
Sublinear Time Algorithms October 14, 2022

Homework 3

Lecturer: Ronitt Rubinfeld Due Date: October 26, 2022

1. Simulating Random Edges with Random Vertices

Let G = (V,E) be an undirected graph on n nodes and m edges, given in adjacency list
representation. In this model, we can query (i.e., “sample”) a uniform random vertices
from V , query degrees of vertices, and query the ith neighbor of a given vertex for any
positive integer i (when i > deg(v), this query fails).

In this problem, we explore a way of using the above operations to sample edges of G,
“ε-close to uniform” at random. Formally, let ε ∈ (0, 1/2) be a constant. Our goal is
to present an algorithm which uses use a small number of queries, and with constant
probability outputs an edge of the graph, such that the probability any given edge of G
is output is within a (1± ε) multiplicative factor of 1/m.

In what follows, for convenience we view each (undirected) edge e = {u, v} of G as giving
rise to two distinct directed edges (u, v) and (v, u).

(a) Consider the following algorithm: (1) sample a uniform random vertex u from G,
(2) sample a uniform random neighbor v of u, and (3) and output the edge (u, v).
Explain why this algorithm fails to output uniform random edges of G.

The algorithm in (a) is biased towards sampling edges (u, v) where u has low degree. To
sample edges almost uniformly, we will need a way of making it more likely to sample
edges (v, w) where the v has high degree.

This motivates distinguishing edges by the degrees of their first vertices. Let ∆ > 0 be
some degree cutoff (to be determined later). Let L be the set of vertices u with deg(u) ≤ ∆
(“low-degree vertices”), and H be the set of vertices v with deg(v) > ∆ (“high-degree
vertices”). Further define

EL = {(u, v) ∈ E | u ∈ L} and EH = {(v, w) ∈ E | v ∈ H}

to be the sets of “low-degree edges” and “high-degree edges” respectively.

In parts (b) through (e) of this problem, you will prove the correctness of algorithms
which sample from EL and EH separately, and then show how to combine them to get
an algorithm which samples edges from E close to uniformly at random.

(b) Present an algorithm which makes O(1) queries, and with probability |EL|/(n∆),
outputs a uniform random edge from EL (and otherwise fails to output an edge).

Hint: it may help to modify the algorithm from (a).

(c) Consider the following algorithm: (1) run your procedure from part (b) to get an
edge (u, v), (2) if v ∈ H, sample a random neighbor of w of v, and then (3) output
the edge (v, w). If v 6∈ H this algorithm fails to output an edge.

1

Prove that by setting the value of ∆ appropriately, this algorithm, with some prob-
ability p satisfying

(1− ε/2) · |EH |
n∆

≤ p ≤ |EH |
n∆

,

samples an edge of EH , ε/2-close to uniform (and otherwise fails to output an edge).

(d) Consider the algorithm which with probability 1/2 runs the procedure from part (b),
and with probability 1/2 runs the procedure from part (c) (in both cases, using the
value of ∆ determined in your soultion to part (c)).

Prove that this algorithm, with probability at least (1− ε)m/(2n∆), samples a ran-
dom edge from G, ε-close to uniform.

(e) Finally, present an algorithm which, with probability at least 2/3, samples a random
edge from G, ε-close to uniform, using only Õε(n/

√
m) queries.

2. Vertex Covers & Monotonicity on DAGs

A vertex cover V ′ of a set of edges E′ is a set of nodes such that every edge of E′ is
adjacent to one of the nodes in V ′.

For graph G = (V,E), let the transitive closure graph TC(G) be the graph G(tc)(V,E(tc))
where (u, v) ∈ E(tc) if and only if there is a directed path from u to v in G.

Let f : V → {0, 1} be a labeling of the vertices of a known directed acyclic graph G by 0
and 1. For any pair of nodes x and y, we say that x ≤G y if there is a path from x to y in
G. We say that f is monotone if for all x ≤G y, f(x) ≤ f(y). The minimum distance of
f to monotone is the minimum number of nodes that must be relabeled in order to turn
f into a monotone function.

Let E′ be the set of violating edges in TC(G) according to f . Show that the minimum
distance of f to monotone is equal to the minimum size of a vertex cover of E′.

3. Testing Monotonicity of Boolean Functions on Directed Graphs

Let G be a directed graph with vertex set V . Let f : V → {0, 1} be a function mapping
nodes of G to binary values. We say f is monotone if for all directed edges (u, v), we have
f(u) ≤ f(v). We say that f is ε-close to monotone if there is a monotone function g such
that g and f differ on at most ε|V | entries. A testing algorithm knows the graph G in
advance, and for a given node u, may query f(u) in one time step.

(a) Let V = {v1, . . . , vn}. For each directed graph G = (V,E), let BG = (V ′, E′) be
the bipartite graph where V ′ = {v1, . . . , vn}

⋃
{v′1, . . . , v′n}, and (vi, v

′
j) ∈ E′ iff vj is

reachable from vi in G.

Show that a q-query testing algorithm for f over graph BG with distance parameter
ε/2 yields a q-query testing algorithm for f over graph G with distance parameter ε.

(b) Let f be a function on V which is ε-far from monotone over graph G. Then TC(G)
has a matching of violated edges of size at least (ε/2)|V |. (Recall previous problem).

(c) Show that if f is a function over bipartite graph G, there is a test for monotonicity
of f with query complexity at most O(

√
|V |/ε).

2

4. Testing on Strings: Concatenations of Palindromes

Let L = {uurvvr|u, v ∈ {0, 1}∗, 2(|u| + |v|) = n}. We saw in class that given a string x,
distinguishing x ∈ L from x that is ε-far (meaning that > εn bits of x need to be changed
in order to make x a member of L) requires Ω(

√
n) queries. Give an algorithm for this

problem that uses O(
√
n log n/poly(ε)) queries to the input. The running time does not

have to be sublinear.

5. Lower Bounds for Estimating the Weight of a MST

Give a lower bound on computing a multiplicative estimate on the MST of a graph G in
adjacency list representation: Give two distributions over graphs of degree at most d and
weights in the range {1, . . . , w} (for w = o(n)) such that

(a) graphs in one distribution have an MST weight that is at least twice the MST weight
of the graphs in the in other distribution

(b) in order to distinguish the two distributions with constant probability of success, one
must make at least Ω(w) queries

If you can get the lower bound to have some nontrivial dependence on d and ε, even
better!

Note: it is possible to write this lower bound without explicitly using Yao’s method.

3

