Local Computation Algorithms: Maximal Independent Set Maximal Independent Set: Maximum $def U \leq V$ is a Maximal Independent Set" (HIS) if (1) Yu, uz EU, (u, uz) EE (independent") NPComplete (2)] w EVILL st. UNEW3 is independent ("maximal" Today's assumption: G has max degree d Note: MIS can be solved un greedy (not NEComplete)

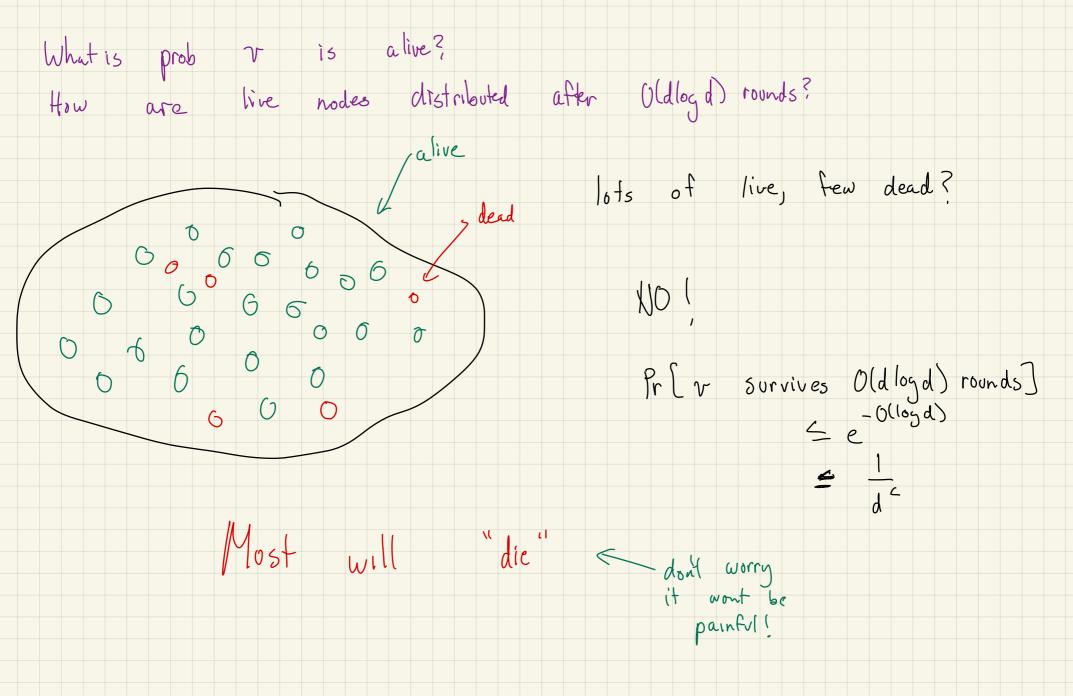
- repeat K times in parallel:
 - . I nodes V, color self "red" with prob $\geq \frac{1}{2d}$, else "blue". Send color to all nbrs.
 - · If v colors self "red" + no other nbr of v colors self red then
 - o add v to Mis
 - · remove v + all nors from graph (set to "dead")

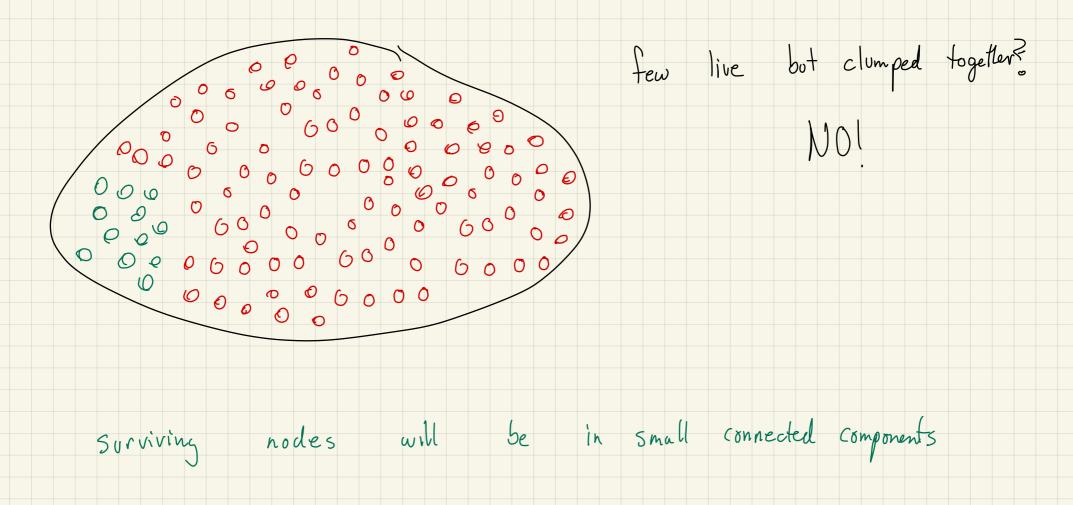
rounds

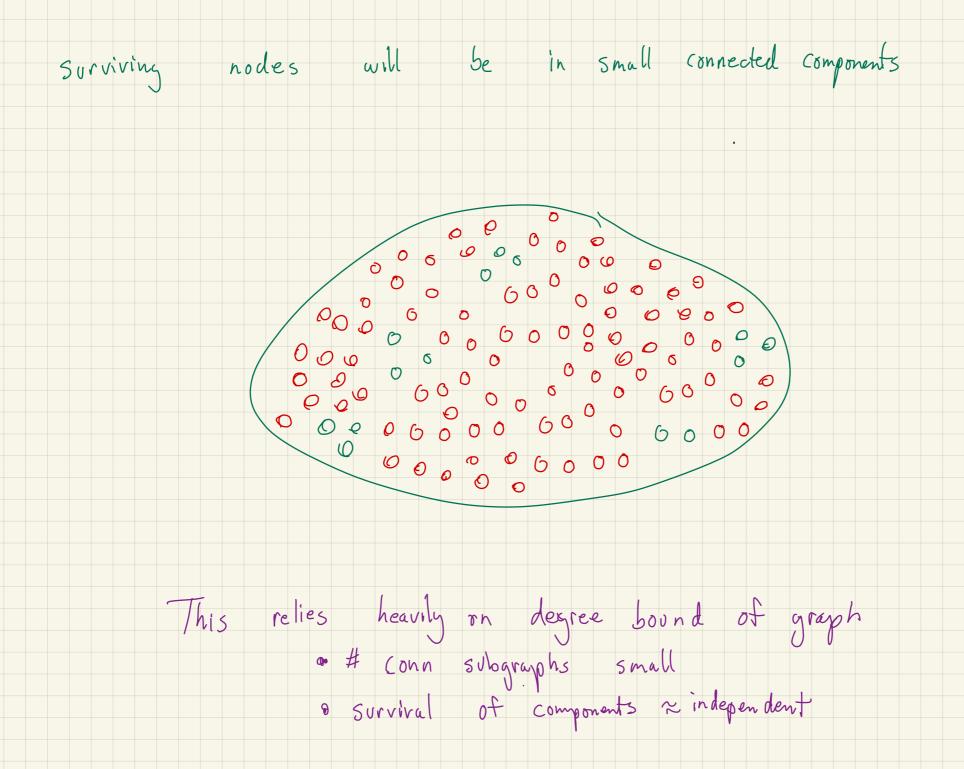
- (for purposes of analyses, continue to select selves after die, but don't send color to nors)
- The $\Pr[\# \text{ phases til graph empty} \ge 8 \text{ dlog n}] \le \frac{1}{n}$
- Corr E[# phases] is O(d log n) <= can improve!

See slides for Local Computation Algorithm (LCA) model Problem when sequentially simulate K-round algorithm get d^K complexity K=O(logn) >> not sublinear What to do?, run fewer rounds e is it ok?. Many nodes will not be decided yet

(Duestions:



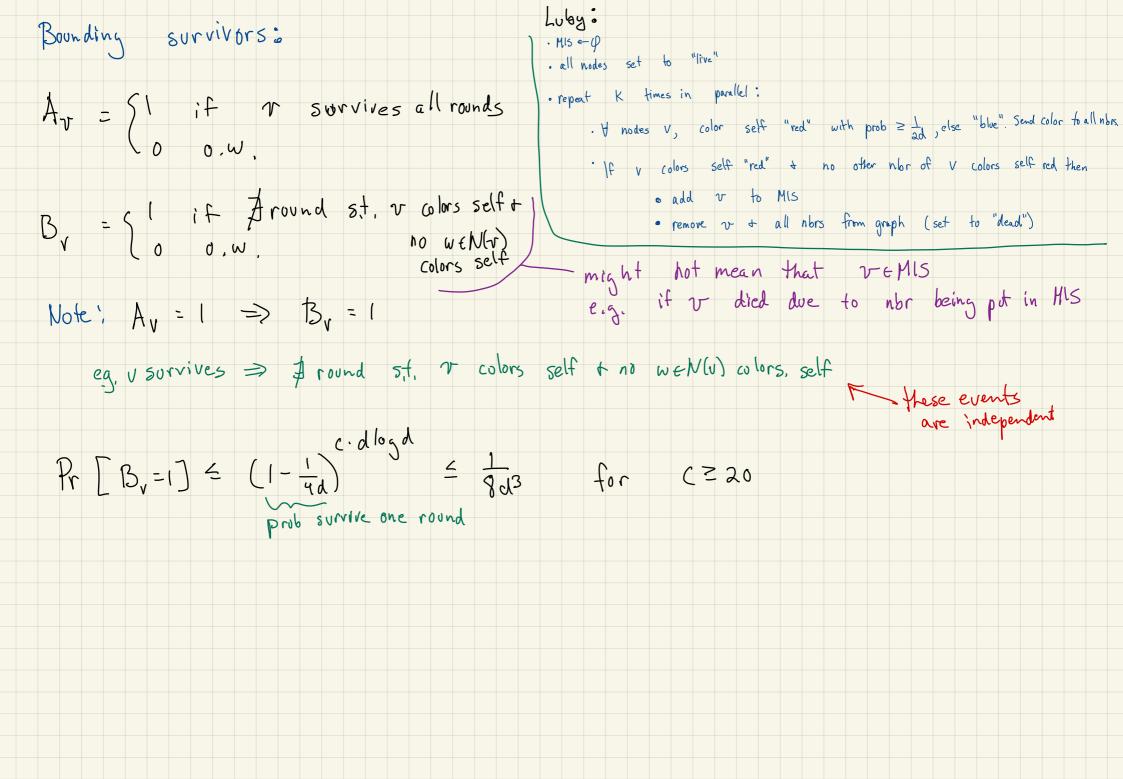


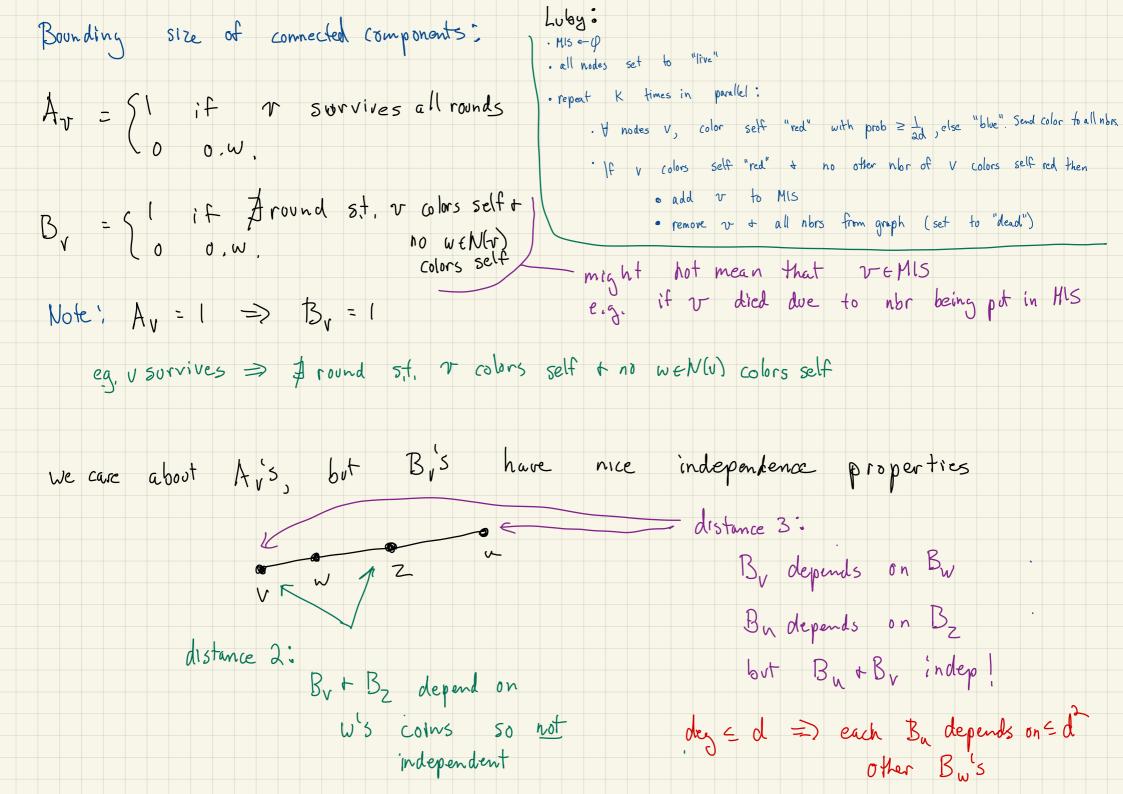


Bounding size of connected components:

Claim After Oldlogd rounds, connected components of survivors of size = Olprily log(d) · log n)

Main difficulty; survival of v & neighbors are not independent

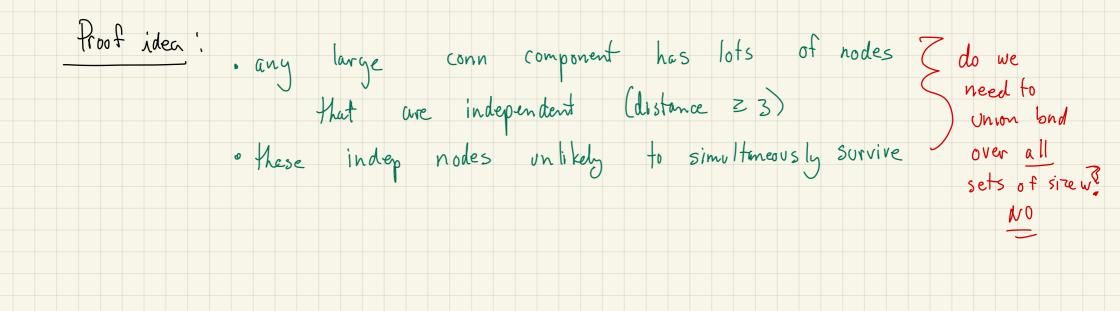


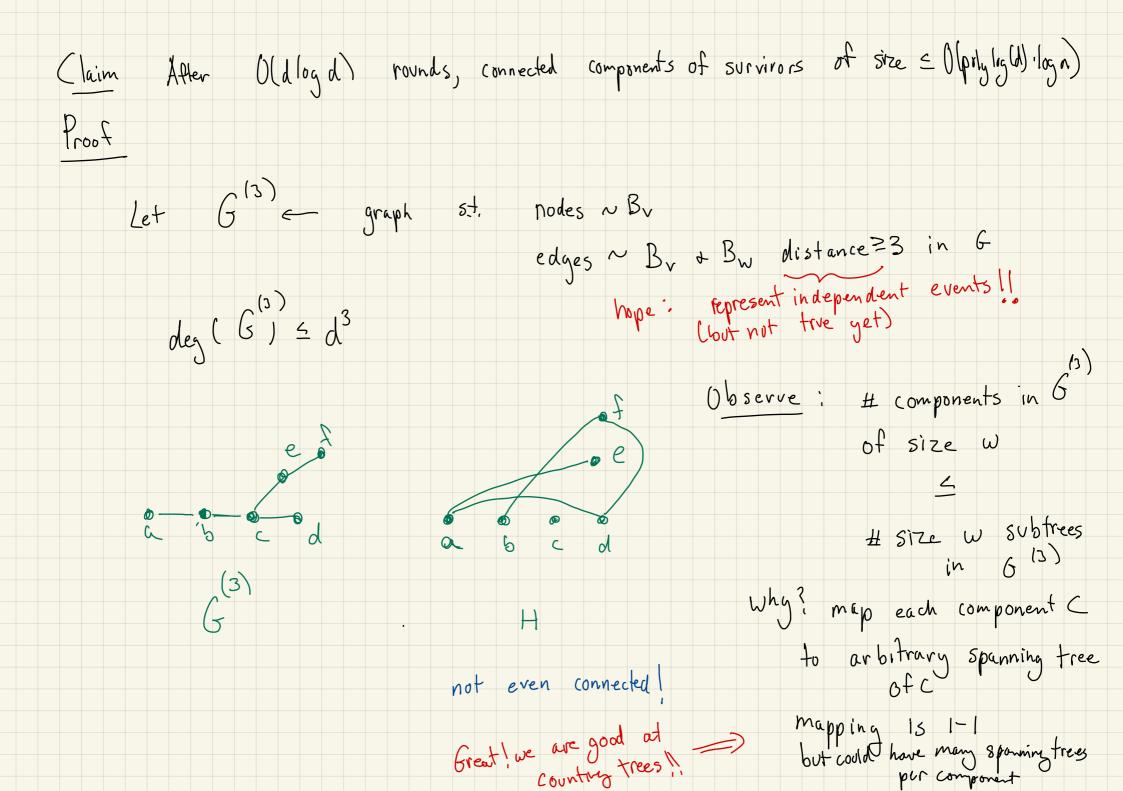


Bounding size of connected components:

of size < ((prly ligh) log n) Claim After Oldlogd rounds, connected components of survivors

> can find whole component via BES "brute force"





Claim for (live) connected component S in G
G^(S) contains tree with vertex set T
as subgraph
$$4|1\rangle|T| \ge \frac{|s|}{d^{2}t_{1}}$$

(A)dist $(u,v) \ge 3$ V $u,v \in T$
Proof Pick T greedily
1. pick arbitrary $v \in S$
2. repeat until S empty
3. move v from S to T, remove all u with
 $dut_{G}(u,v) \ge 3$ from S
4. pick new node $v \ne S$ s. $dist_{G}(u,v) \ge 3$ for
Some $u \in T$

Note: for each v put in T, remove $\leq d^2$ nodes from S + remove v $+ total \leq d^2 + 1$

but big are remaining components?
Let
$$s = \log \frac{n}{3}$$

Let $T_s = \frac{2}{5}T \leq V | |TT| = s$, all $u, v \in T$ have dist ≥ 3 in $6 \neq 4$
T is connected in $G^{(3)}$.
Pr[] $\exists T \in T_s$ s.t. all nodes in T survive] see calculation state
 $\leq \sum_{T \in T_s} \Pr[\frac{1}{8} \text{ nodes in } T \text{ survive}] \leq |T_s| \left(\frac{1}{8d}s\right)^s \leq N \cdot (\frac{1}{8d}s)^s = \frac{1}{(8r^s)^s} = \frac{N}{3} = \frac{1}{3}$
(\rightarrow un likely $u, size s$ free survives)
 \Rightarrow with prob ≥ 243 all surviving conn. comp have size
 $\leq (d^{2}+1) \cdot \log^{n}|_{3} = O(d^{2}\log n)$

How many subtrees in a degree bounded graph?

just shape) KnownThm # non isomorphic trees on w nodes < 4