Lecture 10: bounds for testing Lower D- Freeness: Superpoly dependence on E is required!

1.6. office

A lower bound for testing D- Freeness

In a previous lecture:
· sow property test for Δ-freeness
· const time in terms of n
· dependence on ε horrible - toward/25
is this required?
Today:
· answer this question partially (for 1-sided testers)
· then testing the freeness property,
· When testing the freeness property,
intractive from (if the bipartite no poly (VE) is enough
churacterization (if the not bipartite no poly (VE) suffices
(We'll actually prove special case of
$$H = \Delta$$
 only)

The (adj matrix model)

$$\exists$$
 const c st. any 1-sided tester for
 \exists const c st. and \exists const c st. and \exists const d st. and d st. and d st. and d st. and d st. and d st. and d st. and d

16 D-free 3

Main Tools:

(1) Goldreich-Trevisen Thm: (homework)
Adj matrix model
Property P
Tester T with q(nic) queries
Jester T': "Natural Tester"
pick q(nic) nodes
query submatrix fo(q²) queries nonadaptive
decide
(onsequences:
1.b. for natural tester of Q(q¹)
⇒ 1.b. For any lester of Q(q²)
reduction preserves I-suded ness, so 1.b. implication does too.

Main tools (cont.) ;

Proof of lemma
• let d be integer (later, set to e
$$10 \sqrt{\log m}$$
)
 $K \leftarrow \lfloor \frac{\log m}{\log d} \rfloor - 1$ (so $K \approx \frac{\log m}{10 \sqrt{\log m}} \approx \frac{-1\log m}{10}$)

1,6 A-frag

1.6. A-free

(along with
$$\mathbb{O}$$
)
(along with \mathbb{O})
(along with \mathbb{O})
Will use Y to show that XB is "sum-free"
Claim X_B is "sum free" i.e. $A_{X_i}g_{i,z} \in X_B$ s.f.
 $X + g = 2z$

$$\frac{pf \ of \ claim}{for} \quad assume \ to \ contrary}$$

$$\frac{for}{tor} \quad xy_{j,z} \ \in X_B$$

$$x + y_{j} = az \quad \Longleftrightarrow \quad \sum_{k=0}^{k} x_k d^k + \sum_{i=0}^{k} y_i d^i = a \sum_{i=0}^{k} z_i d^i$$

$$\Leftrightarrow \quad x_0 + y_0 = a z_0$$

$$x_1 + y_1 = a z_1$$

$$\vdots$$

$$x_k + y_k = a z_k$$
Since no carries

Why?
$$f(a) = a^2$$
 is convex
Use Jensons $\pm :: \frac{1}{2} \frac{f(a_{1i})}{n} \ge f\left(\frac{2}{2a}a_{1i}\right)$ with equalifyonly if
 a_{1i}^{1i} are all $=$
 $\implies X_{1i}^{12} \pm y_{1i}^{12} \ge (\frac{2}{2a}Z_{1i})^2 = Z_{1i}^{12} \Rightarrow equal only if$
 $X_{1i}^{2} = y_{1i}^{12} = 2Z_{1i}$
(proof of note)

16 on 1-free - 6

finishing proof of claim:
if X, y, z st. not(x=y=z)
Hen
$$\exists \lambda : st. not(x=y=z)$$

Hen note $\Rightarrow \chi_{\lambda}^{\lambda} + y_{\lambda}^{\lambda} > \lambda z_{\lambda}^{\lambda}$
 $+ fir all other j , \chi_{\lambda}^{\lambda} + y_{\lambda}^{\lambda} > \lambda z_{\lambda}^{\lambda}$
 $bit Hin:$
 $\sum \chi_{\lambda}^{\lambda} + \sum y_{\lambda}^{\lambda} > \sum \lambda z_{\lambda}^{\lambda} = \lambda \sum z_{\lambda}^{\lambda}$
 $= B = B$
 $\Rightarrow \lambda B$
but how do we know that X_{B} is big?
 $\cdot B \leq (Kt) (\frac{d}{\lambda})^{\lambda} < kd^{\lambda}$
 $\log do we know that X_{B} is big?
 $\cdot B \leq (Kt) (\frac{d}{\lambda})^{\lambda} < kd^{\lambda}$
 $\log do we know that X_{B} is big?
 $\cdot B \leq (Kt) (\frac{d}{\lambda})^{\lambda} < kd^{\lambda}$
 $\log do we know that X_{B} is big?
 $\cdot B \leq (Kt) (\frac{d}{\lambda})^{\lambda} < kd^{\lambda}$
 $\log do we know that X_{B} is big?
 $\cdot B \leq (Kt) (\frac{d}{\lambda})^{\lambda} < kd^{\lambda}$
 $\log do we know that X_{B} is big?
 $\int B = \frac{d}{\lambda} = \frac{d}{\lambda}$$$$$$

llo, on A-free Proof of Thom (prop lesting bound) given sum-free $X \subseteq \xi_{1,m}$ construct a graph : $V_2 = \{l_1, 2m\}$ jtx 1^k Axex V1 = El..m3 ∀ Xe X ∀×¢X k+x V3 = E1..3m3 ltax · will abuse notation; will drop i if easy to see from context · #nodes = 6m So m=O(n) · # edyes = $\theta(m \cdot |X|) = \theta(n^2/e^{10 - Thyn}) \ll not exactly dense$

l,b, in ∆-free ' .Ø

•# cycles:
intended
$$\Delta$$
's: j , $j+x$, $j+2x$
intended Δ 's is $m|X| = \Theta(\frac{n^2}{e} 10 \sqrt{16n})$

l.b. on ∆-free Ø

Given E, pick m to be largest int
Satisfying

$$E \in \frac{1}{e^{107 \text{Hgm}}}$$

 $E \in \frac{1}{e^{107 \text{Hgm}}}$
this m satisfies
 $M \equiv (\frac{e}{E})^{clog} \frac{c}{e}$
Pick $S \equiv \lfloor \frac{n}{em} \rfloor \approx n (\frac{e}{E})^{clog} \frac{c}{e}$
Pick $S \equiv \lfloor \frac{m}{em} \rfloor \approx n (\frac{e}{E})^{clog} \frac{c}{e}$
 \Rightarrow the dages \sim distance $\sim en^2$ (since $\neq \frac{m/xls^2}{m} = sinc of$
 $\downarrow throughes \sim (\frac{e}{E})^{clog} \frac{c}{e}$ n^3 $(\frac{m}{m} \equiv \frac{1}{e^{0.16m}} \equiv E)$
 $\downarrow throughes \sim (\frac{e}{E})^{clog} \frac{c}{e}$ n^3 $(\frac{m}{m} \equiv \frac{1}{e^{0.16m}} \equiv E)$
 $\uparrow M = \frac{m}{e^{0.16m}} \frac{1}{2} \frac{m}{e^{0.16m}} \frac{1}{2} \frac{m}{e^{0.16m}} \frac{1}{2} \frac{m}{e^{0.16m}} \frac{1}{2} \frac{m}{e^{0.16m}} \frac{1}{2} \frac{1}{$

 $\mathbf{a}_{i} \in$