October 26, 2022

Homework 4

- 1. The goal of this problem is to carefully prove a lower bound on testing whether a distribution is uniform.
 - (a) For a distribution p over [n] and a permutation π on [n], define $\pi(p)$ to be the distribution such that for all i, $\pi(p)_{\pi(i)} = p_i$.

Let \mathcal{A} be an algorithm that takes samples from a black-box distribution over [n] as input. We say that \mathcal{A} is *symmetric* if, once the distribution is fixed, the output distribution of \mathcal{A} is identical for any permutation of the distribution.

Show the following: let \mathcal{A} be an arbitrary testing algorithm for uniformity (as defined in class, a testing algorithm passes distributions that are uniform with probability at least 2/3, and fails distributions that are ϵ -far in L_1 distance from uniform with probability at least 2/3). Suppose \mathcal{A} has sample complexity at most s(n), where n is the domain size of the distributions. Then, there exists a symmetric algorithm that tests uniformity with sample complexity at most s(n).

(b) Define a *fingerprint* of a sample as follows: Let S be a multiset of at most s samples taken from a distribution p over [n]. Let the random variable C_i , for $0 \le i \le s$, denote the number of elements that appear exactly i times in S. The collection of values that the random variables $\{C_i\}_{0\le i\le s}$ take is called the *fingerprint* of the sample.

For example, let $D = \{1, 2, ..., 7\}$ and the sample set be $S = \{5, 7, 3, 3, 4\}$. Then, $C_0 = 3$ (elements 1, 2 and 6), $C_1 = 3$ (elements 4, 5 and 7), $C_2 = 1$ (element 3), and $C_i = 0$ for all i > 2.

Show the following: if there exists a symmetric algorithm \mathcal{A} for testing uniformity, then there exist an algorithm for testing uniformity that gets as input only the fingerprint of the sample that \mathcal{A} takes.

- (c) Show that any algorithm making $o(\sqrt{n})$ queries cannot have the following behavior when given error parameter ϵ and access to samples of a distribution p over a domain D of size n:
 - if $p = U_D$, then \mathcal{A} outputs "pass" with probability at least 2/3.
 - if $|p U_D|_1 > \epsilon$, then \mathcal{A} outputs "fail" with probability at least 2/3
- 2. Suppose an algorithm has the following behavior when given error parameter ϵ and access to samples of a distribution p over a domain $D = \{1, \ldots, n\}$:
 - if p is monotone, then \mathcal{A} outputs "pass" with probability at least 2/3.
 - if for all monotone distributions q over D, $|p q|_1 > \epsilon$, then A outputs "fail" with probability at least 2/3

Show that this algorithm must make $\Omega(\sqrt{n})$ queries.

Hint: Reduce from the problem of testing uniformity.

- 3. This problem concerns testing closeness to a distribution that is entirely known to the algorithm. Though you will give a tester that is less efficient than the one seen in lecture, this method employs a useful bucketing scheme. In the following, assume that p and q are distributions over D. The algorithm is given access to samples of p, and knows an exact description of the distribution q in advance the query complexity of the algorithm is only the number of samples from p. Assume that |D| = n.
 - (a) Let p be a distribution over domain S. Let S_1, S_2 be a partition of S. Let

$$r_1 = \sum_{j \in S_1} p(j)$$
 and $r_2 = \sum_{j \in S_2} p(j)$.

Let the restrictions p_1, p_2 be the distribution p conditioned on falling in S_1 and S_2 respectively – that is, for $i \in S_1$, let $p_1(i) = p(i)/r_1$ and for $i \in S_2$, let $p_2(i) = p(i)/r_2$. For distribution q over domain S, let

$$t_1 = \sum_{j \in S_1} q(j)$$
 and $t_2 = \sum_{j \in S_2} q(j)$,

and define q_1, q_2 analogously. Suppose that

$$|r_1 - t_1| + |r_2 - t_2| < \epsilon_1, ||p_1 - q_1||_1 < \epsilon_2, \text{ and } ||p_2 - q_2||_1 < \epsilon_2.$$

Show that $||p - q||_1 \le \epsilon_1 + \epsilon_2$.

(b) Let $k = \lceil \log(|D|/\epsilon)/(\log(1+\epsilon)) \rceil$. Define $Bucket(q, D, \epsilon)$ as a partition $\{D_0, D_1, \dots, D_k\}$ of D with

$$D_0 = \{i \mid q(i) < \epsilon/|D|\},\$$

and for all $i \in [k]$,

$$D_i = \left\{ j \in D \ \left| \ \frac{\epsilon (1+\epsilon)^{i-1}}{|D|} \le q(j) < \frac{\epsilon (1+\epsilon)^i}{|D|} \right\} \right.$$

Show that if one considers the restriction of q to any of the buckets D_i , then the distribution is close to uniform. In other words, show that if q is a distribution over D and $\{D_0, \ldots, D_k\} = Bucket(q, D, \epsilon)$, then for any $i \in [k]$ we have

$$|q_{|D_i} - U_{D_i}|_1 \le \epsilon$$
, $||q_{|D_i} - U_{D_i}||_2^2 \le \epsilon^2 / |D_i|$, and $q(D_0) \le \epsilon$

where $q(D_0)$ is the total probability that q assigns to set D_0 . Hint: it may be helpful to remember that $1/(1 + \epsilon) > 1 - \epsilon$.

(c) Let $(D_0, \ldots, D_k) = Bucket(q, [n], \epsilon)$. Prove that for each $i \in [k]$, if

$$||p_{|D_i}||_2^2 \le (1+\epsilon^2)/|D_i|$$

then $|p_{|D_i} - U_{D_i}|_1 \le \epsilon$ and $|p_{|D_i} - q_{|D_i}|_1 \le 2\epsilon$.

(d) Show that for any fixed q, there is an $\tilde{O}(\sqrt{n} \cdot \text{poly}(1/\epsilon))$ query algorithm \mathcal{A} with the following behavior:

Given an error parameter ϵ and access to samples of a distribution p over domain D,

- if p = q, then \mathcal{A} outputs "pass" with probability at least 2/3.
- if $|p-q|_1 > \epsilon$, then \mathcal{A} outputs "fail" with probability at least 2/3
- (e) Note that the last problem part generalizes uniformity testing. As a sanity check, what does the algorithm do in the case that $q = U_D$?
- 4. Let p be a distribution over $[n] \times [m]$. We say that p is *independent* if the induced distributions $\pi_1 p$ and $\pi_2 p$ are independent, i.e., that $p = (\pi_1 p) \times (\pi_2 p)$.¹

Equivalently, p is independent if for all $i \in [n]$ and $j \in [m]$, $p(i, j) = (\pi_1 p)(i) \cdot (\pi_2 p)(j)$.

We say that p is ϵ -independent if there is a distribution q that is independent such that $|p-q|_1 \leq \epsilon$. Otherwise, we say p is not ϵ -independent or is ϵ -far from being independent.

Given access to independent samples of a distribution p over $[n] \times [m]$, an *independence* tester outputs "pass" if p is independent, and "fail" if p is ϵ -far from independent (with error probability at most 1/3).

- (a) Prove the following: let A, B be distributions over S × T. If |A − B| ≤ ε/3 and B is independent, then |A − (π₁A) × (π₂A)| ≤ ε.
 Hint: It may help to first prove the following. Let X₁, X₂ be distributions over S and Y₁, Y₂ be distributions over T. Then |X₁ × Y₁ − X₂ × Y₂|₁ ≤ |X₁ − X₂|₁ + |Y₁ − Y₂|₁.
- (b) Give an independence tester which makes $\tilde{O}((nm)^{2/3} \cdot \text{poly}(1/\epsilon))$ queries. (You may use the L_1 tester mentioned in class, which uses $\tilde{O}(n^{2/3} \cdot \text{poly}(1/\epsilon))$ samples, without proving its correctness.)

¹For a distribution A over $[n] \times [m]$, and for $i \in \{1, 2\}$, we use $\pi_i A$ to denote the distribution you get from the procedure of choosing an element according to A and then outputting only the value of the the *i*-th coordinate.