Lecture 10:
Lower bounds for testing
Δ-frees:
Super poly dependence on ε is required!

A lower bound for testing Δ-freeness

In a previous lecture:

- saw property test for Δ-freeness
- Cons time in terms of n
- dependence on ε horrible - tower of a's is this required?

Today:

- answer this question partially (for 1-sided testers)
- When testing 1 -freeness property,
intention chavarization $\left\{\begin{array}{lll}\text { - if } & H & \text { bipartite, poly }(1 / \varepsilon) \text { is enough } \\ \text { if } & H\end{array}\right.$ characterization
of bpautiencos .if It not bipartite no poly $(1 / \varepsilon)$ suffices (Well actually prove special case of $H=\Delta$ only)

Th m (adj matrix model)
\exists const c st. any 1 -sided tester for
whetter graph G is Δ-free needs $\geq\left(\frac{c}{\varepsilon}\right)^{\log ^{\log } \pi_{\varepsilon}}$ queries.

Main Tools:
(1) Goldreich-Trevism The: (homework)

Adj matrix model Property P
Tester T with $q(n, \varepsilon)$ queries $\left\{\begin{array}{l}\text { possibly } \\ \text { adaptive }\end{array}\right.$
\Rightarrow Tester T": "Natural Tester" pick $q(n, \varepsilon)$ nodes $\}$
$\underset{\substack{\text { pick } \\ \text { query } \\ \text { decide }}}{q(n, \varepsilon) \text { nodes }} \underset{\sim}{ }\} o\left(q^{2}\right)$ queries matrix \quad nonadaptive
Consequences:

- 1.b. for natural tester of $l\left(q^{\prime}\right)$
\Rightarrow 1.b. for any lester of $\Omega\left(\bar{G}^{\prime}\right)$
- note, reduction preserves 1-sidedness, so 1.6. implication does too.

Main tools (cont.):
(2) Additive Number theory lemma

Hheaglemmn $\forall m, \quad \exists X \subset M=\{1,3, \ldots, m\}$
of size $\geq \frac{m}{e^{\frac{10}{10} \log m}}$
with no non trivial soln to $x_{1}+x_{2}=2 x_{3}$ any any of $x_{1} x_{2}$
$r_{\text {ie }} x_{1}=x_{2}=x_{3}$ is $\tau_{\text {ie }} x_{1}=x_{2}=x_{3}$ is the trivial soln.
Will use to construct graphs st.

- for from Δ-free $\quad \Omega\left(\left(\frac{c}{\varepsilon}\right)^{c \log / \varepsilon}\right)$ queries
examples

$$
\begin{aligned}
\text { Bad } x: & \{1,2,3\} \\
& \{5,9,13\} \\
\text { Good } x: & \{1,2,4,5, k x, x, x, 10, \ldots\} \text { Chow big? ? } \\
& \{1,2,4,8,16,32, \ldots . .3 \leftarrow \text { only size } \log m
\end{aligned}
$$

Proof of lemma

- Let d be integer (1 outer, set to $e^{10 \sqrt{\text { eg } m}}$)

$$
k \leftarrow\left\lfloor\frac{\log m}{\log d}\right\rfloor-1 \quad\left(\text { so } k \approx \frac{\log m}{10 \sqrt{\log m}} \approx \frac{\sqrt{\log m}}{10}\right)
$$

Proof of $k_{\text {mama }}$ (cont.)
define $X_{B}=\left\{\sum_{i=0}^{k} X_{i} d^{i} \left\lvert\, X_{i}<\frac{d}{2}\right.\right.$ for $0 \leq i \leq k$

$$
\left.+\sum_{i=0}^{k} x_{i}^{2}=B\right\}
$$

(2)
view each $x \in M$ as repreebended in based
where $x=\left(x_{0} \ldots x_{k}\right)$
"eights" of "x

Claim $X_{B} \leq M$
Why? largest number in X_{B}

$$
\leqslant d^{k+1} \leqslant d^{\left.\left(L \frac{\log _{\log } a}{}\right\rfloor-1\right)+1} \leqslant d^{\log _{d} m}=m^{\log _{d} d}=m
$$

What is B? Pick st. $\left|X_{B}\right|$ maximized

Why the constraints?
(1) $X_{i}^{\prime} s<\frac{d}{2} \Rightarrow$ summing pairs of elements in X_{B} doesnt generate a carry in any location!
well see why this is vesefrl soon
(along wi (1))
(2) will use to show that X_{B} is "sum-free"

Claim X_{B} is "sum free" ie. A $x, y, z \in X_{B}$ st.

$$
x+y=2 z
$$

Pf of claim assume to contrary for $x, y, z \in X_{B}$

$$
\begin{gathered}
x+y=2 z \Leftrightarrow \sum_{i=0}^{k} x_{i} d^{i}+\sum_{i=0}^{k} y_{i} d^{i}=2 \sum_{i=0}^{k} z_{i} d^{i} \\
\left.\Leftrightarrow \begin{array}{c}
x_{0}+y_{0}=2 z_{0} \\
x_{1}+y_{1}=2 z_{1} \\
\vdots \\
x_{k}+y_{k}=2 z_{k}
\end{array}\right\} \begin{array}{c}
\text { since } n 0 \\
\text { carries }
\end{array}
\end{gathered}
$$

Note $\forall i \quad x_{i}+y_{i}=2 z_{i} \Rightarrow \forall i x_{i}^{2}+y_{i}^{2} \geq 2 z_{i}^{2}$
with equality only if $x_{i}=y_{i}=z_{i}$
Why? $f(a)=a^{2}$ is convex
use Jensen $\neq: \frac{\sum_{i=1}^{n} f\left(a_{i}\right)}{n} \geq f\left(\frac{\sum_{i=1}^{n} a_{i}}{n}\right)$ with equalthynly if $a_{i}^{\prime} s$ are all $=$

$$
\Rightarrow \frac{x_{i}^{2}+y_{i}^{2}}{2} \geqslant\left(\frac{2 z_{i}}{2}\right)^{2}=z_{i}^{2} \quad \text { equal only if }
$$

$$
x_{i}=y_{1}=2 z_{i}
$$

(prosoforoe)
finishing proof of claim:
if $x, y, z \quad$ st. $\operatorname{not}(x=y=z)$
then $f i$ st. $\operatorname{not}\left(x_{i}=y_{i}=z_{i}\right)$
then note $\Rightarrow \quad x_{i}^{2}+y_{i}^{2}>2 z_{i}^{2}$

+ for all other $j, x_{j}^{2}+y_{j}^{2} \geq 2 z_{j}^{2}$
but then:

$$
\underbrace{\sum x_{i}^{2}}_{=B}+\underbrace{\sum y_{i}^{2}}_{=B}>\sum 2 z_{i}^{2}=\underbrace{2 \sum \underbrace{\sum z_{i}^{2}}_{i}}_{=B}
$$

but how do we know that X_{B} is big?

$$
\begin{array}{r}
\quad B \leq(k+1)\left(\frac{d}{2}\right)^{2}<k d^{2} \\
\qquad \begin{array}{r}
\uparrow \\
\text { bound on digits of } B \\
\cdot \\
\left|\bigcup_{B} X_{B}\right| \geq\left(\frac{d}{2}\right)^{k+1}>\left(\frac{d}{2}\right)^{k}
\end{array} .
\end{array}
$$

$\underset{\text { discant }}{\text { Since }} \rightarrow 11$

$$
\text { disjoint } \sum_{B}\left|X_{B}\right|
$$

$$
\text { - } \exists B \text { st. }\left|X_{B}\right| \geq \frac{\left(\frac{d}{2}\right)^{k}}{k d^{2}}
$$

- Use settings of d, k, get $\left|X_{B}\right| \geq \frac{m}{e^{10 \sqrt{\omega o g m}}}$

For 1, b.: Not enough! need another idea, but wort do it here

Prot of The (prop besting bound)
given sum-free $X \leq\{1, m\}$
construct a graph:

- will abuse notation:

will drop i if easy to see from context

$$
\begin{aligned}
& \text { - \#nodes }=6 m \quad \text { so } m=\theta(n) \\
& \text { - \#edyes }=\theta(m \cdot|x|)=\theta\left(n^{2} / e^{10-\sqrt{1 g n}}\right) \& \text { not exactly } \\
& \text { dense }
\end{aligned}
$$

- \#cycles :
intended Δ 's: $j, j+x, j+2 x$
H intended $\Delta^{\prime} s$ is $m|x|=\theta\left(n^{2} / e^{10 \sqrt{\log n}}\right)$
noninkended Δ^{\prime} s:
- no edges internal to $V_{1} V_{2}$ or V_{3}
\therefore any Δ has

$$
\begin{aligned}
& u \in V_{1} \\
& v \in V_{2} \\
& w \in V_{3} \\
& \text {. } \\
& \left.\begin{array}{l}
j+x_{1}+x_{2} \\
=j+2 x_{3}
\end{array}\right\} \Rightarrow x_{1}+x_{2}=2 x_{3} \\
& \Rightarrow \underbrace{x_{1}=x_{2}=x_{3}} \begin{array}{l}
\text { since } x_{\text {is }} \\
\text { sun-free }
\end{array} \\
& \therefore \text { no nonintended } \Delta^{\prime} s \\
& \text { intended! }
\end{aligned}
$$

- \#disjoint cycles!
all intended Δ 's are disjoint (share no edges at all) suppose not:

since $\quad x=x^{\prime}, \quad k=j \quad \rightarrow \leftarrow$
- distance to Δ-free:
must remove ≥ 1 edge from each Δ \Downarrow
"absolute" distance from Δ-free $=\theta\left(\# \Delta^{\prime} s\right)$

$$
\begin{aligned}
& =\theta\left(\frac{n^{2}}{e^{10 \sqrt{\operatorname{tg} n}}}\right) \\
& =\theta(\mathrm{m}|\mathrm{x}|)
\end{aligned}
$$

Problem need $\ell\left(\varepsilon n^{2}\right)$ distance

Idea for fix
S-blow-up $\quad G \rightarrow G^{(s)}$

edge in \rightarrow complete bipartik graph in $G^{(s)}$

Note: $\Delta \ln G \Rightarrow s^{3} \Delta^{\prime} s$ in $G^{(s)} \Rightarrow$ likely to find

$$
\begin{array}{lll}
\text { \#nodes in } G^{(s)} & \sim m \cdot s & \text { (actually } 6 \mathrm{~ms} \text {) } \\
\text { \#edges " " } & \sim m|x| \cdot s^{2} & \\
\text { \#triangles " } & \sim m|x| s^{3} & \text { (no longer disjoint) }
\end{array}
$$

Lemma dist of $G^{(s)}$ from Δ-free

$$
\begin{aligned}
& \geq \text { \#edge disjoint } \Delta ' s \\
& \geq m|x| s^{2}
\end{aligned}
$$

Proof show each triangle in $\theta \Rightarrow s^{2}$ dispint $8^{\prime} s$ in $G^{(s)}$

Given ε, pick m to be largest int
satisfying

$$
\varepsilon \subseteq \frac{1}{e^{10 \sqrt{\log m}}}
$$

this m satisfies

$$
\begin{aligned}
m & \approx\left(\frac{c}{\varepsilon}\right)^{c \log c / \varepsilon} \\
\text { Pick } s=\left\lfloor\frac{n}{6 m}\right\rfloor & \approx n\left(\frac{\varepsilon}{c}\right)^{c \log 4 \varepsilon}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \text { \#edges } \sim \text { distance } \sim \varepsilon n^{2} \\
& 4 \text { triangles } \sim\left(\frac{\varepsilon}{\varepsilon^{\prime}}\right)^{\left(\log c^{\prime} / \varepsilon\right.} n^{3} \\
& \uparrow \\
& m|x| \cdot s^{3}=m^{2} e^{\frac{102 \sqrt{g e n}}{}} s^{3} \\
& =\frac{1}{\varepsilon}\left(\left(\frac{c}{\varepsilon}\right)^{(\log 4 \varepsilon}\right)^{2} \cdot\left(\frac{\varepsilon}{\varepsilon^{\prime}}\right)^{\log }\left(1 / \varepsilon n^{3}\right.
\end{aligned}
$$

Finally if take sample of size q

$\ll 1$ unless $q>\left(\frac{c^{\prime}}{\varepsilon}\right)^{c^{\prime} \log c^{1 / \varepsilon}}$
by Markov's $p \Rightarrow \operatorname{Pr}[$ sec $\Delta] \ll 1$
But since 1 -sided error,
must find Δ in order to fail

