Homework 4

Lecturer: Ronitt Rubinfeld
Due Date: November 9, 2022

1. The goal of this problem is to carefully prove a lower bound on testing whether a distribution is uniform.
(a) For a distribution p over $[n]$ and a permutation π on $[n]$, define $\pi(p)$ to be the distribution such that for all $i, \pi(p)_{\pi(i)}=p_{i}$.
Let \mathcal{A} be an algorithm that takes samples from a black-box distribution over $[n]$ as input. We say that \mathcal{A} is symmetric if, once the distribution is fixed, the output distribution of \mathcal{A} is identical for any permutation of the distribution.
Show the following: let \mathcal{A} be an arbitrary testing algorithm for uniformity (as defined in class, a testing algorithm passes distributions that are uniform with probability at least $2 / 3$, and fails distributions that are ϵ-far in L_{1} distance from uniform with probability at least $2 / 3)$. Suppose \mathcal{A} has sample complexity at most $s(n)$, where n is the domain size of the distributions. Then, there exists a symmetric algorithm that tests uniformity with sample complexity at most $s(n)$.
(b) Define a fingerprint of a sample as follows: Let S be a multiset of at most s samples taken from a distribution p over $[n]$. Let the random variable C_{i}, for $0 \leq i \leq s$, denote the number of elements that appear exactly i times in S. The collection of values that the random variables $\left\{C_{i}\right\}_{0 \leq i \leq s}$ take is called the fingerprint of the sample.
For example, let $D=\{1,2, \ldots, 7\}$ and the sample set be $S=\{5,7,3,3,4\}$. Then, $C_{0}=3$ (elements 1,2 and 6), $C_{1}=3$ (elements 4,5 and 7), $C_{2}=1$ (element 3), and $C_{i}=0$ for all $i>2$.
Show the following: if there exists a symmetric algorithm \mathcal{A} for testing uniformity, then there exist an algorithm for testing uniformity that gets as input only the fingerprint of the sample that \mathcal{A} takes.
(c) Show that any algorithm making $o(\sqrt{n})$ queries cannot have the following behavior when given error parameter ϵ and access to samples of a distribution p over a domain D of size n :

- if $p=U_{D}$, then \mathcal{A} outputs "pass" with probability at least $2 / 3$.
- if $\left|p-U_{D}\right|_{1}>\epsilon$, then \mathcal{A} outputs "fail" with probability at least $2 / 3$

2. Suppose an algorithm has the following behavior when given error parameter ϵ and access to samples of a distribution p over a domain $D=\{1, \ldots, n\}$:

- if p is monotone, then \mathcal{A} outputs "pass" with probability at least $2 / 3$.
- if for all monotone distributions q over $D,|p-q|_{1}>\epsilon$, then \mathcal{A} outputs "fail" with probability at least $2 / 3$

Show that this algorithm must make $\Omega(\sqrt{n})$ queries.
Hint: Reduce from the problem of testing uniformity.
3. This problem concerns testing closeness to a distribution that is entirely known to the algorithm. Though you will give a tester that is less efficient than the one seen in lecture, this method employs a useful bucketing scheme. In the following, assume that p and q are distributions over D. The algorithm is given access to samples of p, and knows an exact description of the distribution q in advance - the query complexity of the algorithm is only the number of samples from p. Assume that $|D|=n$.
(a) Let p be a distribution over domain S. Let S_{1}, S_{2} be a partition of S. Let

$$
r_{1}=\sum_{j \in S_{1}} p(j) \quad \text { and } \quad r_{2}=\sum_{j \in S_{2}} p(j)
$$

Let the restrictions p_{1}, p_{2} be the distribution p conditioned on falling in S_{1} and S_{2} respectively - that is, for $i \in S_{1}$, let $p_{1}(i)=p(i) / r_{1}$ and for $i \in S_{2}$, let $p_{2}(i)=p(i) / r_{2}$. For distribution q over domain S, let

$$
t_{1}=\sum_{j \in S_{1}} q(j) \quad \text { and } \quad t_{2}=\sum_{j \in S_{2}} q(j)
$$

and define q_{1}, q_{2} analogously. Suppose that

$$
\left|r_{1}-t_{1}\right|+\left|r_{2}-t_{2}\right|<\epsilon_{1},\left\|p_{1}-q_{1}\right\|_{1}<\epsilon_{2}, \text { and }\left\|p_{2}-q_{2}\right\|_{1}<\epsilon_{2}
$$

Show that $\|p-q\|_{1} \leq \epsilon_{1}+\epsilon_{2}$.
(b) Let $k=\lceil\log (|D| / \epsilon) /(\log (1+\epsilon))\rceil$.

Define $\operatorname{Bucket}(q, D, \epsilon)$ as a partition $\left\{D_{0}, D_{1}, \ldots, D_{k}\right\}$ of D with

$$
D_{0}=\{i|q(i)<\epsilon /|D|\}
$$

and for all $i \in[k]$,

$$
D_{i}=\left\{j \in D \left\lvert\, \frac{\epsilon(1+\epsilon)^{i-1}}{|D|} \leq q(j)<\frac{\epsilon(1+\epsilon)^{i}}{|D|}\right.\right\}
$$

Show that if one considers the restriction of q to any of the buckets D_{i}, then the distribution is close to uniform. In other words, show that if q is a distribution over D and $\left\{D_{0}, \ldots, D_{k}\right\}=\operatorname{Bucket}(q, D, \epsilon)$, then for any $i \in[k]$ we have

$$
\left|q_{\mid D_{i}}-U_{D_{i}}\right|_{1} \leq \epsilon, \quad\left\|q_{\mid D_{i}}-U_{D_{i}}\right\|_{2}^{2} \leq \epsilon^{2} /\left|D_{i}\right|, \quad \text { and } \quad q\left(D_{0}\right) \leq \epsilon
$$

where $q\left(D_{0}\right)$ is the total probability that q assigns to set D_{0}.
Hint: it may be helpful to remember that $1 /(1+\epsilon)>1-\epsilon$.
(c) Let $\left(D_{0}, \ldots, D_{k}\right)=\operatorname{Bucket}(q,[n], \epsilon)$. Prove that for each $i \in[k]$, if

$$
\left\|p_{\mid D_{i}}\right\|_{2}^{2} \leq\left(1+\epsilon^{2}\right) /\left|D_{i}\right|
$$

then $\left|p_{\mid D_{i}}-U_{D_{i}}\right|_{1} \leq \epsilon$ and $\left|p_{\mid D_{i}}-q_{\mid D_{i}}\right|_{1} \leq 2 \epsilon$.
(d) Show that for any fixed q, there is an $\tilde{O}(\sqrt{n} \cdot \operatorname{poly}(1 / \epsilon))$ query algorithm \mathcal{A} with the following behavior:
Given an error parameter ϵ and access to samples of a distribution p over domain D,

- if $p=q$, then \mathcal{A} outputs "pass" with probability at least $2 / 3$.
- if $|p-q|_{1}>\epsilon$, then \mathcal{A} outputs "fail" with probability at least $2 / 3$
(e) Note that the last problem part generalizes uniformity testing. As a sanity check, what does the algorithm do in the case that $q=U_{D}$?

4. Let p be a distribution over $[n] \times[m]$. We say that p is independent if the induced distributions $\pi_{1} p$ and $\pi_{2} p$ are independent, i.e., that $p=\left(\pi_{1} p\right) \times\left(\pi_{2} p\right) .{ }^{1}$
Equivalently, p is independent if for all $i \in[n]$ and $j \in[m], p(i, j)=\left(\pi_{1} p\right)(i) \cdot\left(\pi_{2} p\right)(j)$.
We say that p is ϵ-independent if there is a distribution q that is independent such that $|p-q|_{1} \leq \epsilon$. Otherwise, we say p is not ϵ-independent or is ϵ-far from being independent. Given access to independent samples of a distribution p over $[n] \times[m]$, an independence tester outputs "pass" if p is independent, and "fail" if p is ϵ-far from independent (with error probability at most $1 / 3$).
(a) Prove the following: let A, B be distributions over $S \times T$. If $|A-B| \leq \epsilon / 3$ and B is independent, then $\left|A-\left(\pi_{1} A\right) \times\left(\pi_{2} A\right)\right| \leq \epsilon$.
Hint: It may help to first prove the following. Let X_{1}, X_{2} be distributions over S and Y_{1}, Y_{2} be distributions over T. Then $\left|X_{1} \times Y_{1}-X_{2} \times Y_{2}\right|_{1} \leq\left|X_{1}-X_{2}\right|_{1}+\left|Y_{1}-Y_{2}\right|_{1}$.
(b) Give an independence tester which makes $\tilde{O}\left((n m)^{2 / 3} \cdot \operatorname{poly}(1 / \epsilon)\right)$ queries. (You may use the L_{1} tester mentioned in class, which uses $\tilde{O}\left(n^{2 / 3} \cdot \operatorname{poly}(1 / \epsilon)\right)$ samples, without proving its correctness.)
[^0]
[^0]: ${ }^{1}$ For a distribution A over $[n] \times[m]$, and for $i \in\{1,2\}$, we use $\pi_{i} A$ to denote the distribution you get from the procedure of choosing an element according to A and then outputting only the value of the the i-th coordinate.

