Sublinear time algorithms for coloring graphs

Graph Coloring

def a proper c-coloring of G assigns color G, from "pulette" 31...C3 to each veV st, V (uju)EE Cu+Cv

• in general WP-complete

· important case solvable in linear time "D+1 - coloring"

Max	d	egree	\triangle
	C =	$\Delta + 1$	

runtime: O(m) Greedy algorithm: $u \in V$ $huve \leq \Delta$ nbrs tpalete size is $\Delta + 1$ O(m) $assign C_u$ $different from
<math>all C_V$ for $V \in N(u)$ always exists since / have = D nbrs / tpalete size is Can we do better?

Greedy list coloring? For all v, let I(v) = 31,.., A+13 For each VEV (achiter 1)

For each
$$v \in V$$
 (arbitrary order)
if $\mathcal{I}(v) = \mathcal{P}$ output FAIL
else $C_v \leftarrow any$ color in $\mathcal{I}(v)$
remove C_v from all nors u of v

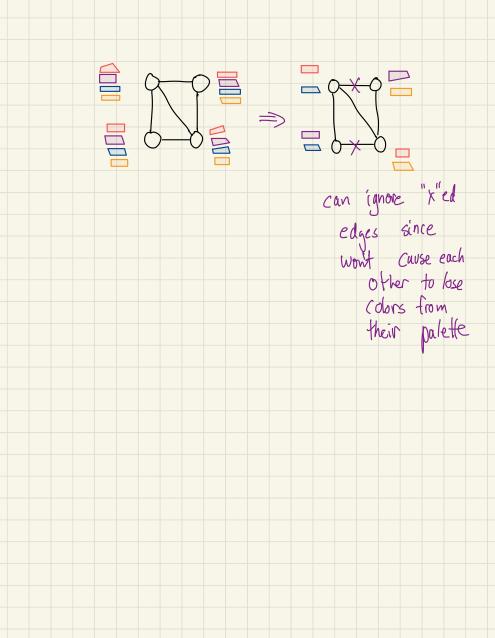
Z (time to find color in 2(v) v + Z fime to remove Cv from 2(u)) ueNv runtime: = O(m)

Sublinear Time Algorithm t in M not in n

Query model: degree queries; what is deg (u)? pair quertes', is (u,v) EE? nbr queries'. What is Kth nbr of u?

Can find (A+1)-coloring in Thm Ö(nJn) time

Comments o no bound required on Z for runtime o non-adaptive · _ R (n Jn) time required



Why palette sparsification?
idea (since guaranted that coloring respecting smaller
palettes remains)
Can throw out all
$$(u_1v)$$
 s.t. $L(u) \land L(v) \neq Q$
Sparsify edges thay will not even
in GI: Consider using
same colors!
how much sparser?
Whp $O(n \log^2 n)$ edges remain
 $\frac{why}{v}$? $\forall u \in V$, let $c_1 \dots c_k$ be colors chosen by u
 $\forall v \in N(u) \Rightarrow i \in [1 \dots k]$
set $X_{v_i} \leftarrow {1 \dots k}$
 $in sparsified graph
 $f v \in N(u) \Rightarrow i \in [1 \dots k]$
 $ted y \in V$, if v chooses alor C_i
 $Let X \leftarrow {1 \over k} = {1 \over k} v_i$, ${1 \over k}$ upper bind on $d_{q}(u)$
 $\frac{1}{k} = v \in N(u)$$

 T chose K $E[X_{v_i,\lambda}] = \Pr[X_{v_i,\lambda} = 1] = \frac{K}{\Delta + 1}$ out of D+1 Colors too what is probability it landed on i? Then $E[X] = \sum_{i=1}^{k} \sum_{v \in N(u)} E[X_{v,i}]$ linearity of expectation $\leq K \cdot \Delta \cdot \frac{K}{\Delta + 1} \leq K^2$ Using K= O(logn) shows IF u, expected degree of u in remaining graph is $O(\log^2 n)$. whp with more work Can Show

palette sporsification => sublinear time!

(also, good sublinear space "straming" algorithms + massively parallel computation algorithms)

()(n²/)-time Paletk Coloring Algorithm

1. Construct palette ¥ueV (n logn)

time

2. Construct Gsparse : O(nlogn) Vc, find Xc= Zv) c e 2 (v) Z query all pairs of nodes in

each Xc to find Espurse

how much time? $\leq (\# \text{ colors } C) \times \mathbb{E}\left(\binom{|X_{cl}|}{2}\right) \leq (\Delta H) O(\frac{n^{2} \log^{2} n}{\sqrt{2}})$ $E\left[\binom{|X_{c}|}{2}\right] \leq E\left[\sum_{\substack{u,v \\ e \forall \lambda}} \right] = \binom{n}{2} \cdot \binom{k}{\Delta^{2}} = 0\left(\frac{n^{2}\log^{2}n}{\Delta^{2}}\right)$

 $\leq \widetilde{O}\left(\frac{n}{\Delta}\right)$ (can be shown whp)

3 perform greedy list coloring problem on Gsparse Greedy list coloring: $time \cdot O([E_{sparse}]) = O(n)$ For each VEV (arbitrary order) if 2(v)= Q out put FAIL else Cr < any color in Z(r) remove Cr from all nors u of rin Esparse (our can find \$41-coloring in D(n³¹²) time why? if ASTN $O(\Lambda A) = O(n \pi)$ time run Greedy in if B > Ju spusification in run puletk $\widetilde{O}(\frac{n^2}{\Delta}) = \widetilde{O}(\frac{n^2}{2\pi}) = \widetilde{O}(n^{3/2})$ time

Why does main thm hold? e.g. why is there still a $\Delta + 1$ coloring after sparsification? will show a weaker thm (allow 22 colors) V nodes V, sample Ollogn) colors Z(V) from 31,..., 213 Weaker Claim whp, & can be colored s.t. Yv, Cv EZ(v) 17 run Paletk-coloring alg above with pable size 5: fail if a node ever runs out of colors when altempt to color node v: Gain . Much Z say color CEZI., 203 "good" if c not Used to color any nor of v when if 2(v) contains any "good" color c, then can Color v success fully Weaker thun saying no previous nor had c in its list

Since
$$\mathcal{L}(v)$$
 chosen independently of
other lists, can think of
choosing it "now". Since v has $\in \Delta$
Nbrs,
 $\Pr[c \text{ bad}] \leq \Delta \text{ bad colors}$
 $rightarrow Contains no good color)
 $\Pr[c \text{ bad}] \leq \Delta \text{ bad colors}$
 $rightarrow Contains no good color)
 $\Pr[c \text{ bad}] \leq \Delta \text{ bad colors}$
 $rightarrow Contains no good color)
 $\Pr[c \text{ bad}] \leq \Delta \text{ bad colors}$
 $rightarrow Contains no good color)
 $rightarrow Contains no good color)$
 $rightarrow Contains no good color)
 $rightarrow Contains no good color)$
 $rightarrow Contains no good color)$
 $rightarrow Contains no good color)$
 $rightarrow Contai$$$