Lecture II:

Lower bounds via Ya's method

How to prove lower bounds?
Big difficulty: Property testing algorithms are randomized how do you argue about their behavior?

Useful fool for bower bounding randomized algorithms: Yo's Principle

If there is probability distribution D on union of "positive" ("yes"/pass") + "negative" ("no"/For, ") inputs, sit. any deterministic algorithm of query complexity $\leq t$ outputs incorrect answer with prob $\geq 1 / 3$ for inputs chosen according to D, then t is a lower bound on the randomized query complexity.
moral: average case deterministic $1.6 . \Rightarrow$ randomized worst case 1.b. algorithms
why?
proof omitted
Game theoretic view:
Alice selects deterministic algorithm A payoff $=$
Bob selects input x
Vow Neuman's minnimax \Rightarrow Bob has randomized strategy which is as good when A randomized

An example:

$$
L_{n}=\left\{\omega \left\lvert\, \quad \omega \quad \begin{array}{rl}
& \text { is } n \text {-bit string } \\
& w=v v^{R} \omega w^{R}
\end{array}\right.\right\}
$$ palindromes

Note: testing is w is s-close to a palindrome ie. $w=v v^{k}$ can be done with $O\left(\frac{1}{\varepsilon}\right)$ queries
def w is " ε-close to L_{n} " if $\exists \quad w^{\prime} \in L_{n}$
St. $\omega+w^{\prime}$ differ on $\leq \varepsilon \cdot n$ characters
(this is different from edit distance)
The if A satisfies

$$
\begin{aligned}
& \text { A satisfies } \operatorname{Pr}[A(x)=\operatorname{Puss}] \geq 2 / 3 \\
& \forall x \in L_{n}, \operatorname{Pr}[A(x)=\text { fail }] \geq 2 / 3 \\
& \forall x \varepsilon \cdot \text { fur from } L_{n}, \quad \operatorname{Pr}[A,
\end{aligned}
$$

then A makes $\Omega(\sqrt{n})$ queries

Proof
Plan: give distribution on inputs that is hard for all det.algs with $O(\sqrt{n})$ queries. then $\mathrm{Yao} \Rightarrow$ randomized 1.6. of $\Omega(\sqrt{n})$

- wog. assume b / n
- distribution on negative inputs: should outpythese "Fail
$N=$ random string of distance $\geq \varepsilon_{n}$ from L_{n}
- distribution on positive inputs:

$$
\begin{aligned}
& \text { com be generated via } \\
& \geq 1 \mathrm{~K} .
\end{aligned}
$$

- distribution D:
- flip coin
- lip coin
- if H output according to N
else "P "
- Assume deterministic algorithm A uses $\leq t=0(\sqrt{n})$ queries

Query Tree

labelled with
A^{\prime} 's answer following
path + seeing bits labelling edges
NOTE: we can calculate probability of reaching leaf since we know input distribution
Error of leaf: $E^{-}(l)=\left\{\right.$ inputs $w \in\left\{0,13^{n} \mid \omega \varepsilon\right.$-far $+w$ reaches leaf $\left.l\right\}$ $E^{+}(l)=\left\{\right.$ inputs $\omega \in\{0,\}^{n} \mid \quad \omega \in L+\omega$ reaches lat l $\left.l\right\}$ would pass

Total error of A on D

$$
=\sum_{l} \operatorname{Pr}_{\omega \in D}\left[\omega \in E^{-}(l)\right]+\sum_{l} \operatorname{Pr}_{\omega \in D}\left[\omega \in E^{+}(l)\right]
$$

should full should pass but reach passing leaf should pass
bot reach falling leaf

Why is there a problem?
lots of inputs from $N+P$ end up at all leaves.

Claim 1 if $t=0(n), \quad \forall l$ at depth t

Claim if $t=0(\sqrt{n}), \forall l$ at depth t

So error of A on D

$$
\begin{aligned}
& \text { error of } A \text { on } D \\
& =\sum_{l_{\text {passing }}}\left(\frac{1}{2}-o(i)\right) 2^{-t}+\sum_{l}\left(\frac{1}{2}-o(i)\right) 2^{-t} \geq \frac{1}{2}-o(1) \gg \frac{1}{3}
\end{aligned}
$$

still need to prove the claims...
y_{2}
wrong label

If of Claim 1:
idea: N is close to U

- U would end up uniformly distributed at each leaf

$$
\Rightarrow \operatorname{Prw}_{w \in L}\left[w \in E^{-}(l)\right]=\frac{2^{n-t}}{2^{n}}=2^{t}
$$

How much can distribution change by using N instead of U?

$$
\left|L_{n}\right| \leq 2^{\frac{n}{2}} \cdot \frac{n}{2}
$$

$\underset{\text { chose }}{\uparrow} \uparrow$ chaise of i of u, v
\# words at dist $\leq \varepsilon$ from L_{n} :

$$
\begin{aligned}
& \text { as at dist } \leq \varepsilon \text { from } L_{n}: \\
& \leq 2^{\frac{n}{2}} \cdot \frac{n}{2} \cdot \sum_{i=0}^{\sum_{n}}\binom{n}{i} \leq 2^{\frac{n}{2}+2 \varepsilon \log \left(\frac{1}{k}\right) n}
\end{aligned}
$$

so $\quad E^{-}(l) \geq 2^{n-t}-2^{\frac{n}{2}+2 \varepsilon \log \left(\frac{1}{\varepsilon}\right) n}=(1-0(1)) 2^{n-t}$

So

$$
\begin{aligned}
\operatorname{Pr}_{D}\left[w \in E^{-}(l)\right] & \geq \frac{1}{2} \operatorname{Pr}_{N}\left[w \in E^{-}(l)\right] \\
& \geq \frac{1}{2} \frac{\left|E^{-}(l)\right|}{2^{n}} \geq\left(\frac{1}{2}-o(1)\right) 2^{-t}
\end{aligned}
$$

Proof of Claim 2

Will show: For every fixed set of o(\sqrt{n}) queries, lots of strings in L_{n} follow that path.

Count \# strings agreeing with t queries of leaf?

$$
=2^{n-t}
$$

count \# strings in L_{n} agreeing with t queries of lat?

$$
\geq 2^{n-t}-?
$$

Main
difficulty:

Fix $k=10$
should see same value at locus:

$$
\begin{aligned}
& 1,10 \\
& 2,9 \\
& 3,8 \\
& 4,7 \\
& 5,6 \\
& n, n
\end{aligned}
$$

(in) maybe no string in L_{n} follows path?
12, ${ }^{n-1}$
(i) that's why k is picked randomly in $\left[\frac{n}{6} \cdots \frac{n}{3}\right]$! not all queries can be bad

Given leaf l, kt $Q_{l} \leftarrow$ indices queried along the way For each of $\binom{t}{2}$ pairs of queries $q_{1}, g_{2} \in Q_{l}$ at most 2 choices of k for which $q_{1} q_{2}$ is symmetric to k or $\frac{n}{2}+k$

only 1 choice in thrscase!
\Rightarrow \# choices of k st. no pair in Q_{l}
Symmetric around k or $\frac{n}{2}+k$ is good K,

$$
\geq \frac{n}{b}-2 \cdot\binom{t}{2}=(1-o(1))\left(\frac{n}{6}\right)
$$ strings

$$
\text { path }=2^{n / 2-t}
$$

So $\operatorname{Pr}_{p}\left[w \in E^{+}(l)\right]=\sum_{w} \sum_{k} \underbrace{\operatorname{Pr}_{0}[w / k]}_{2^{-n / 2}} \underbrace{\operatorname{Pr}[\text { choose } k]}_{\frac{6}{n}} \cdot 1_{w \in E^{+}(l)}$

$$
\geq \frac{1}{\left(\frac{n}{6}\right)\left(\frac{n}{2^{2}}\right)}\left[(1-0(1)) \cdot \frac{n}{6}\right] \cdot 2^{\frac{n}{2}-t}=(1-0(1)) \cdot 2^{-t}
$$

$$
\Rightarrow \operatorname{Pr}_{D}\left[w \in E^{+(l)}\right]=\left(\frac{1}{2}-0(1)\right) 2^{-t}
$$

