Lecture 12 :
Testing Distributions

- Uniformity

Turning to a new model:
Probability distributions - get samples of distribution

P

outputs id samples
Kohls is all we can lean from
Examples:
Lottery data
Shopping choices experimental outcomes

What do we want to know?
is it uniform? eg. lot ky
is it high entropy?
large support? (many distinct elements have >0 probable. is monotone increasing, k-modal, monotone hazadratene...?
how can we do it?
x^{2} test
plug in estimate
learn distribution, Maximum likelihood estimates

Goal: sample complexity SUBLINEAR in n

Testing Uniformity
The goalie $L^{\text {Uniform dist on } D}$

- if $P=U_{B}$ then tester outputs PASS G with prob $=3 / 4$
- if $\operatorname{dist}\left(P, U_{B}\right)>\varepsilon$ then tester outputs FAIL
which measure of distance?

$$
l_{\text {good direction }}^{l_{1}, l_{2}, k l \text {-divergence, Earthmover, Jensem-Shumnon }} \underbrace{\text { projects! }}_{\text {fir }}
$$

Distances
l_{1}-distance : $\|p-q\|_{1}=\sum_{i \in D}\left|p_{1}-q_{i}\right|$
l_{2}-distance: $\quad\left\|_{p-q}\right\|_{2}=\sqrt{\sum_{i \in b}\left(p_{i}-q_{i}\right)^{2}}$

$$
\|p-q\|_{2} \leqslant\|p-q\|_{1} \leqslant n^{1 / 2}\|p-q\|_{2}
$$

examples'.
(1) $p=(1,0,0, \ldots 0)$

$$
q=\left(\frac{1}{n}, \frac{1}{n}, \ldots \frac{1}{n}\right)
$$

(2)

$$
\begin{align*}
& p=\left(\frac{2}{n}, \frac{2}{n}, \ldots \frac{2}{n}, 0,0, \ldots 0\right) \tag{云}\\
& q=\left(0,0, \ldots 0, \frac{2}{n}, \frac{2}{n}, \ldots \cdots \frac{2}{n}\right)
\end{align*}
$$

ℓ_{1} distance:

$$
\begin{aligned}
& \text { distance: } \\
& \|p-q\|_{1}=n \cdot\left(\frac{2}{n}\right)=2
\end{aligned}
$$

l_{2}-distance: $\left\|\left\|_{p-q}\right\|_{2}^{2}=n \cdot\left(\frac{2}{n}\right)^{2}=\frac{4}{n}\right.$
\Rightarrow so l_{2}-distance can be weird
"Plog-in"Estimate:
Algorithm:

- take m samples from p
- estimate $p(x) \quad \forall x$ via

$$
\hat{p}(x)=\frac{\text { \# times } x \text { occurs in sample }}{m}
$$

- if $\sum_{x}\left|\hat{p}(x)-\frac{1}{n}\right|>\varepsilon$ reject else adept.

Analysis: (better analyses exist - see next page)
So, if $p=U_{n} \rightarrow$ pick m st $\forall x,|\hat{p}(x)-p(x)|<\frac{\varepsilon}{n} \Rightarrow\|\hat{p}-p\|_{1}<\varepsilon$
then p by $\Delta \neq$, if $\|p-\hat{p}\|_{1}<\varepsilon+\|\hat{p}-u\|_{1}<\varepsilon \in$ texuty helen test then $\left\|_{p}-u\right\|_{1}<2 \varepsilon .\left\{\begin{array}{l}\text { sp if }\left\|_{\eta}-u_{n}\right\| l \\ \text { this test } l \text { is likely to } \\ \text { Full }\end{array}\right.$
how many samples? $\Omega\left(\frac{n}{\varepsilon}\right)$ maybe even worse...
$\theta(n)$? Can we do better?
for each X, need to see it at least one in order to give nonzero estimate. \uparrow
Whoh, do we need "coupon collector bound $\Omega(\ln \log n)$?

Better analysis:
Claim $E[\|\hat{p}-p\|, \|] \leq \sqrt{\frac{n}{m}}$

$$
\begin{aligned}
& \text { Pf }
\end{aligned}
$$

$$
\begin{align*}
& \leftrightharpoons \sum_{x} \sqrt{E\left[(p(x)-p(x))^{2}\right]} \\
& =\sum_{x} \sqrt{\operatorname{Var}(\hat{p}(x))}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{m \cdot p(x)}{m a}=P(x) \\
& \leq \sum_{x} \sqrt{\frac{\left.()_{x}\right)}{m}}
\end{aligned}
$$

So picking $m=\Omega\left(\frac{n}{\varepsilon^{2}}\right)$ gives

$$
E\left[\|\hat{p}-p\|_{1}\right] \leq \frac{\varepsilon}{c}
$$

by Markers \neq : with prot $1-\frac{1}{c},\|\hat{p}-p\|_{1} \leq \varepsilon$

Note, this says can "learn" (approximate) any dist writ. L distance in $\theta\left(n / \varepsilon^{2}\right)$ samples

La. Distance (squared):

$$
\begin{aligned}
\|p-\mu\|_{n=2}^{2} & =\sum_{i=1}\left(p_{i}-\frac{1}{n}\right)^{2} \\
& =\sum_{p_{i}^{2}}-\frac{2}{n} \underbrace{\sum p_{i}}_{=1}+\underbrace{\sum \underbrace{\left(\frac{1}{n}\right)^{2}}}_{=\frac{1}{n}} \\
& =\sum_{p_{i}^{2}}-\frac{1}{n}
\end{aligned}
$$

collision probability of p :

$$
\left\|_{p}\right\|_{2}^{2} \equiv \operatorname{Pr}[s, t \in p=t]=\sum p_{i}^{2}
$$

for $p=u, \quad\|p\|_{2}^{2}=\frac{1}{n}$
for $p \neq u,\|p\|_{0}^{2}>\frac{1}{n}$

$$
=\underbrace{\|p\|_{2}^{2}}_{\substack{\text { we cum } \\ \text { estitumek } \\ \text { this }}}-\underbrace{\| \|_{(n)^{2}}^{2}}_{\substack{\text { we Know this } \\ \text { sine we Know } n}}
$$

Algorithm

1. tide s samples from p how mary samples?
2. Let $\hat{c} \leftarrow$ estimate of $\|p\|_{2}^{2}$ from sample

3 . if $\hat{c}<\frac{1}{n}+\delta$ pass
(3) what should else fail $\delta b e ?$

First:
How to estimate $u_{p} \|_{2}^{2}$?

Naive idea!
take two now samples:
$\sigma_{t} \leftarrow\left\{\begin{array}{ll}1 & \text { if samples are equal } \\ 0 & 0, w\end{array}\right\} \begin{aligned} & f^{\prime} s \text { are } \\ & \text { indeponter }\end{aligned}$ independent
"gives $\theta(k)$ samples of collision probability
from k samples of p "

Better idea: recycle - use all pairs in sample
gives $\theta\left(k^{2}\right)$ samples of collision probability $\} b_{j}^{j}$ are from k samples of $p^{\prime \prime}$ not indecent $\delta_{i j} \in \begin{cases}1 & i f \text { sample it } j \text { are equal } \\ 0 & 0 . w .\end{cases}$
Estimate by recycling:

- Take s samples from $p: X_{1} \cdots X_{5}$
- for each $1 \leq i<j \leq s$

$$
b_{i j} \leftarrow \begin{cases}1 & \text { if } x_{i}=x_{j} \\ 0 & \text { if } x_{i} \neq x_{j}\end{cases}
$$

- Output $\hat{c} \leftarrow \frac{\sum_{i, j} \sigma_{i j}}{\binom{s}{2}}$

Analysis: $E[\hat{l}]=\frac{1}{\left(\frac{5}{2}\right)} \cdot\binom{5}{2} \cdot E\left[6_{i j}\right]$

$$
=\|p\|_{2}^{2}
$$

How well do we need to estimate $\left\|_{p}\right\|_{2}^{2}$?

Assumption x: $\quad\left|\hat{c}-\left\|_{p}\right\|_{2}^{2}\right|<\lambda$
2 this is our parameter that determines whether our approximation
will take enough
Samples so that this holds with

$$
\text { prob } \geqslant 3 / 4
$$

What happens if $\&$ holds with $\Delta=\frac{\varepsilon^{2}}{2}$?

- if $p=U_{[n]}$ then $\hat{c} \leq\|U\|_{n]_{i}^{2}}^{2}+\Delta=\frac{1}{n}+\frac{\varepsilon^{2}}{2}$
so test will PAss
Correct behavior!
- if $\left\|p-U_{[n]}\right\|_{2}>\varepsilon$ then $\left\|p-U_{[n]}\right\|_{2}^{2}>\varepsilon^{2}$
but

$$
\begin{aligned}
&\|p\|_{2}^{2}=\left\|p-u_{[n]}\right\|_{2}^{2}+\frac{1}{n} \leftarrow \sec p \cdot 6 \\
&>\varepsilon^{2}+\frac{1}{n} \\
& \hat{c}>\|p\|_{2}^{2}-\Delta \\
& \geq \varepsilon^{2}+\frac{1}{n}-\Delta=\varepsilon^{2}+\frac{1}{n}-\frac{\varepsilon^{2}}{2}=\frac{\varepsilon^{2}}{2}+\frac{1}{n}
\end{aligned}
$$

$$
+\quad \hat{c}>\|p\|_{2}^{2}-\Delta
$$

so test will FAIL
Remaining Question:
How many samples do we need to estimate \hat{c} to within Δ ?

Analysis

$$
\begin{aligned}
& E\left[\sigma_{i j}\right]=\operatorname{Pr}\left[\sigma_{i j}=1\right] \\
&=\| \|_{p} \|_{2}^{2} \\
& E[\hat{c}]=\frac{1}{\left(\frac{5}{2}\right)}\left(\frac{s}{2}\right) E\left[\sigma_{i j}\right]=\|p\|_{2}^{2} \\
& \operatorname{Pr}\left[\left|\hat{c}-\|p\|_{2}^{2}\right|>\rho\right] \leq \frac{\operatorname{Var}[\hat{c}]}{\rho^{2}} \quad \text { Chebyshev } \neq \\
& \text { Fact } \operatorname{Var}[a X]=a^{2} \operatorname{Var}[x]
\end{aligned}
$$

So $\operatorname{Var}[\hat{c}]=\operatorname{Var}\left[\frac{1}{\binom{5}{2}} \cdot \sum_{i<j} b_{i j}\right]$

$$
=\frac{1}{\left(\frac{s}{2}\right)^{2}} \operatorname{Var}\left[\sum_{i<j} \sigma_{i j}\right]
$$

$\underline{L \text { emma }} \operatorname{Var}\left[\sum \sigma_{i j}\right] \leq q\left(\binom{5}{2}\left\|_{p}\right\|_{2}^{2}\right)^{3 / 2}$
Why? (prof...)

So $E\left[\bar{\sigma}_{i j}\right]=0+\bar{\sigma}_{i j}<\sigma_{i j}$ (since $\left.E\left[\sigma_{i j}\right]>0\right)$
Also $: \circ E\left[\bar{\sigma}_{j j} \bar{\sigma}_{k l}\right] \leq E\left[\sigma_{i j} \sigma_{k l}\right]$

$$
\text { e.g. } \begin{aligned}
&\left(a^{3}+b^{3}\right)^{2} \leq\left(a^{2}+b^{2}\right)^{3} \\
& a^{6}+a^{3} b^{3}+b^{6} \leq a^{6}+b^{6} \\
&+3 a^{4} b^{2}+3 a^{2} b^{4}
\end{aligned}
$$

So

$$
\begin{aligned}
& \operatorname{Var}\left[\sum_{i<j} \sigma_{i j}\right]=E\left[\left(\sum_{k j} \sigma_{i j}-E\left[\sum_{k j} \sigma_{i j}\right]\right)^{2}\right] \\
& =E\left[\left(\sum_{k^{*} j} \bar{\sigma}_{i j}\right)^{2}\right] \\
& \begin{array}{l}
\left(\begin{array}{l}
\text { (5) } \\
+\sum \bar{\sigma}_{i j} \bar{\sigma}_{j l} \\
+\sum \bar{\sigma}_{i j} \bar{\sigma}_{k i}
\end{array}\right)
\end{array}
\end{aligned}
$$

(1) $E\left[\sum_{i<j}{\overline{\sigma_{i j}}}^{2}\right] \leq E\left[\sum \sigma_{i j}^{2}\right]=\binom{5}{2}\|p\|_{2}^{2}$
(2) $E\left[\sigma_{i j}\right]=E\left[\sigma_{i j}^{2}\right]$ since $\sigma_{i j}$ is indiatior

$$
E\left[\sum_{\substack{i<j \\ k<l \\ \text { ally distinct }}} \bar{\sigma}_{i j} \bar{\sigma}_{k l}\right] \leq \sum E\left[\bar{b}_{i j}\right] E\left[\bar{\sigma}_{k l}\right]=0
$$ ally distinct

(3)

$$
\begin{aligned}
& \leq\binom{ 5}{3} \sum_{x} p(x)^{3} \quad \text { expectod } H \\
& \text { 3-way collisions } \\
& \frac{1}{6}\binom{s^{2}}{\hline 10}^{3 / 2}<\frac{\left(3\binom{5}{2}\right)^{3 / 2}}{6} \leq \frac{s^{3}}{6}\left(\sum_{x} p(x)^{2}\right)^{3 / 2} \\
& =\frac{\sqrt{3}}{2}\binom{s}{2}^{3 / 2} \leq \frac{\sqrt{3}}{2}\binom{s}{2}^{3 / 2}\left(\|p\|_{2}^{2}\right)^{3 / 2} \text { by the } \\
& \text { facts }
\end{aligned}
$$

(4) Same as 3
(5)

In total:

$$
\begin{aligned}
\operatorname{Var}\left[\sum_{i<j} b_{i j}\right] & \leq \operatorname{Var}\left[\sum_{i<j} \bar{b}_{i j}\right] \\
& \leq\binom{ 5}{2}\|p\|_{2}^{2}+0+4 \cdot \frac{\sqrt{3}}{2}\left(\binom{5}{2}\left\|_{p}\right\|_{2}^{2}\right)^{3 / 2} \\
& \leq 4\left[\binom{5}{2}\|p\|_{2}^{2}\right]^{3 / 2}
\end{aligned}
$$

Putting lemma into Chebyshev:
use $\quad \rho=\frac{\varepsilon^{2}}{2}$

$$
\begin{aligned}
& \operatorname{Pr}\left[\left|\hat{c}-\left\|_{p}\right\|_{2}^{2}\right|>\frac{\varepsilon^{2}}{2}\right] \leq \frac{\operatorname{Var}[\hat{c}]}{\varepsilon^{4}} \cdot 4 \\
& \begin{aligned}
{ }^{n+1}+e^{\frac{1}{(52) /)^{\frac{1}{2}}}} & \frac{1}{\sqrt{\frac{5}{2}}} \\
& \leq \frac{2}{5}
\end{aligned} \\
& \begin{array}{l}
\text { Rick } \delta \geq\left(\frac{1}{\varepsilon^{4}}\right)
\end{array} \\
& 4 \leq \frac{32}{\varepsilon^{4}} \cdot \frac{1}{5} \cdot\|p\|_{2}^{3} \\
& \underbrace{}_{\substack{\text { a so } \\
\text { this tom } \\
\text { to }}} \underbrace{\sim}_{\leq 1} \\
& \text { be } \leq 1
\end{aligned}
$$

Wold: Cam get better bund

1) Testing closeness to any known distribution - reduce to uniform case!
2) lower bound

How to estimate $\|p-U\|_{1}$?

1) $\quad\|p-u\|_{1}=0 \Leftrightarrow\|p-U\|_{2}^{2}=0 \Leftrightarrow\|p\|_{2}^{2}=\frac{1}{n}$
2) if

$$
\begin{aligned}
\|p-u\|_{1}>\varepsilon & \Rightarrow\|p-u\|_{2}>\frac{\varepsilon}{\sqrt{n}} \\
& \Rightarrow\|p-u\|_{2}^{2}>\frac{\varepsilon^{2}}{n} \\
& \Rightarrow\|p\|_{2}^{2}>\frac{1}{n}+\frac{\varepsilon^{2}}{n}
\end{aligned}
$$

either additive estimate with error $\leq \frac{\varepsilon^{2}}{2 n}$ or cult error $\leq\left(1 \pm \frac{\varepsilon^{2}}{3}\right)$ suffices
would hove this
if have additive error $\leqslant \frac{\varepsilon^{2}}{3 n} \cdot\|p\|_{2}^{2}$
to get additive error $\leq \frac{\xi^{2}}{3 n}\left\|_{p}\right\|_{z}^{2}$
suffices to have

$$
s \geq \frac{\text { const } \cdot \sqrt{n}}{\varepsilon^{2}} \text { samples }
$$

Since $\operatorname{Pr}\left[\left|\hat{c}-\left\|_{p}\right\|_{2}^{2}\right| \geq \gamma\left\|_{p}\right\|_{2}^{2}\right] \leq \frac{k \cdot\left\|_{p}\right\|_{2}^{3}}{s \cdot \gamma^{2}\left(\|p\|_{2}^{2}\right)^{2}} \leq \frac{k}{s \cdot \gamma^{2} \cdot\|p\|_{2}}$
[note $\quad\|p\|_{2}^{2}>\frac{1}{n}$ so $\|p\|_{2}>\frac{1}{\sqrt{n}}$ so $\left.\frac{1}{\|p\|_{2}}<\sqrt{n}\right]$
so peking
[hole: we need

$$
\left.\gamma \approx \frac{\varepsilon^{2}}{3}\right]
$$

