6.5240 Sub-linear Time Algorithms

Prof. Ronitt Rubinfeld
TA: Shyan Akmal
Course Administrator: Joanne Hanley

What is this course about?

Big data?

Really Big data

Impossible to access all of it

Small world phenomenon

Social network graph:

- each "node" is a person
- "edge" between people that know each other

Connectivity properties

"connected" if every pair can reach each other

- "distance" between two nodes is the minimum number of edges to reach one from another
- "diameter" is the maximum distance between any pair

Small world property

"Six degrees of separation"

In our language:
diameter of the world population is 6

Does earth have the small world property?

- How can we know?
- data collection problem is immense
- unknown groups of people found on earth
- births/deaths
- Stanley Milgram's 1963 experiment?

The Gold Standard

- linear time algorithms
- Inadequate...

Approaches when input is too big to view?

- Ignore the problem

- Develop algorithms for dealing with such data

What can we hope to do without viewing most of the data?

- Can't answer "for all" or "there exists" and other "exactly" type statements:
- are all individuals connected by at most 6 degrees of separation?
- exactly how many individuals on earth are left-handed?
- Maybe can answer?
- is there a large group of individuals connected by at most 6 degrees of separation?
- is the average pairwise distances of a graph roughly 6?
- approximately how many individuals on earth are left-handed?

What can we hope to do without viewing most of the data?

- Must compromise:
- for most interesting problems: algorithm must give approximate answer
- we know we can answer some questions...
- e.g., sampling to approximate average, median values

Sublinear time models:

- Random Access Queries
- Can access any word of input in one step
- How is the input represented?
- Samples
- Can get sample of a distribution in one step,
- Alternatively, can only get random word of input in one step
- When computing functions depending on frequencies of data elements
- When data in random order

Isn't this just

- Randomized algorithms
- Approximation algorithms
- Statistics
- Learning
- Communication complexity
- Parallel/distributed algorithms?

Course requirements

- Scribing: 25\%
- Signup on web
- Must be in latex
- Draft 2 days after lecture
- Problem sets: 35\%
- Project: 25\%
- Class participation (includes grading): 15\%

Course website

- https://people.csail.mit.edu/ronitt/COURSE/F22/
- Announcements
- Pointer to piazza site
- Lecture notes: Posted before lecture
- Homeworks: Check for updates and hints.
- Scribe and grading instructions
- Project ideas
- Probability review

Canvas

- Pset submissions and solutions
- Announcements (with email notification)

Piazza

Please:

help each other without giving too much information!

be nice to each other!

Caution: anonymous to class but NOT to staff

Project Possibilities

- Read a paper or two or three
- Explain some lemmas
- Suggest some open problems
- Even better -- Make some progress on them, or at least explain what you tried and why it didn't work
- Implement an algorithm or two or three

Can work in groups of 2-3

Plan for this lecture

- Introduce sublinear time algorithms
- Basic algorithms
- Estimating diameter of a point set
- Estimating the number of connected components of a graph

Scribe?

I. Classical Approximation Problems

First:

- A very simple example -
- Deterministic
- Approximate answer
- And (of course).... sub-linear time!

Approximate the diameter of a point set

- Given: m points, described by a distance matrix D, s.t.
- $D_{i j}$ is the distance from i to j.
- D satisfies triangle inequality and symmetry.
(note: input size $n=m^{2}$)
- Let i, j be indices that maximize $D_{i j}$ then $D_{i j}$ is the diameter.
- Output: k, such that $D_{k l} \geq D_{i j} / 2$

2-multiplicative approximation

Algorithm

- Algorithm:
- Pick k arbitrarily
- Pick / to maximize $D_{k l}$
- Output $D_{k l}$
- Running time? $O(m)=O\left(n^{1 / 2}\right)$
- Why does it work?

$$
\begin{aligned}
D_{i j} & \leq D_{i k}+D_{k j} \text { (triangle inequality) } \\
& \left.\leq D_{k l}+D_{k l} \text { (choice of } I+\text { symmetry of } D\right) \\
& \leq 2 D_{k l} \quad\left(\text { so } D_{k l} \text { is at least diameter } / 2\right)
\end{aligned}
$$

