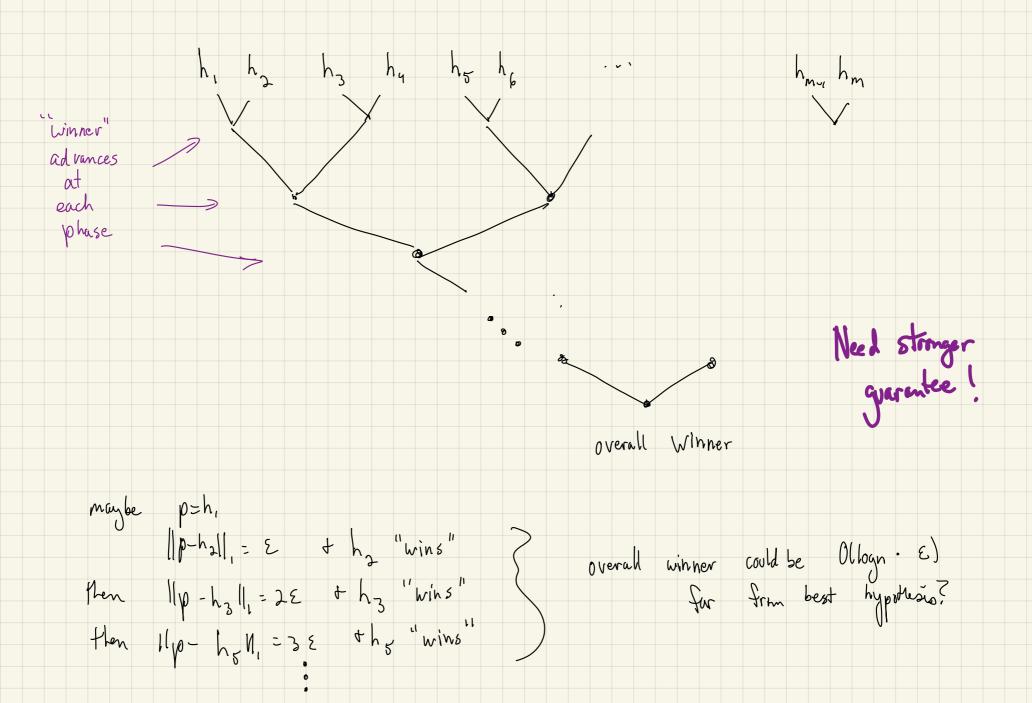
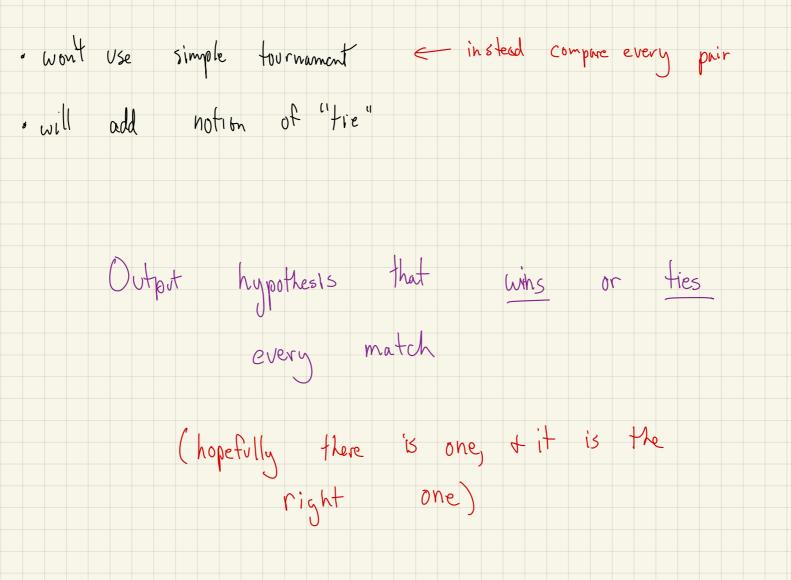


Other problems considered '.


Estimate entropy, sopport size Independence? represented well via K-histogram?


monotone hazard rate

Ð

Ð 0

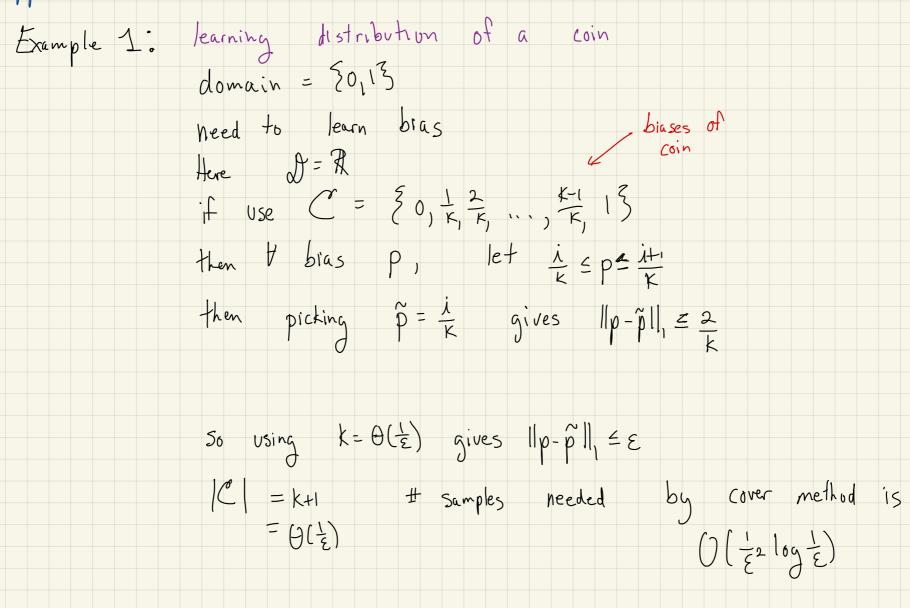
A subtool "for comparing two hypotheses".

The given (1) sample access to p
(a)
$$h_1, h_2$$
 hypothesis distributions (fully known to algorithm)
(3) accuracy parameter \mathcal{E}'_1 confidence parameter \mathcal{S}'
then Algorithm "choose" takes $O(\log(\frac{1}{2})/(\mathcal{E}')^2)$ samples it outputs
 $h \mathcal{E} h_1, h_2 \mathcal{F}$ statisfying:
if one of h_1, h_2 hes $\|h_1 - p\|_1 < \mathcal{E}'$
then with prob $\geq 1 - \mathcal{S}'_1$ output h_1 has $\|h_2 - p\|_1 < lack
is one \mathcal{E} close it one really for f will output \mathcal{E} close \mathcal{F} if \mathcal{E} if \mathcal{E} is the output \mathcal{E} is the sum of \mathcal{E} is the sum of \mathcal{E} is a statisfying in the sum of \mathcal{E} is the sum of \mathcal{E} is the sum of \mathcal{E} is a sum of \mathcal{E} of \mathcal{E} is a sum of $\mathcal{E$$

Actually a bit stronger o

P given via samples hihz fully Known t E'S given Thm p is E'-clise to at least one of h, h2 Algorithm "choose" takes $O((\log \frac{1}{\epsilon})^2)$ samples to outputs height, high such that. DE'-fur from P, unlikely to output his as winner very bad <u>Ze-m(E)3/2</u> <u>or</u> tie (1) If he more than 10E'-far from P, unlikely to output (2) If his more than hi as winner not that bud Tright the but workl win Can use $\varepsilon' \approx \frac{\varepsilon}{10}$?

Proof of Subtool:
hith 2 are close
an determine hith 2 close who samples
idea: whoy hi is E'-close to p
if ha is 10E'-close to p but is 12E'-close, ok to "the" or output hi as "where"
else, if ha is not 10E'-close to p but is 12E'-close, ok to "the" or output hi as "where"
else ha is 12E' far from
$$p$$
 + 11E'-far from hi
so samples from p will fall in "difference" between hith a
to ill output hi
where to bok for this difference:
does p assign prob to A more like hi or ha?
(here you use samples)


Algorithm Chose: Input
$$p_1h_1h_a$$

First since definitions:
 $A = 5 \times 1$ $h_1(X) > h_2(X)$
 $a_1 = h_1(A)$
 $a_2 = h_2(A)$
 $a_3 = h_3(A)$
 $a_4 = h_1(A)$
 $a_5 = h_3(A)$
 $a_6 = h_1(A)$
 $a_1 = h_1(A)$
 $a_1 = h_1(A)$
 $a_2 = h_3(A)$
 $a_3 = h_3(A)$
 $a_4 = h_1(A)$
 $a_5 = h_3(A)$
 $a_6 = h_1(A)$
 $a_1 = h_1(A)$
 $a_1 = h_1(A)$
 $a_2 = h_3(A)$
 $a_3 = h_3(A)$
 $a_4 = h_1(A)$
 $a_5 = h_3(A)$
 $a_1 = h_1(A)$
 $a_1 = h_1(A)$
 $a_2 = h_2(A)$
 $a_1 = h_1(A)$
 $a_1 = h_1(A)$
 $a_2 = h_2(A)$
 $a_1 = h_1(A)$
 $a_2 = h_2(A)$
 $a_1 = h_1(A)$
 $a_2 = h_2(A)$
 $a_1 = h_2(A)$
 $a_2 = h_2(A)$
 $a_1 = h_1(A)$
 $a_2 = h_2(A)$
 $a_1 = h_1(A)$
 $a_2 = h_2(A)$
 $a_1 = h_2(A)$
 $a_2 = h_2(A)$
 $a_1 = h_2(A)$
 $a_1 = h_2(A)$
 $a_1 = h_2(A)$
 $a_2 = h_2(A)$
 $a_1 = h_2(A)$
 $a_1 = h_2(A)$
 $a_2 = h_2(A)$
 $a_1 = h_2(A)$
 $a_2 = h_2(A)$
 $a_1 = h_2(A)$
 $a_2 = h_2(A)$
 $a_1 = h_2(A)$
 $a_1 = h_2(A)$
 $a_1 = h_2(A)$
 $a_2 = h_2(A)$
 $a_1 = h_2(A)$
 $a_2 = h_2(A)$
 $a_1 = h_2(A)$

Why does it work?	Algorithm Choose:
Why does it work? • h, or h_ is E'-close to A (given)	$A = [3x] h_{1}(x) > h_{2}(x)^{3}$
• If "tie" in step 1, algorithm does right thing	$A = [3 \times] h_{1}(x) > h_{2}(x)]$ $a_{1} = h_{1}(A)$ $a_{2} = h_{2}(A)$ note $ h_{1} - h_{2} _{1} = 2(a_{1} - a_{2})$
• Otherwise reach step 2: $\ h_1 - h_2\ _2 > 10 \varepsilon' (a_1 - a_2 - 5 \varepsilon')$	1. $if a_1 - a_2 \le 5 \epsilon'$ declare "tie" & return h (no samples needed)
$E[\alpha] = \Pr_{x \in p} [x \in A] = p(A)$ assume ((hernoff) that with high prob $[\alpha - E[\alpha]] \leq \frac{\varepsilon'}{2}$	2. draw $m = 2 \frac{\log \frac{1}{8}i}{(\frac{1}{5}i)^2}$ samples $S_1 \dots S_n$ from p 3. $\chi \leftarrow \frac{1}{m} \frac{1}{2}i \frac{1}{5}i \in A \frac{1}{5}i $
h, assigns a, weight to A h, assigns a, weight to A h, " A	4. if $d > a_1 - \frac{3}{3}\epsilon^1$ return h_1 else if $d < a_2 + \frac{3}{2}\epsilon^1$ return h_2 else declare "fie" + return h_1
if p is ε' -close to h, assigns $\ge 0, -\varepsilon'$ weight	
$t = \alpha_1 - \varepsilon' - \varepsilon_2 = \alpha_1 - \frac{3\varepsilon}{2}$ return h_1 whp	$\begin{cases} if p=h_1, E[a]=a_1 \\ if p=h_2, E[a]=a_2 \end{cases}$
$\mu = \mu + \epsilon' \text{weight to A}$	$green & area = red area = a_1 - a_2$ $h_2 \qquad \qquad L - Arst = green + red$
$4 \qquad \chi \leq \qquad \alpha_2 + \varepsilon' + \varepsilon' \leq \qquad \alpha_2 + \frac{3\varepsilon'}{2} \qquad (return) \\ h_2 \qquad h$	$A = \begin{bmatrix} a_1 \\ b_1 \\ b_2 \\ b_2 \\ b_1 \\ b_2 \\ b_2 \\ b_1 \\ b_2 \\ b_2 \\ b_2 \\ b_1 \\ b_2 $

The cover method - a method for learning distributions def. is an "E-cover" of at it $\forall p \in \mathcal{J} \mathcal{J}$ $\exists q \in \mathcal{C}$ s.t. $llp-q ll, \leq \varepsilon$ 1 smaller set of distributions distributions why useful? hopefully C is much smaller than D, allows us to approximate D note C not unique The \exists algorithm, given $p \in \mathcal{D}$, which takes big $O(\frac{1}{2} \log |C|)$ simples of $p \neq outputs$ he C^{od} improvement: St. $||h-p||, \leq 6 \in$ with $prob \geq \frac{9}{10}$ size of C not $\mathcal{D}|$

The
$$\exists$$
 algorithm, given $\not{p} \in v$, which takes
 $O(\frac{1}{2} \log |C|)$ simples of p + outputs $h \in C^{off}$
 $O(\frac{1}{2} \log |C|)$ simples of p + outputs $h \in C^{off}$
 $s.t.$ $||h-p||, \leq 6\varepsilon$ with $prob \geq \frac{q}{10}$
 \underline{Pf}
Since $p \in J$, $\exists q \in C^{off}$ st. $||p-q||, \leq \varepsilon$
(could be more than rre)
run "Choose" on p with every pair $q_{1,q} \geq C^{off}$
if best q_{m} doesn't win all of its "matches" then it tes
with others that are not so bad
if q' is $\geq 6\varepsilon - for$ from p , then $\geq 6\varepsilon - \varepsilon - for$ from best q_{oor}
 $\Rightarrow \log \varepsilon$ to q_{oor}
so all surviving q are $\epsilon \leq \varepsilon - close$ to best $q_{oor} \Rightarrow \leq 6\varepsilon - close$ to p . The data of q_{oot} is $d = 1$ if q' is $d = 1$ if $q' = 1$ is $d = 1$ if $q = 1$ is $q_{oot} = 1$ if $q = 1$ is $q_{oot} = 1$ if $q_{oot} $q_{oot} = 1$ if

Applications:

Example 2: 2-bucket distributions

now need to specify
$$\chi$$
 and β
so $C = \xi \left(\frac{i}{\kappa}, \frac{i}{\kappa}\right) | \lambda, j \in \xi_{0, \dots, \kappa}$ is $j = \Theta\left(\left(\frac{1}{\epsilon}\right)^{2}\right)$

$$\#$$
 samples is $O\left(\frac{1}{\epsilon^2} \log \frac{1}{\epsilon}\right)$