Lecture 15:
Hypothesis Testing

Some Problems: (Given samples of $p$ )

$$
\text { is } p=q\left(e, g, q=U_{D}\right)
$$

or $\varepsilon$-far from $q$
is $p$-close to $q$
or $\varepsilon$-far from $q$
(Given samples of $q$ ) is $p=g$
or $p \varepsilon$-far from $g$
(Given samples of $q$ ) is $p$-close to $g$
or $\varepsilon$-far from $q$ is $P$ mowotme or $\varepsilon$-fur from monotone
is $P \varepsilon$-close to monotone or $\varepsilon$-fur from monotone

Complexity (in terms of $n=|D|$ )
$\sqrt{n}$

$$
n=|D|)
$$

Other problems considered:
estimate entropy, support size inge pendence?
represented well via K-histogram? monotone hazard rate

A useful tool:
Given.: collection of distabitions (via complete description) of

Goal: Output $h \in \mathcal{H}$ st. dist $(p, h)$ small

Question:
How many samples needed in terms of $|q|$ a domain size?
Is this the same as testing closeness, uniformity? $\sum p$ is gurcanted to
Do lower bounds apply? NO! $\}$ be close to some $q \in$ III

What we want:
Given $h_{1}, h_{2} \quad$ explicit
$p \quad$ via samples
procedure that outputs $h_{i}$ that is closer to $p$
What if both are roughly same distance?
maybe either one is ok?
or maybe not...

More general Goal:
Given set of hypotheses A
$+\quad P$ via samples
find $h \in q$ closest to $p$

Find best hypothesis via "tournament"?

overall Winner
maybe $p=h_{1}$

$$
\left.\begin{array}{ll} 
& \left\|p-h_{2}\right\|_{1}=\varepsilon+h_{2} \text { "wins" } \\
\text { then }\left\|_{p}-h_{3}\right\|_{1}=2 \varepsilon+h_{3} \text { "wins" } \\
\text { then }\left\|p-h_{5}\right\|_{1}=3!+h_{5} \text { "wins" }
\end{array}\right\}
$$

overall winner could be Ollogn. $\varepsilon$ ) for from best hypptesio?

- wont use simple tournament $\longleftarrow$ instead compare every pair
- will add notion of "tie"

Outport hypothesis that wins or ties every match
(hopefully there is one, + it is the right one)

A "subtool" for comparing two hypotheses:
The given (1) sample access to $p$
(2) $\left.h_{1}\right)_{2}$ hypothesis distributions (fully known to algorithm)
(3) accuracy parameter $\varepsilon^{\prime}$, confidence parameter $\delta^{\prime}$
then Algorithm "choose" takes $O\left(\log \left(\frac{1}{\gamma^{\prime}}\right) /\left(\varepsilon^{\prime}\right)^{2}\right)$ samples + outputs $h \in\left\{h_{1}, h_{2}\right\} \quad$ satisfying:
if one of $h_{1}, h_{2}$ has $\left\|h_{i}-p\right\|_{1}<\varepsilon^{\prime}$
then with prob $\geq 1-\delta^{\prime}$, output $h_{j}$ has $\left\|h_{j}-p\right\|_{1}<12 \varepsilon^{\prime}$
ie. if both $h_{1}, h_{2}$ far, no guarantees e.g. $=12 \varepsilon^{1}$
if one E'close a one really for, will output <super>-clos e $\sum$ if at least ore is $^{\text {ch ese, will output }}$ if both $\varepsilon_{i}$ "close then output $2^{\prime} \varepsilon$-close hypothesis hypothesis s

$$
\begin{aligned}
& \text { I one is } \varepsilon^{\prime} \text {-close } \\
& \text { e.g. other is s. } 10 \varepsilon^{\prime} \text {-close }
\end{aligned}
$$

getting kind of complicated just to specify

Actually a bit stranger:
Thu $p$ given via samples
$h_{1}, h_{2}$ fully known $+p$ is $\varepsilon^{\prime}$-close to at least one of $h_{1}, h_{2}$
$\varepsilon^{\prime}, \delta^{\prime}$ given
Algorithm "choose" takes $O\left(\left(\log \frac{1}{\delta^{\prime}}\right)\left(\frac{1}{\varepsilon}\right)^{2}\right)$ samples + outputs $h \in\left\{h, \frac{h}{y}\right\}_{z}$ such that.

(2) If $h_{i}$ more than $\underbrace{10 \varepsilon^{\prime}-f a r}_{\text {not that }}$ from $p_{\text {I }}$ unlikely to output $h_{i}$ as winner $\tau_{\text {might fie }}$ bot work win

Can use $\varepsilon^{\prime} \approx \frac{\varepsilon}{10}$ ?

Proof of subtool:
$h_{1}+h_{2}$ are close
can determine $h_{1}$ th $h_{2}$ close wo samples
idea: wog $h$, is $\varepsilon$-close to $p$
if $h_{2}$ is $10 \varepsilon^{\prime}$-close top, then ok to output "tic" or either $h_{1}, h_{2}$ as "Wilmer" else, if $h_{2}$ is not $10 \varepsilon$ '-close to $p$ but is $12 \varepsilon$ '-close, ok to "He" or output $h$, as "winner" else $h_{2}$ is $12 \varepsilon^{\prime}$-far from $P+\| \varepsilon^{1}$-far from $h_{1}$
so samples from $p$ will fall in "difference" between $h_{1}+h_{2}$ o will output $h_{1}$

Since you know $h_{1}$ th $h_{2}$, you know where to look for this difference:
does $P$ assign prob to $A$ more like $h_{1}$ or $h_{2}$ ?
(here you use samples)


Algorithm Choose: Input $p, h_{1}, h_{2}$
First some definitions:

$$
\begin{array}{ll}
A=\left\{x \mid \quad h_{1}(x)>h_{2}(x)\right\} \\
a_{1}=h_{1}(A) & \longleftarrow \text { red }+ \text { blue areas } \\
a_{2}=h_{2}(A) & \longleftarrow \text { blue area }
\end{array}
$$

note $\left\|h_{1}-h_{2}\right\|_{1}=2\left(a_{1}-a_{2}\right)$

will give
fetor of
2 in constants

$$
\text { Ho } 1
$$

1. if $a_{1}-a_{2} \leq 5 \varepsilon^{\prime}$ declare "tie" + return $h_{\text {, }}$
$\frac{1}{2} L_{1}$ distance (no samples needed)
2. draw $m=2 \frac{\log \frac{1}{8^{\prime}}}{\left(\varepsilon^{\prime}\right)^{2}}$ samples $S_{1} \cdots S_{m}$ from $p$
3. $\alpha<\frac{1}{m}\left|\left\{i \mid S_{j} \in A\right\}\right| \begin{cases}\text { if } p=h_{1}, & E[\alpha]=a_{1} \\ \text { if } p=h_{2}, & E[\alpha]=a_{2}\end{cases}$
4. if $\alpha>a_{1}-\frac{3}{2} \varepsilon^{\prime}$ return $h_{1}$
another $\rightarrow$ additive in else if $\alpha<a_{2}+\frac{3}{2} \varepsilon^{\prime}$ return $h_{2}$ error in
constraints else declare "tie" a return $h_{1}$

Why does it work?

- $h_{1}$ or $h_{2}$ is $\varepsilon^{\prime}$-close to $A$ (given)
- If "tie" in step 1:
$h_{1}+h_{2}$ are $10 \varepsilon^{\prime}$-close (note $L_{1}$ dist $=2\left(a_{1}-a_{2}\right)$ )
$\Rightarrow$ both are $\leq \| \varepsilon^{\prime}$-close to $A$
so "tie" is ok
- Otherwise reach step 2: $\left\|h_{1}-h_{2}\right\|_{1}>10 \varepsilon^{\prime} \quad\left(a_{1}-a_{2}>5 \varepsilon^{\prime}\right)$

Algorithm Chose:

$$
\begin{aligned}
& A=\left\{x \mid \quad h_{1}(x)>h_{2}(x)\right\} \\
& a_{1}=h_{1}(A) \\
& a_{2}=h_{2}(A) \\
& \text { note }\left\|h_{1}-h_{2}\right\|_{1}=2\left(a_{1}-a_{2}\right)
\end{aligned}
$$

1. if $a_{1}-a_{2} \leq 5 \varepsilon^{\prime}$ decare "Hie' areturn $h$ (no samples needed)
2. draw $m=2 \frac{\log \frac{1}{8^{\prime}}}{\left(\varepsilon^{\prime}\right)^{2}}$ samples $s_{1} \cdots s_{m}$ from
3. $\alpha \leftarrow \frac{1}{m}\left|\left\{i \mid S_{i} \in A\right\}\right|$
4. if $\alpha>a_{1}-\frac{3}{2} \varepsilon^{\prime}$ return $\left.h_{1}\right\}$ $\left.\begin{array}{lll}\text { else if } \alpha<a_{2}+\frac{3}{2} \varepsilon^{\prime} & \text { return } h_{2} \\ \text { else declare "Hic" }+ \text { return } h_{1}\end{array}\right)$ else declare "He" + return $h_{1}$


Why does it work?

- $h_{1}$ or $h_{2}$ is $\varepsilon^{\prime}$-close to $A$ (given)
- If "tie" in step 1, algorithm does right thing
- Otherwise reach step 2: $\left\|h_{1}-h_{2}\right\|_{1}>10 \varepsilon^{\prime} \quad\left(a_{1}-a_{2}>5 \varepsilon^{\prime}\right)$

$$
E[\alpha]=\operatorname{Pr}_{x \in p}[x \in A] \equiv p(A)
$$

assume (Chernoff) that with high prob $|\alpha-E[\alpha]| \leq \frac{\varepsilon^{\prime}}{2}$
$\begin{array}{llll}h_{1} \text { assigns } & a_{1} & \text { weight to } A \\ h_{2} & \text { " } & a_{2} & \end{array}$
if $p$ is $\varepsilon^{\prime}$-close to $h_{1}$, assigns $\geq a_{1}-\varepsilon^{\prime}$ weight

$$
+\alpha \geq a_{1}-\varepsilon^{\prime}-\frac{\varepsilon^{\prime}}{2}=a_{1}-\frac{3 \varepsilon^{\prime}}{2} \quad \text { return } h_{1}
$$

$$
\text { " " " " " } h_{2} \text {, " } \leq a_{2}+\varepsilon^{\prime} \text { weight tod }
$$

$$
+\alpha \leq a_{2}+\varepsilon^{\prime}+\frac{\varepsilon^{\prime}}{2} \leq a_{2}+\frac{3 \varepsilon^{\prime}}{2} \text { return } h_{2} \text { whip }
$$

Algorithm Choose:

$$
\begin{aligned}
& A=\left\{x \mid \quad h_{1}(x)>h_{2}(x)\right\} \\
& a_{1}=h_{1}(A) \\
& a_{2}=h_{2}(A) \\
& \text { note }\left\|h_{1}-h_{2}\right\|_{1}=2\left(a_{1}-a_{2}\right)
\end{aligned}
$$

1. if $a_{1}-a_{2} \leq 5 \varepsilon^{\prime}$ declare "tie' + return h (no samples needed)
2. draw $m=2 \frac{\log \frac{1}{8^{\prime}}}{\left(\varepsilon^{\prime}\right)^{2}}$ samples $s_{1} \cdots s_{m}$ from
3. $\alpha \leftarrow \frac{1}{m}\left|\left\{i \mid S_{\dot{\omega}} \in A\right\}\right|$
4. if $\alpha>a_{1}-\frac{3}{2} \varepsilon^{\prime}$ return $\left.h_{1}\right\}$ else if $\alpha<a_{2}+\frac{3}{2} \varepsilon^{\prime}$ return $\left.h_{2}\right\rangle$ else declare "Hic" + return $h_{1}$

$$
\left\{\begin{array}{l}
\text { if } p=h_{1}, E[\alpha]=a_{1} \\
\text { if } p=h_{2}, E[\alpha]=a_{2}
\end{array}\right.
$$

$$
\text { green sea }=\text { red sea }=a_{1}-a_{2}
$$

$L_{-}$- Mot $_{t}=$ green + red blue ara $=a_{2}$ blue fred crown $=a_{1}$

The cover method - a method for learning distributions

why useful?
hopefully $C$ is much smaller than $\mathscr{J}$, allows us to approximate $\mathcal{D}$ note $C$ not unique

Thm $\exists$ algorithm, given $p \in \mathscr{D}$, which takes
$\operatorname{big}_{\text {improvement: }} \Rightarrow O\left(\frac{1}{\varepsilon^{2}} \log |C|\right)$ samples of $p \quad+$ outputs $h \in C^{D}$ unioubind over

Sit. $\quad\|h-p\|_{1} \leq 6 \varepsilon \quad$ with prob $\geq \frac{9}{10}$ size of $C$ not $D$ !

The $\exists$ algorithm, given $p \in \theta_{\text {, which takes }}$

$$
O\left(\frac{1}{\varepsilon^{2}} \log |C|\right) \text { simples of } P+\text { outputs } h \in C^{D}
$$

sit. $\quad\|h-p\|_{1} \leq 6 \varepsilon \quad$ with prob $\geq \frac{9}{10}$
Pf
Since $p \in \mathcal{D}, \quad \exists q \in C^{D}$ st. $\|p-q\|_{1} \leq \varepsilon$ (could be more than one)
run "Choose" on $p$ with every pair $q_{1}, g_{2} \in C^{D}$ if best $q_{\text {orr }}$ doesint win all of its "matches" then it ties with others that are not so bad
if $q^{\prime}$ is $\geq 6 \varepsilon$-for from $p$, then $\geq \underbrace{6 \varepsilon-\varepsilon}_{s \varepsilon}$ - far from best goT

$$
\Rightarrow \text { loses to } q_{\text {opt }}
$$

So all surviving $q$ are $\leq 5 \varepsilon$-close to best $q_{\text {opT }} \Rightarrow \leq 6 \varepsilon$-close to $p$. need all matches to give correct output - union bound on $\binom{C}{2}$ matches

Applications:
Example 1: learning distribution of a coin

$$
\text { domain }=\{0,1\}
$$

need to learn bras
Here $\quad \alpha=\mathbb{R}$
if use $C=\left\{0, \frac{1}{k}, \frac{2}{k}, \ldots, \frac{k-1}{k}, 1\right\}$
then $\forall$ bias $p$, let $\frac{i}{k} \leq p \leq \frac{i+1}{k}$
then picking $\tilde{p}=\frac{i}{k}$ gives $\|p-\tilde{p}\|_{1} \leq \frac{2}{k}$

So using $k=\theta\left(\frac{1}{\varepsilon}\right)$ gives $\|p-\tilde{p}\|_{1} \leq \varepsilon$
$|C|=k+1 \quad$ \# samples needed by cover method is

$$
=\theta\left(\frac{1}{\varepsilon}\right)
$$

$$
O\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\varepsilon}\right)
$$

Example 2: 2 -bucket distributions
now need to specify $\alpha$ and $\beta$

$$
\text { so } C=\left\{\left.\left(\frac{i}{k}, \frac{i}{k}\right) \right\rvert\, \lambda, j \in\{0, \ldots, k \xi\}\right.
$$

$$
|C|=\theta\left(\left(\frac{1}{\varepsilon}\right)^{2}\right)
$$

\# samples is $O\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\varepsilon}\right)$
Example 3: monotone distributions

$$
\text { Birge } \Rightarrow C=\left\{\left.\left(\frac{i_{1}}{k}, \ldots, \frac{\left.i_{(\lg / \varepsilon)}\right)}{k}\right) \right\rvert\, i_{1}, i_{2}, \ldots \in\{0 \ldots k\}\right\}
$$



