What if both are roughly same distance? maybe either one is ok? Emaybe ok) to output hi as long as it is within & of closest his to p? or maybe not... More general Goal . Given set of hypotheses At I p via samples Find h & A closest to p

How to fix: · won't use simple tournament instead compare every pair will add notion of "tie" Output hypothesis that wins or ties every match (hopefully there is one, tit is the right one)

A subtool "for comparing two hypotheses".

The given (1) sample access to p
(a)
$$h_1, h_2$$
 hypothesis distributions (fully known to algorithm)
(3) accuracy parameter \mathcal{E}'_1 confidence parameter \mathcal{S}'
then Algorithm "choose" takes $O(\log(\frac{1}{2})/(\mathcal{E}')^2)$ samples it outputs
 $h \mathcal{E} h_1, h_2 \mathcal{F}$ statisfying:
if one of h_1, h_2 hes $\|h_1 - p\|_1 < \mathcal{E}'$
then with prob $\geq 1 - \mathcal{S}'_1$ output h_1 has $\|h_2 - p\|_1 < lack
is one \mathcal{E} close it one really for f will output \mathcal{E} close \mathcal{F} if \mathcal{E} if \mathcal{E} is the output \mathcal{E} is the sum of \mathcal{E} is the sum of \mathcal{E} is a statisfying in the sum of \mathcal{E} is the sum of \mathcal{E} is the sum of \mathcal{E} is a sum of \mathcal{E} of \mathcal{E} is a sum of $\mathcal{E$$

Actually a bit stronger o

The p given via samples h, h, 2 fully known t E', S' given p is E'- close to at least one of h, h2 Algorithm "choose" takes $O((\log \frac{1}{\delta})(\frac{1}{\epsilon})^2)$ samples to outputs helphy, high such that: (1) If h_i more than $\frac{12\epsilon'-f_{ir}}{vevy}$ from p_i , unlikely to output h_i as winner vevy bad $\frac{2e^{-m(\epsilon')^2/2}}{2e^{-m(\epsilon')^2/2}}$ will z = z (2) If h_i more than $10\epsilon^{2} - far$ from p_{3} unlikely to output h_{i} as winner actually z = z (2) If h_{i} more than $10\epsilon^{2} - far$ from p_{3} unlikely to output h_{i} as winner z is a subset z = z and z = z is a subset z = zCan use $\varepsilon' \not\approx \varepsilon$? 12

Proof of Subtool:
hith 2 are close
an determine hith 2 close who samples
idea: whoy hi is E'-close to p
if ha is 10E'-close to p but is 12E'-close, ok to "the" or output hi as "where"
else, if ha is not 10E'-close to p but is 12E'-close, ok to "the" or output hi as "where"
else ha is 12E' far from
$$p$$
 + 11E'-far from hi
so samples from p will fall in "difference" between hith a
to ill output hi
where to bok for this difference:
does p assign prob to A more like hi or ha?
(here you use samples)

Why does it work?
• h₁ or h₂ is
$$E'$$
-close to A (given)
• H_1 or h₂ is E' -close to A (given)
• H_1 "tre" in step 1:
• H_1 "tre" is ok
• H

Uhu does it work?	Algorithm Choose:
• h, or h ₂ is \mathcal{E}' -close to A (given)	$A = [3x] h_1(x) > h_2(x)]$ $a_1 = h_1(A)$
. If "tie" in step 1, algorithm does right thing	$a_{2} = h_{2}(A)$ note $ h_{1} - h_{2} _{1} = 2(a_{1} - a_{2})$
• Otherwise reach step 2: $\ h_1 - h_2\ _2 > 10 \varepsilon'$ $(a_1 - a_2 - 5\varepsilon')$	1. $if Q_1 - Q_2 \leq 5 \epsilon' declare "tie" & return h$ (no samples needed)
$E[\alpha] = \Pr_{x \in p} [x \in A] \equiv p(A)$	2. draw $M = 2 \log \frac{1}{8}i$ samples $S_1 \dots S_n$ from p $\overline{(\mathcal{E}')^2}$ 3. $\mathcal{A} \leftarrow 1 S_i S_i \in A S_i$
h, assigns a, weight to A	4. if $d > a_1 - \frac{3}{3}\varepsilon^1$ return h_1 else if $d < a_2 + \frac{3}{3}\varepsilon^1$ return h_2
h_2 h_2 $if p is \varepsilon'-close to h_1, assigns \ge 0, -\varepsilon' weight+o A$	else declare "tic" + return h.
$4 \qquad \chi = \alpha_1 - \varepsilon' - \varepsilon'_2 = \alpha_1 - \frac{3\varepsilon'}{2}$ (return h) whp	$\begin{cases} f = h_1, E = d_1 \\ f = h_2, E [d] = d_2 \end{cases}$
$u u u u u h_2, \qquad \leq q_2 + \epsilon' \text{ weight to } A$	green area = red area = $a_1 - a_2$ h_2 $L_1 = h_1 = green + red$ h_1 $H_2 = area = a_1$
$4 \chi \leq a_2 + \varepsilon' + \varepsilon' \leq a_2 + \frac{3\varepsilon'}{2} \leq a_2 + \frac{3\varepsilon'}{2}$ (return hawhp	blue + red aren = a, A

- a method for learning distributions The cover method def. is an "E-cover" of a if + p E D s.t. 11p-911, 52 JJEC 1 Smaller set of distributions (specific to D) hopefully C is much smaller than D, allows us to approximate I note C not unique Why Useful? pED, which takes Thm I algorithm, given Samples of $p + outputs h \in C$ s.t. $1|h-p|1, \leq 12 \in wth prob \geq \frac{q}{10}$ big improvement: union bind over size of C not 2!

Applications:

Example 4: Poisson Binomial Distributions

$$PBO(p_{i} :: p_{n}): X = \underset{i=1}{\overset{n}{\geq}} X_{i} \qquad X_{i} \quad independent \quad r.v.'s$$

$$E[X_{i}] = p_{i} \qquad (not \quad identically \quad distributed$$

)

e.g. 1) all
$$p_{n}'s = \frac{1}{2}$$
 $\chi \sim Binomial$
a) $p_{1}=\frac{1}{2}$ $p_{2}=1$ $p_{3}=...=p_{n}=0$
 $P_{r}[\chi=0]=0$
 $P_{r}[\chi=1]=\frac{1}{2}$ $\chi \sim 1+$

$$Pr[X=2]=Y_2$$

$$Pr[X=2]=0$$

Birge bucketing twice with (logn) choices

PBD Unimodal \Longrightarrow $O(\pm 3 logn)$ samples

Structure Thm : PBO "looks like" (to whin & L-error) either? 1) $[\pm -spurse]$ Supported almost completely (as fith of E) on interval of length $O(\frac{V}{E^3})$ testing : Z Can Jest \implies smill cover $\left(\frac{1!0(\log^2(V_{\mathcal{E}}))}{\epsilon}\right) = \frac{1}{\epsilon^2} \log^3(V_{\mathcal{E}}) \text{ kavner}$ O(YE3/2) 2) [z-heavy] PBD looks like translated binomial on large enough # Vars Dearn binomial, which puts almost all Z can test in which puts almost all Z can test in which places in middle $O(n^{1/2})!$ easy to learn