Hypothesis Testing

Some Problems: (Given samples of p)

$$
\text { is } p=q\left(e, g, q=U_{D}\right)
$$

or ε-far from q
is p-close to q
or ε-far from q
(Given samples of q) is $p=g$
or $p \varepsilon$-far from g
(Given samples of q) is p-close to g
or ε-far from q is P mowotme or ε-fur from monotone
is $P \varepsilon$-close to monotone or ε-fur from monotone

Complexity (in terms of $n=|D|$)
\sqrt{n}

$$
n=|D|)
$$

Other problems considered:
estimate entropy, support size inge pendence?
represented well via K-histogram? monotone hazard rate

A useful tool:
Given.: collection of distabitions (via complete description) of

Goal: Output $h \in \mathcal{H}$ st. dist (p, h) small

Question:
How many samples needed in terms of $|q|$ a domain size?
Is this the same as testing closeness, uniformity? $\sum p$ is gurcanted to
Do lower bounds apply? NO! $\}$ be close to some $q \in$ III

What we want:
Given h_{1}, h_{2} explicit
$p \quad$ via samples
procedure that outputs h_{i} that is closer to p
What if both are roughly same distance?
maybe either one is ok? \sum maybe ok
or maybe not...
h_{i} as long as it is within ε of closest h_{j} to p ?
More general Goal:
Given set of hypotheses of
$+\quad P$ via samples
find $h \in q$ closest to p

Find best hypothesis via "tournament"?

if. if $\left|h_{1}-h_{2}\right|<\varepsilon$
can outputeither one
else output closer top
overall Winner
maybe $p=h_{1}$

$$
\left.\begin{array}{l}
\left\|p-h_{2}\right\|_{1}=\varepsilon+h_{2} \text { "wins" } \\
\left\|_{p}-h_{3}\right\|_{1}=2 \varepsilon+h_{3} \text { "wins" } \\
\left\|_{p}-h_{5}\right\|_{1}=3!+h_{5} \text { "wins" }
\end{array}\right\}
$$

overall winner could be Ollogn. ε) for from best hypothesis?

How to fix:

- wont use simple tournament \leftarrow instead compare every pair
- will add notion of "tie"

Output hypothesis that wins or ties every match
(hopefully there is one, α it is the right one)

A "subtool" for comparing two hypotheses:
The given (1) sample access to p
(2) $\left.h_{1}\right)_{2}$ hypothesis distributions (fully known to algorithm)
(3) accuracy parameter ε^{\prime}, confidence parameter δ^{\prime}
then Algorithm "choose" takes $O\left(\log \left(\frac{1}{\gamma^{\prime}}\right) /\left(\varepsilon^{\prime}\right)^{2}\right)$ samples + outputs $h \in\left\{h_{1}, h_{2}\right\} \quad$ satisfying:
if one of h_{1}, h_{2} has $\left\|h_{i}-p\right\|_{1}<\varepsilon^{\prime}$
then with prob $\geq 1-\delta^{\prime}$, output h_{j} has $\left\|h_{j}-p\right\|_{1}<12 \varepsilon^{\prime}$
ie. if both h_{1}, h_{2} far, no guarantees e.g. $=12 \varepsilon^{1}$
if one E'close a one really for, will output <super>-clos e \sum if at least ore is $^{\text {ch ese, will output }}$ if both ε_{i} "close then output $2^{\prime} \varepsilon$-close hypothesis hypothesis s

$$
\begin{aligned}
& \text { I one is } \varepsilon^{\prime} \text {-close } \\
& \text { e.g. other is s. } 10 \varepsilon^{\prime} \text {-close }
\end{aligned}
$$

getting kind of complicated just to specify

Actually a bit stronger:
The p given via samples
h_{1}, h_{2} fully known $+p$ is ε^{\prime}-close to at least one of h_{1}, h_{2}
$\varepsilon^{\prime}, \delta^{\prime}$ given
Algorithm "choose" takes $O\left(\left(\log \frac{1}{\delta}\right)\left(\frac{1}{\varepsilon^{\prime}}\right)^{2}\right)$ samples + outputs $h \in\left\{\left\{\frac{1}{,}\right.\right.$ h $\}$ \} ~ s u c h ~ t h a t : ~
(1) If h_{i} more than $\underbrace{1 \varepsilon^{\prime}-\text { for }}_{\text {very bad }}$ from $p, \underbrace{\text { unlikely to output } h_{i} \text { as winner }}_{2 e^{-m\left(\varepsilon^{\prime} i\right) / 2}} \underset{\underline{\partial} \text { or }}{=}$ tie vie
(3) If h_{i} ties whop then $\left\|h_{i}-h_{j}\right\| \leq\left\|0 \varepsilon^{\prime} \Rightarrow\right\| h_{i}-p\|\leq\| \cdot \varepsilon^{\prime} \begin{gathered}\text { might tie } \\ \text { bot whit } \\ \text { win }\end{gathered}$ can use $\quad \varepsilon^{\prime} \approx \frac{\varepsilon}{12}$?

Proof of subtool:
$h_{1}+h_{2}$ are close
can determine h_{1} th h_{2} close wo samples
idea: wog h, is ε-close to p
if h_{2} is $10 \varepsilon^{\prime}$-close top, then ok to output "tic" or either h_{1}, h_{2} as "Wilmer" else, if h_{2} is not 10ε '-close to p but is 12ε '-close, ok to "He" or output h, as "winner" else h_{2} is $12 \varepsilon^{\prime}$-far from $P+\| \varepsilon^{1}$-far from h_{1}
so samples from p will fall in "difference" between $h_{1}+h_{2}$ o will output h_{1}

Since you know h_{1} th h_{2}, you know where to look for this difference:
does P assign prob to A more like h_{1} or h_{2} ?
(here you use samples)

Algorithm Choose: Input p, h_{1}, h_{2}
First same definitions:

$$
\begin{aligned}
& A=\left\{x \mid \quad h_{1}(x)>h_{2}(x)\right\} \\
& a_{1}=h_{1}(A) \\
& a_{2}=h_{2}(A) \\
& \longleftarrow \text { red }+ \text { blue aras } \\
& \text { blue area }
\end{aligned}
$$

will give
tutor of constants

$$
\underset{\substack{\left\|h_{1}-h_{2}\right\|_{1} \\ \leqslant 10 \varepsilon^{\prime}}}{\{ }
$$

$$
\text { note }\left\|h_{1}-h_{2}\right\|_{1}=2\left(a_{1}-a_{2}\right)
$$

1. if $a_{1}-a_{2} \leq 5 \varepsilon^{\prime}$ declare " ${ }^{\prime} e^{\prime}+$ return h_{1}

$$
\text { green area }=\text { red area }=a_{1}-a_{2}
$$

$$
L_{1} \text { - dist }=\text { green }+ \text { red }=2 \cdot \text { red }
$$

(note that A is not necessarily "Consecutive")
2. draw $m=2 \frac{\log \frac{1}{8^{\prime}}}{\left(\varepsilon^{\prime}\right)^{2}}$ samples $s_{1} \ldots s_{m}$ from p
3. $\left.\alpha \leftarrow \frac{1}{m}\left|\left\{i \mid s_{j} \in A\right\}\right| \quad\right\} \begin{array}{ll}\text { if } p=h_{1}, & E[\alpha]=a_{1} \\ \text { if } p=h_{2}, & E[\alpha]=a_{2}\end{array}$
4. if $\alpha>a_{1}-\frac{3}{2} \varepsilon^{\prime}$ return h_{1}
another \rightarrow additive else if $\alpha<a_{2}+\frac{3}{2} \varepsilon^{\prime}$ return h_{2}
is p more like h_{1} or h_{2} error in
constants else declare "tic" + return h_{1} note need " 5 " to be bigger than $2 \cdot 3 / 2=3$

Why does it work?

- h_{1} or h_{2} is ε^{\prime}-close to A (given)
- If "tie" in step 1:
$h_{1}+h_{2}$ are $10 \varepsilon^{\prime}$-close (note L_{1} dist $=2\left(a_{1}-a_{2}\right)$)
\Rightarrow both are $\leq \| \varepsilon^{\prime}$-close to A ($\begin{aligned} & \text { note } \\ & { }^{\prime 1 / 21} \text { should }\end{aligned}$ so "tie" is ok
- Otherwise reach step 2: $\left\|h_{1}-h_{2}\right\|_{1}>10 \varepsilon^{\prime} \quad\left(a_{1}-a_{2}>5 \varepsilon^{\prime}\right)$

Algorithm Chose:

$$
\begin{aligned}
& A=\left\{x \mid \quad h_{1}(x)>h_{2}(x)\right\} \\
& a_{1}=h_{1}(A) \\
& a_{2}=h_{2}(A) \\
& \text { note }\left\|h_{1}-h_{2}\right\|_{1}=2\left(a_{1}-a_{2}\right)
\end{aligned}
$$

1. If $a_{1}-a_{2} \leq 5 \varepsilon^{\prime}$ declare "tie' +return h (no samples needed)
2. draw $m=2 \frac{\log \frac{1}{8^{\prime}}}{\left(\varepsilon^{\prime}\right)^{2}}$ samples $s_{1} \cdots s_{n}$ from
3. $\alpha \leftarrow \frac{1}{m}\left|\left\{i \mid S_{\dot{\omega}} \in A\right\}\right|$
4. if $\alpha>a_{1}-\frac{3}{2} \varepsilon^{\prime}$ return $\left.h_{1}\right\}$ $\left.\begin{array}{clll}\text { else if } \alpha<a_{2}+\frac{3}{2} \varepsilon^{\prime} & \text { return } & h_{2} \\ \text { else declare "Hic" }+ \text { return } & h_{1}\end{array}\right)$ else declare "tic" + return h_{1}

$$
\left\{\begin{array}{l}
\text { if } p=h_{1}, E[\alpha]=a_{1} \\
\text { if } p=h_{2}, \\
E[\alpha]=a_{2}
\end{array}\right.
$$

$$
\text { green wa red rear }=a_{1} a_{2}
$$

L_{i} - hst $=$ green + red bile ara $=a_{2}$ bile + red creon $=a_{1}$

Why does it work?

- h_{1} or h_{2} is ε^{\prime}-close to A (given)
- If "tie" in step 1, algorithm does right thing
- Otherwise reach step 2: $\left\|h_{1}-h_{2}\right\|_{1}>10 \varepsilon^{\prime} \quad\left(a_{1}-a_{2}>5 \varepsilon^{\prime}\right)$

$$
E[\alpha]=\operatorname{Pr}_{x \in p}[x \in A] \equiv p(A)
$$

assume (Chernoff) that with high prob $|\alpha-E[\alpha]| \leq \frac{\varepsilon^{\prime}}{2}$
$\begin{array}{llll}h_{1} \text { assigns } & a_{1} & \text { weight to } A \\ h_{2} & \text { " } & a_{2} & \end{array}$
if p is ε^{\prime}-close to h_{1}, assigns $\geq a_{1}-\varepsilon^{\prime}$ weight

$$
+\alpha \geq a_{1}-\varepsilon^{\prime}-\frac{\varepsilon^{\prime}}{2}=a_{1}-\frac{3 \varepsilon^{\prime}}{2} \quad \text { return } h_{1}
$$

$$
\text { " " " " " } h_{2} \text {, " } \leq a_{2}+\varepsilon^{\prime} \text { weight tod }
$$

$$
+\alpha \leq a_{2}+\varepsilon^{\prime}+\frac{\varepsilon^{\prime}}{2} \leq a_{2}+\frac{3 \varepsilon^{\prime}}{2} \text { return } h_{2} \text { whip }
$$

Algorithm Choose:

$$
\begin{aligned}
& A=\left\{x \mid \quad h_{1}(x)>h_{2}(x)\right\} \\
& a_{1}=h_{1}(A) \\
& a_{2}=h_{2}(A) \\
& \text { note }\left\|h_{1}-h_{2}\right\|_{1}=2\left(a_{1}-a_{2}\right)
\end{aligned}
$$

1. if $a_{1}-a_{2} \leq 5 \varepsilon^{\prime}$ declare "tie' + return h (no samples needed)
2. draw $m=2 \frac{\log \frac{1}{8^{\prime}}}{\left(\varepsilon^{\prime}\right)^{2}}$ samples $s_{1} \cdots s_{m}$ from
3. $\alpha \leftarrow \frac{1}{m}\left|\left\{i \mid S_{\dot{\omega}} \in A\right\}\right|$
4. if $\alpha>a_{1}-\frac{3}{2} \varepsilon^{\prime}$ return $\left.h_{1}\right\}$ else if $\alpha<a_{2}+\frac{3}{2} \varepsilon^{\prime}$ return $\left.h_{2}\right\rangle$ else declare "Hic" + return h_{1}

$$
\left\{\begin{array}{l}
\text { if } p=h_{1}, E[\alpha]=a_{1} \\
\text { if } p=h_{2}, E[\alpha]=a_{2}
\end{array}\right.
$$

$$
\text { green sea }=\text { red sea }=a_{1}-a_{2}
$$

L_{-}- Mot $_{t}=$ green + red blue ara $=a_{2}$ blue fred crown $=a_{1}$

The cover method - a method for learning distributions
def. C is an "E-cover" of d if $\forall p \in \mathcal{D}$

\uparrow	\uparrow	big set
smaller set of distributions	of distributions	
lipeition		

(specific to D)
why useful?
hopefully C is much smaller than \mathcal{O}, allows us to approximate \mathscr{D} note C not unique

Thm \exists algorithm, given $p \in \mathcal{D}_{\text {, which takes }}$
big
improvement: $\Rightarrow O\left(\frac{1}{\varepsilon^{2}} \log |C|\right)$ samples of $p+$ outputs $h \in C$ union bind over

Sit. $\quad\|h-p\|_{1} \leq 12 \varepsilon \quad$ with prob $\geq \frac{9}{10}$ size of C not D !

The \exists algorithm, given $p \in D_{\text {, which takes }}$
$O\left(\frac{1}{\varepsilon^{2}} \log |C|\right)$ samples of $p \quad+$ outputs $h \in C$
sit. $\quad\|h-p\|_{1} \leq 12 \varepsilon \quad$ with prob $\geq \frac{9}{10}$
Pf.
Since $p \in \mathcal{J}, \quad \exists \quad q \in C \quad$ st. $\quad\|p-q\|_{1} \leq \varepsilon^{\prime}$ (could be more than one)
run "Choose" on p with every pair $q_{1}, g_{2} \in C$

- best gopt either wins or ties all matches
ties are to other g^{\prime} 's which have low error
θ if q^{\prime} is $\geq 12 \varepsilon$-for from p,

$$
\begin{aligned}
& \leq \text { error of } q_{o p r}+10 \varepsilon^{\prime} \\
& \leq 11 \varepsilon^{\prime}
\end{aligned}
$$

\Rightarrow loses to $g_{\text {opt }}$ (doesn't survive)
So all surviving q are $\leq 11 \varepsilon^{\prime}$-closetogops $f \leq 12 \varepsilon$-close to p heed all matches to give correct output - union bound on ($\left.\begin{array}{l}\text { C } \\ 2\end{array}\right)$ matches

Applications:
Example 1: learning distribution of a coin

$$
\text { domain }=\{0,1\}
$$

need to learn bras
Here $\quad \alpha=\mathbb{R}$
if use $C=\left\{0, \frac{1}{k}, \frac{2}{k}, \ldots, \frac{k-1}{k}, 1\right\}$
then \forall bias p, let $\frac{i}{k} \leq p \leq \frac{i+1}{k}$
then picking $\tilde{p}=\frac{i}{k}$ gives $\|p-\tilde{p}\|_{1} \leq \frac{2}{k}$

So using $k=\theta\left(\frac{1}{\varepsilon}\right)$ gives $\|p-\tilde{p}\|_{1} \leq \varepsilon$
$|C|=k+1 \quad$ \# samples needed by cover method is

$$
=\theta\left(\frac{1}{\varepsilon}\right)
$$

$$
O\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\varepsilon}\right)
$$

Example 2: 3-bucket distributions
now need to specify α and β

$$
\text { so } \quad C=\left\{\left.\left(\frac{i}{k}, \frac{i}{k}\right) \right\rvert\, \lambda, j \in\{0, \ldots, k\}\right\}
$$

$$
|C|=\theta\left(\left(\frac{1}{\varepsilon}\right)^{2}\right)
$$

\# samples is $O\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\varepsilon}\right)$
Exumple 3: monotone distributions

$$
\operatorname{Birge} \Rightarrow C=\left\{\left.\left(\frac{i_{1}}{k}, \ldots, \frac{i_{(\lg 9 / \varepsilon)}}{k}\right) \right\rvert\, i_{1}, i_{2}, \ldots \in\{0 \ldots k\}\right\}
$$

Example 4: Poisson Bnomid Distributions
$\operatorname{PBO}\left(p_{i} \cdot p_{n}\right): X=\sum_{i=1}^{n} x_{i} \quad x_{i}$ indepantent r.v.'s
$E\left[X_{i}\right]=p_{i} \quad$ (not identially
distributed)
e.g. 1) all pin's $=1 / 2 \quad x \sim$ Binomial
2)

$$
\begin{aligned}
& \operatorname{P}=1 / 2 \quad P_{2}=1 \quad P_{3}=\ldots=p_{n}=0 \\
& \operatorname{Pr}[x=0]=0 \\
& \operatorname{Pr}[x=1]=1 / 2 \quad x \sim 1+\$) \\
& \operatorname{Pr}[x=2]=y_{2} \\
& \operatorname{Pr}[x>2]=0
\end{aligned}
$$

Binge bucketing twice with $O\left[\log _{n_{2}}\right)$ choices for breakpoint
$P B D$ unimodal $\Rightarrow O\left(\frac{1}{\varepsilon^{3}} \log n\right)$ samples

Structure The:
PBD "looks like" (to whin E L-error) either:

1) $\left[\frac{1}{\varepsilon}\right.$-sparse $]$ supported almost completely (as fath of $\left.\varepsilon\right]$ on interval of length $O\left(1 \varepsilon^{3}\right)$
\Rightarrow small cover $\left.\left(\frac{1}{\varepsilon}\right)^{\circ} \log ^{2}(1 \varepsilon \varepsilon)\right) \Rightarrow \frac{1}{\varepsilon^{2}} \log ^{3}(1 / \varepsilon)$ lanner
2) $\left[\frac{1}{\varepsilon}\right.$-heavy $]$ PBD looks like translated binomial on $O\left(1 / \varepsilon^{3 / 2}\right)$ large enough \# vars

