Homework 2

Lecturer: Ronitt Rubinfeld

Turn in your solution to each problem on a separate sheet of paper, with your name on each one.

1. Testing the monotonicity of a list - the case of bits:

Given a Boolean function $f:[n] \rightarrow\{0,1\}$ and parameter $\epsilon \in(0,1)$, present an algorithm that makes $1 / \operatorname{poly}(\epsilon)$ queries to f, and has the following behavior:

- If f is monotone, then the algorithm always outputs "pass."
- If f is ϵ-far from monotone, then the algorithm outputs "fail" with probability at least $3 / 4$.

Here by " ϵ-far from monotone" we mean that the value of f need only be changed on at most ϵn inputs in order to make it monotone.

2. Removing adaptivity:

Assume that your computational model is such that a query returns a single bit. In such a model, show that any algorithm making q queries can be made into a nonadaptive (i.e., where the queries do not depend on the results of any previous queries) tester that uses only 2^{q} queries.

3. Removing adaptivity for property testing dense graphs:

We define a graph property to be a property that is preserved under graph isomorphism (i.e., if Π is a graph property, then for any isomorphic graphs G and G^{\prime}, G has property Π if and only if G^{\prime} has property Π).
Show that any adaptive algorithm for testing a given graph property which makes q queries can be made into a nonadaptive algorithm for testing the same graph property using only $O\left(q^{2}\right)$ queries.

Hint 1 : Prove that a q-query tester can be turned into a $O\left(q^{2}\right)$-query tester which tests all edges of some (possibly adaptively chosen) induced subgraph of the input graph G.
Hint 2: Instead of running a tester on the original graph G, what would happen if you ran the tester on some isomorphic copy of G ?
Hint 3: Your nonadaptive algorithm is allowed to be randomized.

4. Property testing of the clusterability of a set of points:

Let X be a set of points in an arbitrary metric space. Assume that one can compute the distance between any pair of points in one step. Say that X is (k, b)-diameter clusterable if X can be partitioned into k subsets, which we call "clusters," such that the maximum distance between any pair of points in a cluster is b. Say that X is ϵ-far from (k, b) diameter clusterable if at least $\epsilon|X|$ points must be deleted from X in order to make it (k, b)-diameter clusterable.

Show how to distinguish the case where X is (k, b)-diameter clusterable from the case where X is ϵ-far from $(k, 2 b)$-diameter clusterable. Your algorithm should use poly $(k, 1 / \epsilon)$ queries. Note that it is possible to get an algorithm which uses $O\left(\left(k^{2} \log k\right) / \epsilon\right)$ queries.

