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Abstract

We study several learning problems under various learning models. We first consider an
on-line model in which the learner answers a sequence of yes/no questions with immediate
feedback provided after each question. The learner strives to discover the correct classi-
fication rule while making as few mistakes as possible. The complexity of the learning
task depends on the agent selecting the sequence of questions. Typically, it is assumed
that an adversary selects this sequence. We present an extended mistake-bound model
in which the sequence of questions is selected by a helpful teacher, by the learner, by an
adversary, or at random.

Using this extended mistake-bound model, we study the problern of learning a relation
between two sets of objects. If the relation ha.s no structure, the learner cannot possibly
make good predictions. We impose structure by restricting'one set of objects to have
relatively few “types”. We describe efficient algorithms to learn a binary relation for the
various selection methods. Complementing these results are lower bounds, often proving
that the algorithms perform optimally. -

Next we consider the problem of learning a total order on a set of elements That is,
we restrict the predicate of the relation to be a total order. Again both upper and lower
bounds are provided for the different selection methods. Furthermore, we uncover an
interesting relationship between learning theory and randomized approximation schemes.

Other questions arise from this generalized learning model. In the case that a teacher
selects the sequence of questions, we consider the number of mistakes made by any learner
that predicts according to a rule that agrees with all previous examples. Equivalently we
ask: what is the minimum number of examples a teacher must reveal to uniquely identify
the target concept? It is'an interesting paradox that for many concept classes, the number
of mistakes made with a helpful teacher may be worse than the number of mistakes made
"when the learner selects the sequence. In the case that the learner chooses the sequence
of questions, we show that the number of mistakes can be significantly smaller than the
number of queries needed. '

. Finally, we present a new techmque for ezxactly zdentzfyzng read-once formulas from
random examples. The method is based on sampling the input-output behavior of the
target formula on a probability distribution which is determined by the fized point of
the formula’s amplification function (defined as the probability that a 1 is output by
the formula when each input bit is 1 independently with probability p). We present
efficient algorithms for exactly identifying families of read-once formulas (where each
input appears at most once) over various bases. These include formulas of majority gates
and a large subclass of formulas over the standard basis. We then apply these results
to prove the existence of polynomial-length universal identification sequences for large
classes of formulas.

Keywords: Machine Learning, Computational Learning Theory, Mistake-bounded Learn-
ing, On-line Learning, Binary Relations, Total Orders, Circuits, Read-once Formulas,
Fully Polynomial Randomized Approx1matlon Schemes, Amplification Functlons Teach-
ing Dimension
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Chapter 1

Intro‘dﬂction

Our ultimate objective‘z’s to make programs that learn
from their experience as eﬁ’ectwely as humans do

— John McCarthy, 1958 [48]

Bulldmg machlnes that learn from expenen(;e 1s\a,n lmportant resea.rch goal of ar-
tificial intelligence. The area of computatzonal learntng theory strives to define formal
mathematxcal models of machine learmng that enable rigorous analys1s of the perfor-
mance of learmng algOrlthms ‘We are interested in designing learning algorithms that
are efficient in their use of both time and data. Thus, our goal is to determine under

what conditions a given learning ’p’robl'em'is comptationally feasible.

1.1 A Research Methodology

How can one apply the formalism of computational learning theory to a “real-life” learn-

-ing problém? We suggest the following general framework. -

1. Precisely describe the ﬁroblem. Here, it is important to preserve the key features of
~ the problem while simplifying the problem enough to be analyzed.' Insights gained
 from studying the simplified problem may then be used to cope with the more
- general case.” : : ) ’ :

11



2  CHAPTER1 INTRODUCTION
2. Select an appropriate formal learning model. In selecting the learning model, some
- key questions to address are [55, 62]: b‘ | | :
e What is"being learned?
o How does the learner interact with the world?
o What is the prior knoWledge of the learner?
. How is the learner’s hypothes1s represented"

. What are the criteria for successful 1earn1ng'7

3. De51gn efﬁcxent learnmg algorxthms Typlcally, these algonthms learn from exam-
ples and we are concerned W1th both the time to process each example and the

total number of examples used

4. Use the success crxtena from the formal model to Judge the performance of the

learmng algorlthrns

~If one proves no efficient algorlthm can meet the success crltena, then one may Want
‘to further simplify the problem or modlfy the learmng model. There are several options
: ,_for modlfymg the learnmg model. One possxblhty is to enhance the learner’s mteractmn
with the environment; perhaps by allowmg the learner to take a more actlve role, or

by providing a teacher One could provide the learner w1th additional prior knowledge

or allow a ncher hypothesrs class Fmally, the success criteria could be relaxed Often :

several iterations of this process are needed to best model the given problem

: " r
1.2 Thesis Ov'erview s
Most work in the area of computatlonal learmng theory has been focused on the problem
~of concept learnmg For these learnmg problems there are a set of znstances (or obJects)

“anda smgle target concept that classifies each instance as a- pos1t1ve or negatwe instance.

Let the instance space denote the set of all instances that the learner ‘ay see. The

O ———- ]

bz
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learner’s goal is to properly perform this classification task for each instance in the

instance space.. For example, if the instance space contains office furniture, the learner’s
task may be to find a rule that accurately distinguishes a chair from all other types of

office furniture.

In many “real-life” learning problems, it is important to acquire information about a

,predlcate relatmg elements of two sets. For example, one may WlSh to learn a “has- part”

,predmate relatmg a set of ammals to a set of attnbutes Observe that thxs problem

of learning a binary relatlon can be vxewed as a concept learmng problem by lettmg

the iinstances be all ordered pairs of objects from the two sets However, these are

fundamentally drﬂ'erent problems. In concept lea,rmng there is a s1ngle set of ob jects and

the learner s task is to classify these obj jects, whereas in learnmg a blnary relatron there
are two sets of ob ]ects and the learner’s task is to learn the predlcate relatmg the two

sets Furthermore, the ways in Wthh the problem may be structured are quxte dlfferent

,;when the true task is to learn a blnary relation as opposed to a clasmﬁcatlon rule. ,

" In'Chapters 3 and 4 we consider the problem of learning binary relations. Werepresent

‘a binary relation between two sets as an n x m matrix, where the row and column indices

name the elements of the two sets. | Each entry of the matrix gives. the ‘value of the
predicate relating the corresponding pair of set elements. We study how the learner’s
performance depends on the order in whrch the learner must classrfy the Ob_]eCtS By
consrdermg when the presentatwn order 1s selected by the learner, by a helpful teacher,

by an adversary, or at random

If the learner is to have any hope of doing better than random guessing, there must be

some structure in the relation. Furthermore, since there are so many ways to structure

a binary relation; we give the learner prior knowledge about the nature of this structure.

Not surprisingly, the learning task depends greatly on the prior knowledge provided. One
‘way to impose structure is to restrict one set of objects to have relatively few “types.”
For example, a circus may contain many ‘;anirnals, but only a few different species. ‘In

_Chapter 3 we study the case where the learner has “a priori” knowledge that there are a
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: ‘llr‘/nited number of ob ject types ' Namely; we restrict the matiix ‘representiné‘the relation
“to have at most ¥ distinct row types For each of the presentatlon orders rnentloned

| " aboVe, we descrlbe efficient learmng algonthrns for this problem Complementmg these
Uk results are information-theoretic lower bounds often provmg that the algorlthms perform

, opt1mally

In Chapter 4 we study the problem of learmng a bma.ry relatlon on a set where the
. predrcate mduces a total order on the set. That is, the learner hasa pr10r1 knowledge that

the relatlon forms a total order. For this problem we observe that the halvzng algorithm [6

43] ylelds a good m]stake bound agarnst any query sequence (The halvmg algonthm

- :‘:'predlcts accordlng to the ma;onty of the fea31b1e conoepts, and thus each mrstake halves 2

' the number of concepts to consrder) This motrvates a second goal of Chapter 4—
'developlng efﬁc1ent 1mp1ementat10ns of the halvmg algonthm In domg so, we uncover an

" '1nterest1ng apphcatlon of randomized approxrmatlon schemes to computatlona.l learmng

theory Namely, we use a randonuzed approxrmatlon scheme for counting the number

of extensmns of a part1al order (16, 47] to build an algorithm for learning a total order
" under an adversary-selected query sequence ‘We contrast this result with an n—1 mistake
‘bound when the: learner or ‘teacher selects the- query sequence Fmally, we discuss how

‘the halvmg algorrthm may be used to construct efficient countlng algonthms

In studylng the problem of learmng a bmary relatxon, we see that the learner s success

o depends greatly on the mteractron between the learner and 1ts envxronrnent In partlcular, :

- the complexrty of the learner’ 5 task depends on the way 1n Wthh the mstances are

‘selected In Chapter 5, we study the relatronshrp between the presentatlon order of the
‘instances and the number of mistakes made’ by the learner in the domain of concept
: _learmng When a ‘teacher selects ‘the presentatlon order we consider the maximum
5*number of mistakes made by any learner that predlcts accordmg to some ooncept that
agrees w1th all prev1ously seen examples Thus we ask what i is the mlmmum nurmber

of examples a teacher must reveal to umquely 1dent1fy the ta.rget ooncept" We refer to

_ 'thrs measure of the complexrty of teachxng any concept from the class as the teaching
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dimension. We feel that this is a good model of a teacher since it corresponds to the
best way to present the lesson so that any student who is “paying attention” will learn
the lesson. We compare the teaching’ dimension to other well-studied measures of the
‘complexity of a concept class. *‘WejéOmpute upper and lower bounds for the teaching
dimension of several concept ‘classes and then presenf some more general results. Next
we address the related question of hdw many mistakes the léarner must make in the
worst case when seleétiﬁg' the presentation order for the examples himself. 'We bound
this ’qu’an‘tify for several concept classes, showing that the number of mistakes can by
asymptotically smallef than the nirsiber of queries meeded, :

" Another important consideration in cbhcépt‘leé.rnirig is the tradeoff between the crite-
ria for successful learnihg and the r‘ég‘iila;r'ity‘bf the environment. In the distribution- free
or PAC model introduced by Valiant [66], the learner receives random examples from
an arbitrary distribution and must learn a rule that almost always glves a'good approxi-
mation to the given concept While ‘some simple concept classes are efficiently learnable
under these criteria, other classes have been shown not to be eﬂicxently learnable*. While
one may ‘choose to prov1de the learner w1th additional prior knowledge or'enhance the |
- learner’s interaction with its en’vxronment, ancther possibility is to place more structure
on the énvironment. That is, a part of the distribution-free model that makes the learn-
ing task significantly rﬂo‘re‘difﬁcult is the’r‘equifénieﬁt“ o’f léarning under any distribution.
In Chapter 6, we consider the effect of pla,cmg more structure on the environment by
restricting the distribution from which the examples are drawn. We describe a new tech-
mque for ezactly identifying certain classes of read-once formulas from random examples.
(Furthermore, we prove that these classes of formulas are not eﬁimently learnable in the
distribution-free model.) Although we fix the dlstrlbutlon, we are now able to learn
a hypothesis that is equlvalent to the target concept instead of learning just a good
approximation to the target kconcépt. The method is based on the observation of the

input-output behavior of the target formula on a fixed probability distribution which

*Under complexity-theoretic or cryptographic assumptions.
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" 1s determined by the fized ‘poin"t,of” the fo’rm’ula’s"ampliﬁcdtion’»’func’tion (defined as the " k,
' ;pr‘obab’ility that al s '*‘output when each input is 1 ‘independently with prOha’bilitynp)

: By demonstratmg that the forrnula s behavmr s unstable 1n an appropnate sense on
~ this dlstnbutlon, we are’ ‘able to' 1nfer all structural mformatlon about the formula (with
high probability) by performing various statistical tests on easxly sampled variants of
the fixed distribution. Since we give positive results for concept classes that are not
learnable in the dlstributionafree ‘model (and thus by a result of Schapire [59] the learner
" can essentxally perform no better than just randomly guessmg), these results may be
| -mterpreted as demonstratmg that while there are some dlstrlbutlons that in a compu-

| tatlonally bounded setting, reveal essentlally no mformatlon a.bout the target formula,
there are natural dlstnbutlons which revea.l all information. ' |

Thls thesis is orgamzed as follows In the next chapter we review: existing 1éai~rﬁng

: rnodels and then present a new learning model In Chapter 3, we study the problem of
r learning a binary relation when the learner has pnor knowledge that there are a limited
| number of object types. In Chapter 4, we study the related problem in which the learner
re'ceives prior knowledge that the predica.te ’forr‘ns a total‘ ord'er.f Next, in Chapter 5, we
studyk the. relationship‘ between the learner’s interaction Virith the environment and the
| r‘number of incorrect class1ﬁcatxons made in the domain of concept learmng In Chap-
~ter 6, we present our algorithms for learmng read-once formulas from random examples

'Fmally, in Chapter 7, we close with some concludmg rernarks b




Formal Learning Models

The second step of the research methodology outhned m Chapter 1 is to select a formal
learnmg model Most learnmg models can be obtamed by varlous comblnatlons of the’
followmg two orthogonal features the learner s mteractmn w1th the envxronrnent and
the cnterla for success. We begm by dlscussmg some possxblhtles for these two features,
and then rev1ew the most commonly used learnmg models Fmally, we dlscuss some

mterestmg combmatlon of these features that have not yet been conmdered

Before descnbmg thme features we descrxbe the basic framework used in all learmng
models discussed here. For ease of expos1t10n we discuss these models in terms of concept
learning. As we mentioned in Chapter 1, the problem of learning a binary relation can
be viewed in this framework by letting the instances be all orderedkvpairs of objects from-
the two sets. - ‘ | |

A"contept ¢ is a Boolean function on some domain of instances. A ~co’ncept class C is
a family of concepts. The learner’s goal is to infer some unknown target concept chosen
from some’ known coneept class: That is, the learner knows a priori the concept class
~from which the target is chosen. Often C is decomposed into Sub‘classésC' according to
some natural dimension measure n. That i is, for each n > 1, let X, denote a learning |
domazn Let X = Upy1 Xn denote the instance space, and = € X denote an instance, To

illustrate these deﬁmtlons ‘wé consider the concept class of monomials. ( A monotmal is a

17
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' ‘conjunctlon of l1terals, where each hteral is e1ther some Boolean variable or 1ts negatlon ) '
“For this concept class n is Just the number of vanables ‘Thus X,, = {0, 1}", 1Xn l = 2",

and each z € Xn represents an a551gnment of 0 or 1 to each vanable For each n > 1,

let Ch, C 2Xn be a famzly of concepts over X,. Let C Un>l C denote a concept class

. over X For example if C contains monormals over n vanables, then C is the class of all

monormals Force C, and z € X,, (a:) denotes the outcome of evaluatlng con mput
‘z. Given any concept ce C,, we say that zis a posztwe mstance of cif ¢(z) = 1, and z
iz a negatwe mstance of cif c(m) 0. In our example, the target concept for the class of

ronormals over five variables rmght be :c1:c4:c5 Then the instance “10001” is a positive
’ tance and “00001” is a negatwe 1nstance Fmally, the hypothcszs space of algorithm
" A is 51mply the set of all hypotheses (or rules) h that A may output (A hypothe31s for‘

: C’ rnust make a predxctlon for each z E X.) ‘

As we br1eﬂy dxscuss later, the set of hypotheses whlch the learner may use isa s1gn1f-k
1cant factor Whlle thxs is an 1mportant 1ssue, our results do not address it. Throughout |
‘thls thesxs we only requlre that the class1ﬁcat10n for each 1nstance can be oomputed from |
the hypothesm hin tlme polynormal in n. Now that we have set up the hasw framework ,
we are ready to dxscuss the two key features ofa learnmg model the lea.rner s 1nteract10n

Wlth the env1ronment and the cr1ter1a for successful learmng

2.1 Interaction with the Environment

In all learmng models we consider, the envxronment presents the learner with 1nstances

- from the instance space X,. An instance may be either labeled or unlabeled. A labeled

' ‘znstance is an element z .chosen from Xa along ‘with a.blt specifying whether_a: is‘a
' positive or negative instance of the target concept. An unlabeled instance is an element

 chosen from X, that is provided without a‘classiﬁcation. .
- One important consideration is the way in-which unlabeled and labeled instances are

‘combined in the learning session. In the ‘batch model the learner first receives labeled
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instances that enable fhlm to form a hypothesis for the "targef concept and then this
hypothesis is used to classify unlabeled instances. In the on-line model the learner makes
predictions for unlabeled instances from the start, modifying his hypothesis based on
feedback provided by the environment. We now describe fhese two scenarios in more
detail, and then consider another key feature of the learning ‘model: the agent selecting

| /the instances..

211 Batch Versus On-Line Learmng

In thls sectlon we descnbe the two typlcal uses of labeled and unlabeled examples the

batch model and the on-line model.

Batch Learning

To motivate the batch learning model, we use/the‘following example of Littlestone [42].
Suppose a state passes a law requiring that a fdeposil; be placed on all mineral water
bottles originally purchased in the state. The deposit is then refunded when the consumer
returns the bottle to a recycling center. The mineral water bottles are sp“ecially" marked
to ~distingui5h them from other kind of bottles. A company waits to build an automatic
bottle receiving machine that will check returned bottles for the special mark and reject
them if it is not found. The company decides to build a prototype maehine ’that is capable
of learning so that this machine can be trained to classify a given bottle as a mineral
water bottle or some other type of bottle. For poeitive trainihg examples, the company
- will give its employees bottles of mineral water to take 'home',?kdrin‘k, and return. To
generate negative examples the employees will give the machine other kinds of bottles
designed to mimic the mineral water bottles. For each ‘bottle ;seen'~‘d1’1ring'the training
period, the machine will be correctly told whether or not it is one of the specially ‘marked
bottles. After training the prototype,‘the'company will ¢opy the final elaesiﬁcatibn rule
~ produced by the training process and use it for the machines to be placed in the recycling

centers.
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~ On-Line Learning

20 PNt 'CHAPTER ’2‘.[1F0RMAI) LEARNING MODELS

A key property of the batch model i is that there i isa separatlon between the trammg

' phase and the performance phase Formally, a batch learnmg algorxthm for C is an
: algorithm that runs under the followxng scenano A learning session cons1sts of two'

‘phases: the trammg phase and the performance phase In the tralmng phase the learnerv
s presented w1th a set of mstances labeled accordmg to the target concept ¢ € C At

- the end of this phase the learner must output a hypothesrs h that classifies each z € X,

as either a positive or negatxve 1nstance ‘Then in the performance phase the learner uses

,h to predrct the classification of new unlabeled instances. Since the learner never finds

out the true elasmﬁeatlon for the unlabeled mstances, all learnmg oecurs in the trammg

We now glve an example to motlvate the on- lme learnmg model Suppose that when
‘arriving at work (in Boston) you may either park m ‘the street or park ina garage In’

: efact between your oﬂice bulldmg and the garage there is a street on whlch you can always
'ﬁnd a spot 'On most days, street parkmg is preferable since you avoid paymg the $10

, garage fee. Unfortunately, when parking on the street you nsk bemg towed ($50) due
to street cleanmg, snow’ emergency, spec1a1 ‘events, etc. When calhng the c1ty to find
- “out when they tow, you are unable to get any reasonable gurdance and decide the best
'thmg to dois Just learn from experlence There are many pleces of information that you

" might cons1der in making your predlctxon e.g. the date, the day of the week the weather
'We make the following two assumptlons enough mformatlon is avallable to make good

_ predlctlons if you know how to use it, and after you comrmt ‘yourself to one choice or the

other' you learn of the rlght dec1s1on In thls example, the c1ty has rules dictating when

they tow; you Just don’t know them. If you park on the street at the end of the day you

| know if your car was towed; otherwise when walkmg to the garage you see 1f the street

s clear (i.e. you learn if you would have been towed)

The on-line model is de31gned to study algonthms for learnmg to make accurate
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predictions in circumstances such as these. Formally, an on-line learning algorithm for

C is an algorithm that runs under the followmg scenano A learning session consmts of

'a set of trials. In each trlal the learner is given an unlabeled mstance z € X The

learner uses its current hypothe31s to predlct fzrisa pos1t1ve or negatlve mstance of the
target concept c€ Cy and then the learner is told the correct class1ﬁcatlon of z. If the |
prediction was mcorrect the learner has made a mzstake Note that in thls model there
is no training phase Instead the learner receives unlabeled mstances throughout the

entlre learmng session. However, after each predlctlon the learner “dlscovers the correct

‘class1ﬁcat10n This feedback can then be used by the learner to nnprove hrs hypothesrs

A learner is conszstent 1f on every trial, there is some concept in C that agrees w1th the
learner’s prediction, as well as with all the labeled lnstances‘observed on the preceding

trials.

212 | Seleetion _of kthe‘In‘s‘tanees |

AnOther Virnpor'tant factor of the 1¢;:;r£e'r"g interaction with the environment is the method
of instance selection. Obéérve that the method used ‘to"eelectthe instances is 'independeht
of whether or not the instance is to be laheled; once‘ the instance is ’selected, the label is
just deterrmned by the target concept. |

Not surprrslngly, some sequences of instances may guxde the learner to a good hy-

- pothesis faster than other ; sequences. The most appropriate ¢hoice for the method of

~ instance selection depends on the learning problem being modeled. ‘Tt could be that

instances are presented a‘c’eording"to ‘some natiral distribution ‘on ‘the instance space:
Another pbssibility‘ is that an adversary chooses the instances to make the learning task
as hard as possible. Or perhaps the learner is ‘perforrr‘iing active experimentation and can
select his 'own instances. Finally, it may be that a teacher is helping to kguidé'the' learner -
hytselectih‘g the “most informative” instance sequence. We now describe ‘each of these

possibilities in more detail.”
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 Stochastic Selection

‘ The ﬁrst settmg we dlscuss for the selectlon of the mstances is stochastzc selectzon in which

| the mstance are drawn randomly accordmg to some dlstrxbutlon D over the mstance L
B space A pr1mary motlvatlon for this settlng 1s to s1mulate what happens in Nature
, Suppose the learner is sent on an African safan to bmld a rule to drstlngulsh an elephant |
from other Jungle amrnals Whenever the learner sees an animal the gulde tells him g

: whether that ammal is an elephant There is some natural dlstrlbutlon on the ammals

’ that the learner Wlll see on’ the safan Smce thrs dxstrlbutlon may be arbltrarlly complex

it is desrrable to model D as an arbztmry nnknown dxstrrbutlon We let dzstrzbutzon-
free stochastzc selectzon denote the case in Wthh the mstances are selected at random
accordmg to a ﬁxed unknown, arbltrary dlstrlbutron e e .

In other cases, one may want to consider when the 1nstances are randomly selected

accordmg to some particular dzstrzbutzon For example, the dlstrlbutlon may be uniform
~on the instance space. Clearly anythlng learnable in the dlstnbutlon-free settmg wrll be

| learnable in this settmg In fact, one reason for ﬁxrng the distribution is to get posmve

results for classes where learnmg in the dlstrlbutlon-free settmg is known to be infeasible.

Or, in some cases, it simply rmght be that the naturally occurnng dlstrlbutlon of the

~ mstances is known to be some partlcular drstrlbutlon

| A‘dyerSary Selection o

thle the model of stochastlc selectlon is appropnate for many mtuatrons, sometlmes it

is necessary to rnodel the worst possible mteractron that may occur. For example, in the

| parklng example given to rnotlvate the on-line model it may be that the learner wants to
‘know the maximum number of wrong decxsrons he could possrbly make before knowmg '

how to use the avaxlable mformatlon Clearly the learner has no control over when z

the crty will tow. Although one could assume that each combmatron of features occurs

~ according to some probablhty distribution, this model will not answer our question about

the worst-case number of rmstakes made by the learner—-lt could be that the

“hardestﬂ

s
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p‘résentation order is not iikely‘ :

- Thus, one often wants to let an “all- powerful” adversary select both the target concept
and the presentation order for the instances. By all-powerful we mean that the adversary
has unlimited computatlon time*, it knows the learner’s algorithm, and it has access to
any random bits used by the algorithm. Note that the adversary can create the target
concept as the learmng session proceeds. All we require of the adversary is that at the
end of the lea,rmng session all instances have been labeled cons1stently with some target
concept. Observe that this model is very much hke that used in standard algorithm

analysis for determining worst-case running time.

Learner Selection

In the two models discussed "above,‘ the learner’s role is completely passive. Sometimes,
one ‘wants the learner to play a more active role by experimenting to determine the
unknown’targ'et concept. ' We model this experimentation by allowing the learner to select
the instarnices, where each instance must be selected in time polynomial in n.' An instance
selected by the learner is referred to as a membership query. That is, a membership query
is a call to an oracle that on input z for any z € X, classifiés z as either a positive or |

negative instance according to the target concept ¢ € Cp.

Teacher Selection -
Finally, in sotne cases one wants to model the situation in which a teacher helps guide the
learner throtgh a careful selection of the instances. For‘exarnole in teaching subtraction,
 the teacher might first give the instances: “3 — 2 = 17 and “I1 — 9 = 2" before glvmg'
"“172552 — 2374 = 170178”. That i is, a teacher may ﬁrst teach the learner the easy”
instances and then teach the harderones. ~ © o

A type of teacher that has been considered \[2,“4]Kis one that knows the hypothesis A

~ of the learner and always presents a labeled instance which is misclassified 'byh ‘Such a

*In fact the adversary may use uncomputable functions. -
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: teacher is formahzed by allowmg the learner to make equwalence queries. An equlvalenoe
 queryisa call to an oracle that on input ¢ e C, either rephes that the target concept c
s equlvalent to ¢ or provides an instance £ € X such that c and ¢ class1fy T dlfferently

‘That is, the oracle either says that the conjectured concept is correct or prov1des a
~ counterexample to it. ‘Observe that this oracle is not a very “friendly” teacher in that

 the counterexample may prov1de as little mformatmn as pos51ble One could also con51der

: ',such a scenarxo  where the teacher gives the most 1nformat1ve counterexample “We require

- that the learner selects each equivalence query in time polynormal inn. -

2.2 Success Criteria

o HaVing discussed the learner’s interaction with the environment; we now turn to the other
: :key feature of the learning model: the cntena the learner must satisfy to be successful.

Each of the criteria we discuss places requrrements on the following three components:

the accuracy of the hypothe31s, the sample complexrty of the learner’s algorithm and

the time complexity of the learner's algorlthm The difference between these criteria is

the accuracy required of the learner 8 hypothwls Before descrxbmg this first component

in detail, we dlSCUSS the other two cornponents - The sample complezzty of a learning

. algonthm is the number of instances required by the learner in order to output the final

hypothe51s For all criteria we reqmre that when learnmg a target ooncept chosen from

:C the sample complexity is polynomial in n. The time complezzty of a learning algorithm

is the total txme requlred by the learner i in order to output the final hypothesrs (We

‘,,assume that each example is drawn in umt time.) For. all criteria we also reqmre that

* the time complexrty of the learmng algorlthm is polynormal in nt. In other words, ‘the ;

learner must make efﬁc1ent use of both time and data

Observe that due to the probabllrstxc nature of the stochastrc selectlon models, for

~ these: models we must relax the requlrements on the a.ccuracy of the hypothesis to only

tSome researchers do not require that a learning a]go”rithm"ris apolynomxal-txme algorithm. £

e L et et e e A
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hold with high probability.' Likewise, when the lekarning algorithm is randomized, we only
require that the learning algoriihm succeeds with high probability. Formally, in the case
in which instances are presented stochaStically or the learning algorithm is randdmized,
the learner receives an additional input 6 where 0 < 6 < 1. In these Situations the
hypothesis is only required to have the desired accuracy with probability at least 1—§, and
‘the sample complexity and time bOrrip;‘lexity‘of the learning aigorithrn may be polynomial
in'l”/'é.‘ o | :

“We fow teburn to the first component of the success criteria: the accuracy of the
hypothesis. Combined with the requirements of polynomial sampie and time compléxity,
we get the following success 'c’riteriai: ‘kgo'od approximation, weak épproxitnat“ion, ‘exact

‘identification and mistake bounds. We now formally define each of these success criteria.

2. 2 1 Good Approx1mat10n

Although 1t would be nice if the learner s hypothesm would class:fy every mstance cor-
1 rectly, in many sxtuatxons this is not posmble and we may only requlre that the learner s
’hypothems is a good approx1mat10n to the ta,rget concept. For exa,mple, When the in-
stances are presented stochastically, there mlght be a very unhkely instance that is never
presented. Furthermore, it could be that this 1nstance could not possibly be correctly
classified using insight gained from other instances. SQ we ask only that the learner
properly classifies “most” instances. o o / |

~ We formalize thé notion of a good approximation as follows. Let D be some proba-
bility distribution on the instahce space. In the good—approzimation'success criteria, the
. learner is also given as input € such that 0 < € < 1. The learner’s goal is to output a
~ hypothesis A that has prdbability at most € of disagreeing with the target concept ¢ on
a randomly drawn instance from D (thus, the hypothesis has accuracy at least 1 — €).
If such a learning algorithm A exists (that is, an algorithm A meeting the goal for any
n 2'»1,’ any ¢ € Cp, any distribution D, and any €), we say that A meets the good-

approximation success criteria. In this setting we allow the sample and time complexity

28 A ey AR o AT TR 5
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 of the learning algorithm to also be polynomial in 1/e.

| '2(.;2'“.’2 Weak Approxirnation‘ bl

: Anot'her pbs‘sibility, *as"opposed‘to‘ asking the learner to‘*ou‘tput"a hypothesis giving an
arbltrarlly good approxunatlon to the target concept is to Just ask that the hypothesis :
‘;perform slightly better than random guessing. -This weaker success criteria is natural

- for apphcatlons in which the learner cannot obtam overwhelmlng accuracy in predxctlon

e but ‘may be able’ to obtaln a significant advantage over guessing.

" We formalize the notion of weak approxxmatlon as foilows As a.bove, let D be some
probablhty dlstnbutlon on the 1nstance space. The learner s goalisto output a hypothe31s
h that ‘has probablhty at most TT’ for some polynormal p(n) (where p(n) >0 for all

, ken), of dxsagreemg w1th cona randomly drawn mstance from D. (Thus the hypothesxs

' has accuracy at lea.st + ( 3 ) If such a learmng algonthm A ex1sts (that is, an algorlthm |

- A meetmg the goal for any n > 1 any c e C,,, and any dxstnbutlon D), we say that A

, meets the weak-approxxmatxon success crlterla

’2:2".'3 ffExsc't ‘xagnﬁﬁcaﬁoﬁ z

' 1 For some settmgs it is reasonahle to ask that learner output a hypothesrs that is equw-
: ifalent to the target concept rather than Just outputtmg an apprommatlon to the target
*concept. Typlcally, this crltenon is apphed when' the learner receives labeled examples
either selected by the {ehtner'or by a teacher. We formalize this criterion as follows. The
learner’s goal is to output a hypothesxs h that classifies all instances exactly as they are
"f‘clas51ﬁed by the target concept If such an algorlthm exists (that is, an algonthm A that
outputs a hypothesls that is equal to the target concept on a.ll mputs for any n>1, and

i ’any ceE C,;), we say that A meets the exact-ldentlﬁcatlon success cnterla
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2.2.4 Mistake Bourids o

Another way to evaluate the performance of a learmng algorlthm is accordmg to the
mistakes made by the learner in the performance phase of the leammg session. (We
consider an on:line learning algorlthm to always be in the performance phase.) We now

'~ describe two Ways in which this notion has been formahzed

| » Probabxhstrc Mlstake Bound Let D be some probablhty drstnbutlon on the
: instance space. The probabzlzstzc mzstake bound is the probablhty that the learner s

r hypothesw dlsagrees W1th ¢ on the tth randomly drawn mstance from D. Formally,

~ givenanyn > 1 and any ¢ e C,,, the learner’s goal is to output a hypothesrs h such
’«,that the probablhty that h makes a rrustake on the t+ l“ trial is at most p(n)t"”

”for some polynomlal p(n) and 0 < ﬂ

Absolute Mistake Bound: The absolute mistake bound is the worst-case total
number of mistakes made when the learner must make predictions for an&, possibly
infinite, sequence of instandes. (Even if the instance space is finite, repetitions may
occur.) Formally, given any'n > 1 and any ¢ € C,, the learner’s goal is to make at

miost p(n) nﬁStalces for some polynomial p(n). -~

|  See Haussler et al [28] for a dlscussxon of the relatlonshlp between these rmstake-
bound success crxter1a and the good-approxrmatlon crlterxa Observe that whlle we have
glven clear-cut notlons of when a learmng algonthrn succeeds a nice feature of the
predlctlon models is that they provrde a way to cornpare the performance of “good”
algorrthms In partrcular we can compare learmng algonthms that achleve polynormal

absolute rmstake bounds accordmg to the asymptotrc value of their mlstake bounds

‘2.3 Review of Current Models

In thzs sectlon we review the commonly used learnmg models For each model we descrrbe

 how it cornbmes the learner’s interaction with the environment and the requlred guccess
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 criteria. Then in Section 2.4 we present our extended rni‘st‘a‘ke‘-bound model. -

i “2 3 1 Dlstnbutlon-Free Learnmg Model

The dlstnbutlon-free learnmg model mtroduced by Vahant {66] combines the batch set-
k t1ng W1th dxstrnbutlon-free stochastlc instance selection. The succass criteria used by this
vmodel is the good approx1mat10n cntena (w1th hlgh probability) where the distribution
'used to Judge the learner s hypothesxs is the same dlstnbutlon frorn whlch the mstances
_ are drawn - | ' - | '
Puttmg it all together, we get ‘the followmg rnodel The learner is glven access to
1 labeled (posxtlve and negatlx?e) instances of the target concept drawn randomly accordmg

to some uriknown d1str1but10n D over X The learner is also glven as 1nput cand § such
that 0 < ¢,6 < 1. The learner’s goal is to output W1th probablhty at least 1 — 6 a
hypothes1s h that has probablhty at most € of dlsagreemg with con a randomly drawn
' instance from D. In this model, a polynormal time learnmg algonthm must have timeand
sample complex1ty that are polynormal inn, 1 /e and 1/6. I such a learning algonthm‘ "
A exists (that is, an algonthm A meetlng the goal for any n > 1, any c € Cy, any -

dxstrxbutlon D, and any ¢,6), we say ‘that C is Ieamable in the dzstrib'a‘tion -free model.

Thls model is also known as “probably approxxmately correct” (PAC) learning model.

In his paper, Valiant [66] glves eﬁicxent learmng algonthms for the class of mononuals o

k- CNFt and k DNF Sorne of the other classes shown to be efﬁcxently learnable in thls :
“model are k- dec1s1on lists [56], rectangles in n- dlmensmnal space [10], mtersectlon of n
"half planes m 2. d1rnens1onal space [10] Recently, Helmbold Sloan and Warrnuth have
 shown that the nested difference of any concepts known to be PAC- learnable is also
, PAC learnable [31] For the concept classes mentioned above the learnmg algonthms '

output a hypothes1s from the given concept class. However in some cases ‘the learner

~ must use a more expresswe hypothes1s space For example, Pitt and Vahant [52] prove

~ ;that k term DNF is not efﬁcxently learna’ole usxng a hypothesxs from k term DNF unless '

- $Unless stated‘otherwise, assume k is aconstant; S e
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RP = NP. However, ’they‘g“ive‘ an efficient algorithm for learning k-term DNF using
hypotheses from the class k-CNF. There are dual results for k-clause-CNF. Thus the
choice of the hypothesis space may be significant in determining what concept classes are
, efﬁc:ently learnable | " ’ : ‘

Although there are many posxtlve results for this learning model, there are also
many negat1ve results. As we mentioned above,tth‘ere are some représentation dependent
_hardness result Recently, Kearns and Valiant [36] have proved representation mdepen-
ldent hardness results for Boolean formulas, acychc determlmstlc finite automata, and
constant- depth threshold c1rcu1ts These hardness results are based on cryptographxc as-
‘sumptrons Recently Schaplre [58] has shown pattern languages are not PAC-learnable,
’assummg 7’/ poly # N P/ poly Thls reeult holds regardl&ss of the representatlon used
"by the learnmg algonthm One way to overcome these hardnms rasults is to relax the
restnctlon of Iearmng under ‘any dlstrrbutlon [7 38 39] | | | | ‘
| In this rnodel an 1mportant contrlbutlon in charactenzmg what concept classes are
, learnable was made by Blumer et al. [10] We ﬁrst need the followmg definitions. A finite
| set Y c X is shattered by C’ 1f {cﬂ Y | ce C} = 9Y. The Vapmk Chervonenkzs dimen-
sion of C denoted VCD(C), is deﬁned to be the smallest d for whxch 1o set of d- + 1 pomts
J'as shattered by C Bulldmg on the work of Vapmk and Chervonenkls [67], Blumer et al.
:-proved that any PAC learmng algorlthm requlres at least Q(1 ln + 192(91) 1nstances
in the tralnmg phase Furthermore, they proved that the general techmque of ﬁndmg
a hypothes1s con51stent Wlth a set of @(l ln + M In 1) mstances, when feasrble,'
always results in a (poss1bly super-polynomral tlme) PAC learmng algorlthm Thus Cis
PAC learnable (dlsregardmg computatlon tlme) if and only if VCD(C) is ﬁmte§ From
. thls result we see that there are nearly trght bounds on the sample complexrty requlred
for I PAC learnmg The results of Blumer et al assume a ‘model of statzc samplmg where
’the number of examples in the trarmng phase must be mdependent of the target con-

"cept However, L1n1a1 Mansour and RlVCSt [40] have shown that mth dynamzc samphng

“§There are some technical restrictions on the concept classes for ‘which thls"rault" applies.
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~ (i.e. the number of examples may depend on the comiplexity of the target concept) vari-

ous "concept classes with inﬁnite VC-dimension are learnable Essentially,’those concept

'classes with 1nﬁn1te VC- d1rnens1on that are learnahle are those the can be wntten asa

countable union C = C'l U C,U where for each conoept subclass Ca,vep(Cy) £ d.

_’2 3.2 Weak- learnmg Model

> iKearns and Vahant [36] 1ntroduced a weaker model of learnablhty than Vahant s or1g1na1

model Thls model of weak Iearnabzlzty drops the reqmrernent that the learner be able to

B kachxeve arbltrarxly hxgh accuracy, but rather need only output a hypothe31s that performs

: ”shghtly better (by a polynonual fractlon) than random guessmg Thls model uses the
~ batch settlng w1th mstances generated by the dlstnbutlon free stochastlc settlng The
difference from the PAC rnodel is that the success crlterla used is the weak-approxxmatlon
cnterla (w1th hlgh probablhty) Thus we sometlmes refer to Vahant’s orlgmal model as
= the strong-learmng model ’ | _ o : | |
» Thus in the weak- learmng model the learner 1s glven access to labeled (posxtrve and
: ‘inegatlve) mstances of the target concept drawn randomly accordmg to some unknown
' dxstrlbutlon D over X The learner is also glven as mput 6 such that 0 < 6 <1 The
learner s goal is to output w1th probablhty at least 1-6a hypothes1s h that has probablhty

at most l - ;(7)- (for some polynormal p(n)) of dlsagreelng w1th cona randomly drawn

instauce from D If such a learnmg algorlthm A ex1sts (that 1s, an algonthm A meetlng g
T_the goal for any n > 1 any cé€ Cn, any dlStrlb‘uthD D, and any §), we say that Cis

' 4weakly learnable in the dzstrzbutzon -free model In thls model a polynormal-tlme learnmg '

L algorlthm must have t1me and sample complexrty that are polynormal inn and 1/ 6.

' 3 Recently, Schaplre [59] has proved the surpnsmg result that C can be weakly learned '

“in polynonrual tlme 1f and only 1f it can be PAC learned in polynormal time. More

prec1sely, he gives an efﬁc1ent PAC learnmg algonthm for C that uses a weak learnlng o

- algorlthm for C asa subroutme Thus this apparently weak model is in fact equlvalent to

the stronger PAC-model under dxstnbutlon—free instance selection. (If the distribution is
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fixed, the notion of strong and weak approximation are not equivalent. Namely, Kearns
and Valiant [37, 36] have shown that, under a umform dxstrlbutlon on the instance space,
monotone Boolean formulas are weakly, but not strongly, learnable) While Schapire’s
result proves that the concept classes learnable in strong and weak learmng models are
the same, it does not address the questlon of sample complex1ty See Goldman, Kearns,

and Schaplre [21] for a discussion of the sample complexxty of weak learnmg

2.3.3 Prediction Learning Models -
For situations m whlchthe accuracyon predlctmg all ’i"nst‘a’nces is "i(r'npo;rtant : Little-
stone [42] presents an on-line (or mzstake-bound ) learnlng model. This model uses
the on- lme scenario W1th adversary selectlon The success crxterxa used is the absolute
rmstake-bound cr1ter1a In hls thesrs thtlestone [42] descrlbes many efﬁcxent learnmg
algorlthrns workmg under thls model In part1cular, he glvas ‘an algorlthm which learns
the class of linearly separable Boolean functlons with a small absolute rmstake bound.

A natural question to ask is: how does this on-line model relate to the drstnbutlon-free
model? Littlestone [42] describes a reduction for showmg that any prediction algorlthrn
making a polynomial number of mistakes can be converted to an algonthm that PAC-
learns in - the distribution-free model. Thls reduction is performed in two steps. First
it is- shown that the number of equwalence queries needed for exact identification is at
most the absolute mistake bound plus one; each mistake provides a counterexample to
an incorrect hypothesis. Then the following reduction of Angluin [4] is used to show that
an exact-identification algorithm making a polynornial nuinber of equivalenée queries can
be converted to an algorithm that learns ‘in the distribution-free model. Replace the ith
“equivalence query by requesting ¢; = { %(1:1%’-1— : ln2)] random labeled instances. If the
current hypothesis misclassifies any of these ¢; instances then return that instance as‘a
counterexample. Otherwise, reply that the hypothesis is correct. So the probability that
the ith simulated equivalence query will “okay” a hypothesis with error more than ¢ is

at most (1 — €)%. Thus the probability that this technique will ever “okay” a hypothesis
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: with"efror"rnofethan € is at most
S-egrs e s Z 5 S
i=1 Tod=ml T i=1 °

A smnlar reductxon is glven by Haussler, Kearns thtlestone, and Warmuth [28] Over the |

k Boolean domam {0 1}" it is known that if the learner 1s allowed unlimited computatlonal
| ’resources then a concept class is PAC learnable i and only 1f then there ex1sts a predlctlon
algonthrn obtaining a polynormal mistake bound. However, Blum [9] has recently shown
, ‘hat if one-way functions exist, there is a concept class »'over {0 1}* that is efﬁcnently
”AC learnable yet any efﬁc1ent pred1ctlon algonthm makes an exponent1a1 number of
1 mlstakes i L SHEE R I . "
Fmally we note that Haussler, thtlestone, and Warrnuth [29 30] present a sumlar

" probabzhstzc predzctzon learmng model lee the on-lme model this model uses the on-

 line scenano W1th adversary selectlon HOWever, the probablllstlc rmstake-bound success '
‘cntena is used They use this model to analyze learmng algonthms for prechctmg {0 1} .

" \alued functlons over §R"

3 4 Learnmg thh Querles :

We now dlSC‘USS learmng models that use querles to: learn the unknown target concept.

“Vhile there have been many types of querles proposed we focus on membersh1p quenes

end equwalence quenes For a more ‘complete dlscussxon on this toplc, we rtefer the

v reader to Anglum s papers {1, 2 3, 4]." Most work on learmng thh quenes uses the
exact 1dent1ﬁcatlon success criteria. That is, after seelng a ‘polynomial number of la-
~ heled mstances (as specified by the quenes) the learner mmust output a hypothesns that
correctly c1a551ﬁes all instances: Anglum Hellerstem and Karpinski {5] glve a polynomial-
, 'tlme algorithm that exactly 1dent1ﬁes any monotone read-once formula from membershlp

7quer1es 1If equivalence queries are also prov1ded then a larger class of COncepts can be
» exactly identified. For exarnple, there are’ polynomlal-tlrne algonthms that achleve exact

identification for the followmg concept classes: finite state automata {4], pattern lan-
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guages [4], arbitrary read-once formulas [5], and read-once formula demsmn trees [24].
We note that Anglum s algorithm for inferring a finite state automaton cntlcally relies
on the use of a “reset”. Recently, Rivest and Schapire [57] have extended Angluin’s re-
sult:to obtain a randotnized algdrithm'that with high probability infers the giveh finite
state automaton without the use ‘of a reset. In other words, they have limited the use
of arbitrary experimentation (membership queries) to allow the learner to perform only
those experiments that are feasible in the current state. - | :

A learning model ‘thiat is quite similar to learning with membership and equivalence
queries is PAC-learning with membership queries [4]. Here one ku'syes the batch model with
a combmatlon of stochastlc and learner selection.’ Like in the PAC model, the success
‘cnter]a is to output a good approx1mat1on to the target concept with high probability.
Angluin [4] has shown that «an‘y learning algorithm using equivalerice queries to achieve |
exact i‘deﬁtiﬁc‘at"ion‘?méy be modified to learn'in the PAC-model by simulating the equiv-
alence qu‘ér'ies by ‘drawing ‘random examples (as discussed above in Section 2.3.3)." It -
\ follows from this result that any algorithm that achieves exact identification using mem-
fbershlp and equlvalence queries can be modified to obtain an algonthm that PAC-learns

‘with membership querles

2.4 ,;Extended Mistake-Bound Model &0

/’As we saw in the prev1ous sectxon the ways that a learner may 1nteract W1th hlS envi-
ronment and various success criteria have been combmed in many ways yleldmg many
interesting learning models. However, thére are many othér ways to combine these fea-
tures Not all combinations are reasonable: for example, one could imagine having a batch
‘model with dxstnbutlon-free StOChaSth presentation and require that a polynomial-time
algonthm achieve exact identification (with high probablhty).v However, this model is not
interesting for any concept classes. Imagine a distribution in which some instance (that

is not determined by the other instances) is given exponentially small weight. Since it is
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o unllkely that thrs 1nstance “Will be sen ina polynormal s1zed sample, no algonthm could
: achleve exact 1dent1ﬁcat10n thh hlgh probablhty ' '
| Nevertheless there are many mterestmg comb1nat10ns that have not been cons1dered

fWe are partxcularly mterested in an on-lme model w1th the absolute rmstake-bound éri-

o feria. In the next chapter we describe i in some detail why thls combination of features

s appropriate for the problem of learnmg a blnary relation. For now, we Just bneﬂy

i mentlon some of the reasons for choosmg such a model “First of all, unlike the PAC-‘

- *model a rrustake-bound rnodel is appropnate for problems in whlch the instance space

s polynormal-swed in the natural dlmenswn measure. Just as running tlrne is used in

‘ “algonthm analysxs we can use mistake bounds to judge the performance of learnmg :

‘ algonthms However, we want to study the relation between the various presentatlon
" methods: Not surpnsrngly, the number of rmstakes made by a predlctxon algorithm de-
: rpends on the sequence “of mstances presented to the learner. Unhke prevxous ‘work in
| which only" adversary selection has been’ >usedvW1th absolute rmstake bounds, we will
vcornbine the’absolute frnistake-bound success criteria’""with other Selectlon ‘methods.

~“We now formally descnbe the resultmg model which we call the extended mistake-

bound model, The query sequence is a permutatlon T = (a:l,mg, . .,zl x,) of X ‘where

mt is the mstance presented to the learner at the t"‘ trlal ‘We call the agent selectmg the

‘query sequence the dzrector We con31der the followmg du‘ectors

. Learner—-—-— The learner chooses . To select z, the learner rnay use trme polyno- s

_ rrual m n, and all mformatron obtamed in the ﬁrst t - 1 trlals In thls case we say

that the learner is self dzrected

. Helpful Teacher—— A teacher, ‘who knows the target concept and wants to min-
.imize the learner’s mxstakes, chooses .. To select s, the teacher uses knowledge
. of the target concept Ti,ee .,z,_l, and the learner s pred1ctrons on T1,...sTt-1

To av01d allowmg the learner and teacher to have a coordxnated strategy, in this

‘scenario we conmder the worst case rmstake bound over all consrstent learners" In

~“Recall that a learner is consistent 1f, on e‘ve’r‘y‘ trial, there is ‘some concept in C, that agrees ‘with the
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this case we say the learner is teacher-directed.

° AdVersary—-— The adVersary who selected the target concept chooses 7. This
adversary, who tries to maximize the learner’s mistakes, knows the learner’s al-
gorithm and has unlimited computing power. In this case we say the learner is

adversary-directed.

° Réndbm-—— In this model, 7 is seleeted randortﬂy according to a uniform probabil-
| ity distribution on the permutations of X,,. Here the number of mistakes made by
the learner for some target concept ¢ in C, is defined to be the expected number
of mistakes over all possible query sequences. In this case we say the learner is

randomly-directed.

We consider how a prediction algerithm’s performance depends on the director.
Namely, we let MB 2(A,C,) denote the worst casé number of mistakes made by A for any
target concept in C, under any q'ueryv sequence provided by Z. (When ‘Z = adversary,
, MBZ(A,C;,) = M4(C,) as deﬁned by Littlestone [43].) We say- that A is a polynomial

prediction algorithm if A makes each prediction in time polynomial in n.

learner’s prediction, as well as with the labeled instances observed on all the precedi'ng trials.
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Chapter 3
Learning Binary Relations

In this‘chapter we study the ~problem of learning a binary relation (represented‘a‘s a
matrix) when the learner has prior knowledge that there are a limited number of row
types. We study this problem using the extended nﬁstake-bound model introduced in
Chapter2. . | ,

Reca.ll that a bmary relatlon is deﬁned between two sets of objects Throughout
thls chapter, we assume that one set has cardlnahty n and the other has cardmahty m.
‘We also assume that for all possrble pamngs of objects, the predlcate relatmg the two
sets of varxables is elther true (1) or false (O) In thxs chapter we represent the relatlon
asann xm bmary matnx, where an entry contams the value of the predrcate for the
correspondmg elements Smce the predlcate is bmary-valued all entrles in thxs matrix
are either 0 (false) or 1 (true) The two-dzmenszonal structure arises from the fact that
we are learmng a bxnary relation. ‘ ‘

For the sake of comparlson, we now brxeﬂy mentlon some other representatlons One
could represent the relatxon as a ta.ble with two oolurnns, where each entry in the first
column 1s an item from the ﬁrst set and each entry in the second column is an 1tem from
the second set. The rows of the table consist of the subset of the potentral nm pa.rnngs for

thch the predlcate is true Another poss1b111ty is to represent the relatlon as a blpartlte

© - This chapter describes joint resea.rch with Ron Rivest and Rob Schapifé [22].'
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‘graph with n vertioes in one vertex set and m verticae in the other set. An edge is‘plaeed
e between tWo vertices 'kexactly When the ‘p'redicate is true for the corrasponding'items.

If the learner is to have any hope of domg better than random guessmg, there must be

- some structure m the relatlon Furtherrnore sxnce there are so many ways to structure

a blnary relatlon, we g1ve ‘the learner prlor knowledge about the nature of this structure

:“Not surpnsmgly, the learning task depends greatly on the pnor knowledge provrded In
this chapter we lrnpose structure by restrlctlng the matnx to have at most k distinct Tow
'- :types (Two rows are of the same type 1f they agree in all columns ) Now the adversary
cannot force nm rmstakes since to do so may cause the created matrix to have more

~than & row types We define a k bmary—relatzon to be a binary relation for whrch the

pR correspondmg matrix has at most k TOW types Thxs restriction is satisfied whenever

‘there are only k types of ob]ects in the set of n obj Jects bemg con31dered in the relatxon .

o The learner receives no other knowledge about the predlcate forming the relatlon

For the concept class Cnm of k- b1nary-relatlons, the d1mens1on measure is nm, the

; number of entrxes in the correspondlng matnx, ‘and X,.m = {1 n} X {1 ,m} An

; mstance (z _7) is a posmve mstanoe if and only 1f the matnx entry in row i and column j
B isa 1 So in each tnal the learner is repeatedly gwen an instance z from Xﬂ,,, a.nd asked
to predlct the correspondmg matrlx entry After makmg its predlctlon, the' learner is
told the correct value of the matrix entry The learner wishes to rmnumze the number of §
incorrect predlctxons it makes Since we assume that the learner must eventually miake

a predlctlon for each matrix entry, the number of mcorrect pred1ct1ons depends on the‘ ke

s1ze of the matnx

: For thls concept class we prove that any lea.rnlng algonthm ma.kes at least (1-—-B)km+
. n[lg(ﬂk)] - (1 - ﬂ)k[lg(ﬂk)] rmstakes in the worst case for any fixed 0 < ﬂ <1 agamst
; :any query sequence So for ﬂ =1 /2 we get a lower bound of ""‘ + (n - -)]_lgk - 1]
v\_‘on the number of mlstakes made by any Iearner If computatlonal eﬁicrency is not a
concern, , the halvmg algorlthm [6 43] makes at most km + (n - k) lg k rmstakas agamst
“any query sequence (The halvmg algonthm predlcts accordmg to the ma]onty of the
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feasible relations (or concepts), and thus each mistake halves the number of remaining
relations.) | ‘:A o , (

~ We present an efﬁc1ent algorlthm makmg at mOSt km+(n —k) flg k] mistakes with
the learner as the director. We prove a tight rmstake bound of km + (n = k)(k—-1)
in the case that the helpful teacher is the du'ector For adversary directed learning we
present an efficient algonthm for k = 2 that makes at most 2m + n — 2 mistakes, and for
arbitrary k we present an efficient algonthrn makmg at most km + nm mistakes,
We prove any algonthm rnakes at least km + (n k) l_lg kj rmstakes when the adversary is
the d1rector, and use the exrstence of prOJectlve geometnes to 1mprove thls lower bound
to Q(km + (n - k) [lg kJ + rmn{n\/— ,mf }) for a large class of algonthms Flnally, we ‘
descnbe a techmque to slmphfy the proof of expected rmstake bounds when the query
‘sequence is chosen at randorn, and use 1t to prove an O(km + nk\/_ ) expected rmstake
bound for a mmple algonthm (Here H is  the max1murn Hamrmng dlstanoe between any
tworows) : av S e

In the next sectlon we nge a motlvatxng example from the dornam of testmg for :
allergles We use thls example to mot:vate both the restnctlon that the matnx has k
Tow typesvand the use of the extended nustake-bound model We then present general
_upper ¢ and 10Wer bounds on the number of rmstakes made by the learner regardless of the
| du'ector Fxnally, we study the complexxty of learnmg a k bmary-relatlon for self-du'ected

teacher-dlrected adversary dlrected and randomly-dlrected learmng

3.1 Motivation: Allergist Example

In this section we use the follo‘wlng example taken from the domain of allergy testing to
~motivate the problem of learning a k-binary relation.

- Consider an allerg‘ist with a set of patients to be tested for a given set of allergens.
“Each patient is either highly allergic, mildly allergic, or not allergic to any given allergen.

'The allergist may use either an epicutaneous (scratch) test in which the patient is given a
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Epicutaneous |  Intradermal
| (Scratch) | (Under the Skin)
1 Not Allergic | negative ' negative
I Mildly Allergic | ' negative | weak positive
~ | Highly Allergic | weak positive | 'strong positive -

- Figure ‘_371: Summary of testing reactions for allergy testing example. . e

,falrly low dose of the allergen or an zntradermal (under the skm) test in Whlch the patlent

s glven a 1arger dose of the allergen The patlent s reaction to the test is clasmﬁed as

£ strong posztwe weak posztwe or negatwe Flgure 3 1 descrlbes the reactlon that occurs for B

i each cornbmatlon of allergy level and dosage level Fmally, we assurne a strong posmve

k react1on is extremely uncomfortable to the pat1ent but not dangerous

- What optlons does the allerglst have in testmg a patlent for a glven allergen‘? He could

‘ kl_’]ust perforrn the mtradermal test (optlon 0) Another optlon (optlon 1) is to perform

~an eplcutaneous test and 1f it 1s not oonclusrve, then perform an mtradermal test (See
“ Flgure 3 2 for dec1s1on trees descrrbmg these two testmg optlons ) Whlch testmg optlon

- 1s best" If the patlent has no allergy ora mild a.llergy to the glven allergen, then testlng

optxon 0 is best since the patlent need not return for the second test However 1f the v
: 'kpatlent is hlghly allerglc to the glven allergen, then testmg optlon 1 1s best smce the ‘

patlent does not. experience a bad reaction. We a assume the mconvemence of gomg to the

| allerglst tw1ce is approximately the same as havmg a bad reaetlon That is, the allerglst
has no preference to error in a partxcular direction.- thle the allergrst’s ﬁnal goal is
 to determine each patient’s allergies, we conmder the problern of learning the optlmal

test1ng optlon for each cornbmatlon of patlent and allergen

The allergxst mteracts with the envxronment as follows., In each “trial” ‘the‘allergist

_is asked to predict the best testing option for a given patient / allergen pair. He is then |

told the testing results, thus learning whether the patient is not allergic, mildly allergic
L or highly allergic to the given allergen. In other words, the allergist receives feedback as
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Option *0:

Under
the Skin

‘Not "+ =~ Miidly oo Highly
Allergic : Allergic Allergic

“Option *1:

weak
pos.

‘Under
the Skin
Test -

- neg.

“Not’ o Midly o | Highty
Allergic | - [ Aliergic 1L Allergic

Figure 3-2: The testing options availé,ble to th§ allergist.
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to the correct testmg optlon Note ‘that we make no restnctlons on hoW the hypothesm
: ['~1s represented as long as it can be evaluated in polynormal time. In other words, all we
frequlre is that given any patient/ allergen palr, the a.llerglst dec1des which test to perform

ina “rea.sonable amount of time.

How can the allerglst possxbly predlct a patlent s allerg:es" If the allergles of the’
k patlents are completely “random, then there is not much hope. What prior knowledge
: does the allerglst have? He knows that people often have exactly the same set of allergies.
* So there are a set of allergy types” that occur often (We do not assume that the allerglst
.,has a priori knowledge of the actual allergy types ) This knowledge can help gulde the

allergist’s predxctlons

Having spemﬁed the problem we dlSCIlSS our ch01ce of us1ng the extended mlstake- .
bound model to evaluate learmng algonthms for this problem First of all observe that
we want an on-line model. There is no trammg phase here, the allergist wants to predict
’, ~the correct testmg option for each patient/ allergen pair. Also we expect that the allerglst
| has tlme to test each patlent for each allergen, that i is, the mstance space is polynormal—

: s1zed Thus as dlscussednn Section 2.4 the dlstnbutlon-free rnodel is not approprlate

" How should we ]udge the performance of the learmng algonthm? For each wrong
predxctlon made, a patxent is 1nconvemenced thh makmg a second trip or having a
~bad reaction. Slnce the learner wants to glve all patlents the best poss:ble service, he
f‘strlves to minimize the number of mcorrect predlctlons made. Thus we want to use
: ,'the absolute rmstake—bound siiccess crlterron Namely, we ]udge the performance of the
; learning algonthm by the number of mcorrect predlctlons made during a learmng session

in which he must eventually test each patlent for each a.llergen

Up to now, the standard on-lme model (usmg absolute rmstake bounds) appears to be
the approprlate model. We now dxscuss the selection of the instances. Since the allerglst
~ has no control over the target relation (i.e. the allergles of his patients), it makes sense to

| 3 » view the feedback as coming from an adversary. However, do’ we really want an adversary

to select the presentation order for the instances? It could be that the allergist is working
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for a cosmetic company and, due to res'trictions of the Food and Drug Administration
‘and the cosmetic company, the allergist is essentially told when to test each person for
‘each allergen In this case, it is appropnate to have an adversary select the presentatron
order. However, in the typlcal situation, the allergist - can decrde in what order to perform
the testmg so-that he can make the best predrctrons posmble In this case, we want to
allow the learner to select the presentatlon order. One could also imagine a situation in
which an intern is being gmded by an experlenced allergrst and thus'a teacher helps to
select the presentatlon order Fmally, random selection of the presentation order may
provide us with a better feeling for the behavior of an algorithm. Thus the learning

model that is most appropriate for this example is the extended mistake-bound model.

3.2 General Mistake Bounds
In this section we begin our study of learning k‘binary relations by presenting general
lower and upper bounds on the rmstakes made by the learner regardless of the director.
’ Throughout this sectlon, we use the followmg notatlon We say an entry (z, j) of the :
. matrix (M,,) is known if the learner was prevrously presented that entry. We assume
,without loss of generality that the learner is never asked to predict the yalue of a known
entry. We say Tows ¢ and z are consistent (glven the current state of knowledge) if
Mi; = My; for all columns j in whrch both entries (¢ ]) and (#',7) are known. i
We now look at general lower and upper bounds on the number of rmstakes that
apply for all drrectors Clearly, any learnmg algonthm makes at least km rmstakes for
some matrxx, regardless of the query sequence The adversary can divide the rows into k
-groups and reply that the predrctlon was incorrect for the first colurnn quened for each

entry of each group. We generalize this approach to force mistakes for more than one

row of each type.

Theorem 3.1 For any 0 < B <1, any prediction algorithm makes at least (1 —B)km +
n|lg(Bk)| - ~(1- ﬂ)k[lg(ﬂk)] mistakes regardless of the query sequence. .
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o]

. (1-3)1&{

5 'Figure 3-3: The final matrix created by the adversary in the proof of Theorem 3.1. All
~entries in the unmarked area will contain the bit not predlcted by the learner. That is,

‘a mistake i is forced on each entry 1n the unmarked area. All entries in the marked area
are 0 '

T_Proof The adversary selects 1ts feedback for the learner s predlctlons as follows For
- ‘each entry in the first [lg(,B k)_] columns the adversary rephes that the learner s response is

. 1ncorrect At most ﬂk new row types are created by thls a/ctlon L1kew1se, for each entry

L in the ﬁrst (1 ,B)k rows the adversary rephes that the learner s response is mcorrect “This

, creates at most (1 ﬂ)k new row types The adversary makes all remammg entnes m the ,

‘matnx 0. (See Fxgure 3.3. ) The number of rmstakes is at least the area of the unmarked .
‘~ reg10n "Thus the adversary has forced at least ( 1 - ﬁ)km + n[lg(ﬂk)j (1 ﬁ)k[lg(ﬁk)_l
| ,rmstakes whlle creatmg at most ﬂk + (1 - Bk = k row types ot | | m
. By lettmg ﬁ = Q- we obtaln the followmg corollary e G R

B 'Corollary 3.1 Any algorzthm makes at Ieast dm +(n—5)|_lg k- 1 ] mtstakes in the worst

* case regardless of the query sequence.

If computatlonal efﬁc1ency is not a concern, for all’ query sequences ‘the halvmg algo- -

 rithm [6, 43] prov1des a good rmstake bound.
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’Observation 8.1 The halving algorithm makes at most km=+n gk mistakes in ihe‘ worst
case. . ‘
Proof: We use a simple couniting argument on the size of the concept class C,. . There
‘are 2™ ways to select the k row types, and k" ways to assign one of the k row types
to each of the n rows. Thus |Cpm| < 2"k, Littlestone [43] proves that the halving
algorithm makes at most lg |Crm| mistakes. Thus the number of mistakes made by the
halvmg aigonthm for this concept class is at most 1g(2* k™) < km + nlg koo ,‘ .
In the temainder of this section we study efficient predlctlon algorithms" de31gned
to perform well against each of the directors. "For some directors, we are also able to
‘prove information-theoretic lower bounds that are better than that of Theorem 3.1. In
~Section 3.3, we consider the case that the query sequence is selected by the learner. We
‘study the helpful teacher director in Sectlon 3.4. In Section 3.5 we consider the case of
an adversary as the director. Finally, in Sectlon 3.6 we consider when the instances are

‘drawn at random acoordmg to a uniform dlstrlbutlon on the instance space.

3.3 Self-dlrected Learnlng

In this sectlon we present an efﬁczent algorlthm for learmng the matrlx for the case in

which the learner is the dn‘ector

’Theorem 3. 2 There e:vzsts a polynomzal predzctzon algomthm that makes at most km +

| (n - k) [lg k_] mzstakes under self dzrected learmng

’Proof The query sequence selected s1mp1y speclﬁes the entnes of the matrlx in row-’
major order. The learner begms assuming there i is only one row type. Let k denote the
learner’s current estimate for k. So 1n1t1ally k= 1 For the ﬁrst row, the learner guesses
each entry (ThlS row becomes the template for ‘the first row type.) Next the learner
- assumes that the second row is the same as the first row. If he rnakee a mistake then
the learner revises his estimate for & to be 2, ‘guesses for the rest of the row, and uses

that row as the template for the second row type. In general to predlct M;;, the learner
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sfpredlcts accordmg to a majority vote of the recorded row templates that are consmtent
: with row § (breakmg ties arbitrarily). Thus, if a mlstake is made, then at least half of the
:}row types can be eliminated as the potent1a1 type of row i. I more than llg kJ rmstakes ‘
~.,’are made ina row, then a new row type has been found. In thls case, k i is incremented,
: :the learner guesses for the restv,of the row, and makes this row the template for Tow type
B L e e e s |
, How many rmstakes are made by thls algonthrn" Clearly, at most m mlstakes are
' ';"*xade for the ﬁrst row found of each of the k types. For the remaining n — k rows, since
- <k, at ‘most [lgkj mistakes are made. S i LT ‘ ‘, .
Note that th1s algorrthm need not know ka prlon Furthermore, 1t obtains the same
r,,r.é:”*stake bound even if an adversary tells the learner Wthh row to exarmne, -and in what
coder to predict t the columns provided that the learner sees all of a row before gomg on to
Cihe next We note that this upper bound is w1th1n a constant factor of the lower bound
i f’orollary 3.1. However, this problem becomes harder if the adversary can select the

rery sequence w1thout restrlctlon

4 : rTeacher-d‘irec't‘ed Learnlng

' this section we present upper and lower bounds on the number of mlstakes made under
the helpful teacher d1rector Recall that in this model we conmder the worst case rmstake
3> 7und over all cons1stent learners Thus the questlon asked here is: what is the rmmmum
; number of matnx entrxes a teacher must reveal so that there is a umque completlon of
o the matrxx" That is, untll there 1s a umque completxon of the partxal matrrx, a rmstake .
, could be made on the next predlctlon L ‘ e ,
B We now prove an upper bound on the number of entrles needed to umquely deﬁne
' the target ‘matrix. o e ' '
~ Theorem 3.3 The number of mzstakes made wzth a helpful teacher as the dzrector is at

most km + (n - k)(k - 1)
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Proof: First, the teacher presents the learner wrth one row of each type. For each of
the remaining n — k rows the teacher presents an entry to drstmgursh the given row from
each of the £ — 1 mcorrect row types After these km 4 (n — k)(k — 1) entries have
been presented we claim that there is a umque matrxx with at most k row types that i is
consistent with the partial rnatrlx Since all k dlstmct row types have been revealed in
the first stage, all remaining rows must be the same as one of the first k rows presented
However each of the remammg rows have been shown to be inconsistent W1th all but one
of these k row templates. . T | .

Is Theorem 3.3 the best such result possﬂale" Clearly the teacher must present a row
of each type But 1n general is it really necessary to present k— 1 entrxes of the remalmng
‘rows to umquely deﬁne the matm(? We now answer this questlon in the afﬁrmatlve by

,presentmg a matching lower bound.

Theorem 3. 4 The number of mzstakes made with a helpful teacher as the director is at
least min{nm, km + (n —k)(k=1)}. ' |

Proof: The adversary selects the fOHOWIDg matnx The first row type consist of all
zeros.  For 2 <z< mm{m +1,k}, row type z contalns 72 zeros followed by a one,
followed by m—z 4 1 zeros. The first k rows are each assxgned to be a dlfferent one of the
k row types. Each rernammg TOW is assrgned to be the first row type. (See Figure 3-4.)
Until there is a unique completion of the partial matrix, by definition there exists a
consistent learner that could make a mistake. Clearly if the learner has not seen each
column of each row type, then the final matrix is not umquely defined. ThlS part of the
argument accounts for km mlstakes. When m 41 > k, for the remaining rows, unless all
of the first k ~1 columns are known, there is some row tkype besides the first row type
that must be consistent with the given row. This argnmen't accounts for (n',— k), -1)
mistakes. Likewise, when m + 1 .< k, if any of the first m columns are not known then
there is some row type besides the first row type that must be consistent with the given
row. This accounts for (n —]c)mﬂ-rnistakes.f Thus the total number of mistakes is at least

min{nm, km + (n — k)(k - n}. | o ey s Coom
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000000000
. J|1o0000000
3w 1010000000
9P 11001000000
000100000
000000000

Bfooooooooo

Frgure 3-4: The matrix created by the adversary agalnst the helpful teacher drrector
, In thrs exa.mple, there are 5 row types whrch appear 1n the first ﬁve rows of. the rnatrlx

Due‘ to the requirement »tliat '.rnistake bOunds'in”’the teaeheerirectéd case apply to all
consistent learners, we note that it"'ispossible to get mistake bounds that are not as good
~as those obtained when the learner is self-dxrected Recall that in the prevxous section,

; ~we proved a km+ (n -k) lgk| rrnstake bound under self-drrected learnmg ‘This bound is

‘better than that obtalned with a teacher because the learner uses a ma]onty vote among :

“the known row types for makmg predrctlons However, a consrstent learner may use a

: mznorzty vote and could thus make km +(n— k)(k = 1) m]stakes

3.5 Adversary-directed Learning ; it

5 In this section we derive upper and lower bounds 6‘n the nuinber of mistakes made vvhen ‘

‘an adversa.ry is the director. We ﬁrst present an mformatlon-theoretrc lower bound on

the number of nustakes an adversary can force the’ learner to rnake Next we present

- an efficient predlctlon algorrthm that achleves an optlmal mistake bound if k <2 Next '

- we consider the related problem of computing’ the rmmrnum number of row types needed ~

to complete a partlally known matrix. We then consrder learnmg algonthms that work

- against an adversary for arbrtrary k.

e
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We now present an information-theoretic lower bound on the number of mistakes
made by any prediction algorithm when the adversary selects the query sequence. We

obtain this result ’by modifyingr the technique used in Theorem 3.1.

Theorem 3. 5 Any predzctwn algorzthm makes at least rmn{nm km + (n — k) llg k]}

mzstakes agamst an adversary-selected query sequence.

Proof: The adversary starts by presenting all entries in the first {lg k| columns (or m
columns if m < ]_lg k]) and replymg that each predlctron is incorrect. If m > g &},
this step causes the learner to make nl_lg k _| mlstakes Otherwrse, thls step causes the
lea.rner to ma,ke nm rmstakes Each row can now be classrﬁed as one of k row types.
Next the adversary presents the remaining columns for one row of each type, again
replying that each’ predlctron is incorrect. For m > [lg k| this step causes the learner to
make k(m — |Ig k]) additional mistakes. For the remaining matrix entrles, the adversary
replies as dictated by the completed row of the same row type as the given row. So the
number of mistakes made by the learner is at least rmn{nm n[lg k] + km = k|lgk|} =

n'un{nmkm+(n—k)[lgkj} o k s .

3.5.1 SPecral Case' k=92

We now consrder efﬁcrent predxctxon algorrthms for learnmg the matrlx under an
adversary-selected query sequence. (Recall that if efﬁcrency is not a concern the halvmg
algorithm makes at most km + (n —k)lgk rmstakes ) In this section we con51der the case

that k < 2 and present an eﬁicrent predxctlon algonthm that performs optlmally

" Theo‘rem”"3.6~ There ezists a polynomial prediction algorithm that makes at most 2m +

n — 2 mistakes against an adversary-selected guery sequence for k=2 .-

Proof: "The algorlthm uses a graph G’ whose vertlces are the rows of the matrix and that

v1n1t1a11y has no edges To predrct M,, the algorrthm 2 colors the graph G and then

1. If no entry of column 7 is'’known, it guesses randornly
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fogure 3-5: The situation occurring ifa case . 3 mistake does not reduoe the number of

~ connected components of G. The thick grey edges and the thick black edge show the
~cycle created in G Let € (shown as a thlck black edge) be the edge added to form the
cycle S LT k , :

. 2. Else if every known entry of column j is zero'(res‘pectivvely, one), it ~guesses Zero

~ (one).

. 3. Else it finds a row ¢’ of the same color »as z'iand‘knovyvn in column j, and guesses

My;.

k Fmally, after the predlctlon is made and the feedback recelved the graph Gis updated’
by addmg an edge w to G for ea/ch row 2’ known in column ] for Whlch M,J ;é M, e Note o

: that one of the above cases always apphes Also, smce k = 2 1t w1ll always be pos51ble

to find a 2 colormg

How many rmstakes can th1s algonthm rnake" It is not hard to see that cases 1 and 2 ‘

each occur only once for every column, so there are at most m rmstakes made in each of
these cases. Furthermore the first case 2 mistake adds at least one edge to G. We now
v ‘argue that each case 3 mistake reduces the number of connected components of G by at
k y~least 1. We use a proof by contradlctlon That is, assume that a case 3 rmstake does

; not reduce the number of connected components Thus 1t follows that the edge e =T10;

 added to G’ must form a cycle (See Frgure 3-5.) We now separately consider the cases

that this cycle contains an odd number of edges or an even number of edges.

T S S
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e Case 1: Odd-length cycle. Since G is assumed to be 2-colorable, this case

cannot occur.- -

o ’Celse: 2: Even-length cycle. ‘Before adding e, since v; and v, were connected
‘b‘y an odd “mim’ber" 'ofv edges, in any legal 2-coloring they mﬁst have been different
colors ‘Since Step 3 of the algorithm picks nodes of the same color, an edge could

‘have never been placed between v, and v,. Thus we again have a contradrctron

In both cases we reach a contradiction, and thus we have ‘shown that after every case 3
mistake reduces the number of connected components of G. Thus after at most n — 2
case 3 mistakes, G must be fully connected and thus there must be a unlque ‘2-coloring“‘
of G and no more rmstakes can occur. Thus ‘the worst-case number of mlstakes made
by thrs algorrthm is 2m+n 2 k R e - R .
Note that fot k = 2 this upper bound ma.tches the mforrnatlon—theoretlc lower bound
of Theorem 3.5. We also note that if there is only one row type then the algonthm glven
in Theorem 3.6 makes at most m mistakes, matching the information-theoretic lower
boundl | 7
- An intéresting theoretical ‘qneetion is to find a linear mistake bound for constant £ > 3
when provided with a k-colorability 'o'racle' ‘However,-such an approach would have to
be greatly modlﬁed to yleld a polynormal predxctlon algonthrn since a polynormal-tlme
k-colorabrhty oracle exists only 1f P = N 7J Furthermore, even good polynomxal tune
approxrmatlons to a k- colorabxhty oracle are not known [8 41] | BRI
| The remaxnder of thrs sectron focuses on de51grnng polynormal predrctlon algonthmsk
for the case that the matrrx has at least three row types One approach that rnay Seem
prormsrng is to make predlctrons as follows Compute a matrrx that is consrstent wrth
all known entrres and that has the fewest possrble row types Then use thrs matrlx to
make the next predrctron We now show that even computmg the mrnrmum number of

row types needed to complete a partrally known matnx lS JV ’P-complete Formally, we

' «*Two‘2-colorings under renaming of the colors are considered to be the same. -
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2] loj1
3111 1] |1
5. 1] 10] |1
6 , 0
1] 1] [1] [0

Figure 3-6: An example of the reduction used in Theorem 3.7. The graph G is the
 instance for the graph coloring problem. The partial matrix M is the instance for the
. matrix complexity problem. We note that there exists a matrix that is an completion of

M that uses only three row types. The correspondmg 3-coloring of Gis demonstrated |

by the node colormgs used in G

“deﬁne the matriz k- cOmple:uty problem as’ follows glven ann xm ‘binary matnx M

' that is partlally known decide if there is some matrrx w1th at rnost k row types thatis

consistent with M. The matrix k-complexxty problem can be shown tobe N ’P-complete
by a reduction from graph k colorabxhty for any ﬁxed k > 3
; "'I‘heorem 3 7 For ﬁzed k > 3 the matrzz k complezzty problem is N ’P-complete

' Proof We use a reductlon from graph k colorabxhty leen an mstance G (V E) of

graph k colorablhty We transforrn it mto an mstance of the matnx k-cornple)nty problem

‘ Let m = n = IVI For each edge {v,,v,} € E we add entnes to the matnx 80 that TOW i |

; ,and row _1 cannot be the same row type Specxﬁcally, for each vertex v., we set M,, = 0 ‘

'( »and M;; i = 1 for each nelghbor vJ of v, An example demonstratmg thlS reductlon is ‘given

in Flgure 3- 6

E We now show that there 1s some rnatrlx of at most k row types that is consxstent |

'thh thlS partlal matnx 1f and only 1f G is k-colorable We ﬁrst argue that if there is ,

a matrix M’ consistent with M that has at most k row types then G is k- colorable
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By constructlon, if two rows are of the same type there cannot be an edge between
the correspondmg nodes So Just let the node color for each node be the type of the
corresponding row in M. i SRR S | - S
We now argue that 1f G is ltéeoioteble, then thereexxstsa matrix M’ conmstentmth
M that has at ‘most k row types. By the construction of M , if a set of vertices are the
same color in G then the corresponding rows are consistent with each other. Thus there

exists a matrix with at most k row types that is consistent with M . ]

3 5 2 Row-ﬁlter Algorlthms

In thls sectlon we study the performance of a whole class of algonthms de31gned to learn
a matrix with arbitrary complexxty k when an adversary selects the query sequence. We
say that an algorithm A is a row-filter :algonthm if A makes its prediction for M;; strictly
as»a;ffunction of j and all entries in the set I of rows eonsietent with row z and defined
incolumn j. That is, A’s predict{ion is f(I,j) where f is some (possibly probé.bilistic)
function. So, to make a prediction for M;;, a rOw-ﬁlter algorithm considers all rows that
could be the same type as row ¢ and ’whose'value for column j ie known, and uses these
rows in any way one could imegine to make a prediction. For example it could take a
majority vote on the entries in column j of ail rows that,are consistent with row 7. Or,
of the fows defined in column j, it could select the row that has the most known values
in common with row i and predict accordingkkto its entry in column j. We have found
that many of the prediction algorithms we consxdered are row-filter algorlthms |
Consider the simple row-filter algorxthrn, ConsMa]orztyPredzct in which f (1,7) com-
putes the majority vote of the entrxes in column j of the rows in I (Guess randomly in
the case of a tie.) Note that C'onsMa]orztyPredzct only takes tlme linear in the number
of known entnes of the matnx to make a prediction. We now give an upper bound on

the number of rmstakes made by ConsMa]orztyPredzct

- Theorem 3.8 The algorithm ConsMajorityPredict maices at ‘most km + n,/(k— 1)m

mistakes against an udversary-selected query sequence.
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‘Proof For all 7 let d(z) be the number of rows cons1stent thh oW i. We deﬁne the
| : potentzal of a partlally known matrix to be <I> Z,_l d(z) We ﬁrst con31der how much

gthe potentlal functlon can change over the entxre learmng session.

ILemma 3 1 The potentzal functzon o decreases by ‘at most -’5-—n2 durzng the leamzng

e fsesszon '

) -‘Proof Inmally, for all Z, d(z) '-—k n. So ‘I’mn = n2 Let C’(z) be the number of rows
z < k. By deﬁmtlon, Dot = Zz_l C(:z)2 Thus our goal is to |
minimize 3%, C(z)2 under the constraint that Zz_l C’(z) = n. Usmg the method of

of type z for 1 <
’ Lagrange multipliers we obtaln that <I>ﬁml is rmmrmzed when for all z,C (z) =n / k Thus
‘Qﬁna] > (n/k)2k—~n2/k So A@ (I,m“ —(I>ﬁml < n2____ ,_ k_.k;l 2 S i
' Now that the total decrease in @ over the learmng session is bounded we need to
determme fiows many nustakes can be made wrthout % decreasmg by more than k= L E=1p2 We
" begm by notmg that @ i 1s strlctly decreasmg Onee two rows are found to be 1ncons1stent '
. | they remain inconsistent. So for each i i, d(i) is stnctly decreasmg, and thus & is stnctly ,
‘decreasmg So to bound the number of mistakes made by ConsMaJorztyPredzct we must |
‘compute a lower bound on the amount <I> is decreased by each rmstake Intultlvely, one
_expects ? to decrease by larger amounts as more of the matnx is seen. We formalize thls
intuition in the next two lemmas For a glven row type z, let B(],Z) denote the set of

| 'matnx entries that are in column j of a row of type z.

, L.'emma 3.2 T he r‘ mistake made when predzctzng ‘an entry in B(J,z) decreases ® by

at least 2(r - 1)

' Proof Suppose that this mlstake occurs in predlctmg entry (z, ]) where row iis of type
'z Consider all the rows of type 2. Sincer—1 rmstakes have occurred in column Js
 atleast r —1 ‘entries of B(], ) are known ‘Since ConsMa]omtyPredzct is a row-filter
" algonthm these rows - must be in I Furthermore, C’onsMa]orztyPredzct uses a majority

voting scheme, and thus if a rmstake occurs there must be at least r — 1 entries in (and ’
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thus consistent with row 7) that differ in column J with row 3. Thus if a mistake is ‘made,
- row 1 is found to be inconsistent with at least r — 1 rows 1t was thought to be cons:stent
with. When two previously consistent rows are found to be 1nconsrstent D decreases by
two. Thus the total decrease in & caused by the rt rmstake made when predlctmg an
entry in B(j,z) is at least 2(r— 1).. T R Y s LT [ ]

. From Lemma 3.2, we see that the more entries known in B(], ) the‘greater,the
decrease in <I> for future,rmstakes on such entries. So,:mtn’l’tlvelys:t appears that the
adversary can .rnaximize the number of mistakeé made by the learner by balaneing the
number of entries seen in B( j,2) for all § and z. We prove that this intuition is correct
and apply ‘it to obtain a lower .bound on the amount ® must have decreased /afterthe‘

learner has made p mistakes.

Lemma 3 3 After p mzstakes are made, the total decrease in <I> is at least km ( - 1)

Proof: \From Lemma 3.2, after the r** made in predlctlng an entry from B( ],z), the
total decrease in @ from its initial value is at least Z re12(z—1) > (r—1)>% Let W( 7,2)
be the number of mistakes made i in ‘column j of rows of type 2. The total decrease in @
is at least ‘
. e m ok
D EZ(W(J’Z)_]')
o g=lem1
“subject to the constraint E;’f__l kW3, 2) =
. Using the method of Lagrange m‘ultlphers, we obtain that d is ‘minimized when
W(j,z) = + for all j and 2. So the total decrease in is at least . |
m ik :
EEE -
i=1e=1 i
o m
" "We now complete the proof of the theér“e’rn. Combining Lemma 3.1 and Lemma 3.3
along with the observation that ® is strictly non-incressing, we have shown that =

—— <
km(km*f 1) =TF "o
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B Thls 1mphes that u < km +nm o ErAEnG S e T e e g

We note that by usmg ‘the simpler argument that each rmstake except for the ﬁrst o

i thistakein each oolurnn of each row type, decreasee <I> by at least 2, we obtain 2 a km n2 |

: : 'rmstake bound for any row-filter a,lgonthm Also, Manfred Wa:rmuth [68] has mdepen-
, ‘dently glven an algorlthm, based on the wexghted majonty algonthm of thtlestone and
- Warmuth [44], that makes at most O(km + nm) ‘mistakes in the worst case. War-

; muth’s algonthm bmlds a complete graph of n vertices where row i corresponds to vertex
E v, ‘and all edges get an 1n1t1al welght of 1. To predlct a value for (z, _7) the learner takes a
i welghted majority of all actlve nelghbors of v; (vg i 1s actwe if Mk, is known) After receiv-
ing feedback the learner sets the wexght on the edge from v, to’ vk to be 0if Mk, ;é M;;.
j'Fmally, ifa rmstake occurs the learner doubles the welght of (v,,vk) 1f Mk, = M,, (1 e. "
the edges to nelghbors that predlcted correctly) We note that thls algorlthm is not a
row-ﬁlter algonthm See Appendrx A for deta,lls of th1s algorxthm and its analy51s
Does C’onsMayorztyPredzct g1ve the best performance poss1ble by a row-filter algo-
rnthm? We now present an mformatmn theoretlc Tower bound on the number of mistakes

- ran adversa,ry can force agamst any Tow- ﬁlter algonthm e

Theorem 3.9 Letp be a pnme and let m (p + p + 1) Any row-filter algorzthm for :
learnmg a 2n X m matriz with m > n and lc >2 makes at least n(p +1) = Q(n\/ )

mistakes when the adversary selects the query sequence

| Proof We assume that the adversary knows the lea.rner s algorlthm and has access to |
any random bits he uses. (One can prove a sumlar lower bound on the expected rmstake
‘ bound when the adversary cannot access the random blts ) |

Our proof depends upon the ex1stence of a pTOJectzve geometry I‘ on m points and‘ :
- khnes [13]. That i is, there e)c]sts aset of m pomts and a set of m hnes such that each line
contains exactly P + 1 pomts and each point is at the mtersectlon of exactly p+ 1 lines.
: Furthermore any palr of hnes mtersects at exactly one pomt and any two pomts deﬁne
~exactly one line. Figure 3-7 show_s a matrix representatlon of such a geometry; an “x” in

’entry (2,7) indicates that point j is on line i. We use the first n lines of .
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x[x| [x]
X|x] |X
x| x| |x
x|x X
X Ix|x
x| [x]x
X X X

Figure 3-7: A“projective geometry forp=2,m="1.

' The matrix M consrsts of two oW types the odd’ rows are ﬁlled thh ones and the
even rows with zeros. Two rows of M are ass:gned to each line of I. (See Flgure 3-8). We
now prove that the adversary can force a rmstake for each entry of [. The adversary s‘
query sequence mamtalns the condxtlon that an entry (z J) is not revealed unless lme
fz / 2'| of T contams pomt J In partlcular, the adversary w1ll begm by presentmg one
entry of the matrlx for each entry of I" We prove that for each entry of T the learner
must predlct the same value for the two correspondmg entnes of the matrlx Thus the
adversary forces a rmstake for the n(p+ 1)= Q(nﬂ entnes of F The rernammg entnes

of the matrxx are then presented in any order

Let I be the set of rows that may be used by the row-ﬁlter algonthm when prednctmg
entry (22, 7). Let I’ be the set of rows that may be used by the row-ﬁlter algonthrn when
predicting entry (22 -1 2 3)- We prove by contradmtlon that I = I, If I # I’ then it must
be the case that there is some row r that is deﬁned in column ] and cons1stent w1th row
2z, yet inconsistent. w1th row 2i — 1. By deﬁmtlon of the adversary s query sequence it
‘must be the case that lines {r/2] and f(22 - 1) /2] =1 of T contain point J. ‘Furthermore,
since (25 — 1,7) is being queried, that entry is not known. Thus rows r and 2i — 1 must
“both be known in some other ‘columnj' since they are known to- be inconsistent. Thus

since only entries in I' are shown, it follows that lines [r/2] and iof T also contain point

4’ for j' # j. So, this implies that hnes [r/2] and 3 of T must intersect at two points
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.Flgure 3- 8 The matrix created by the adversary in the proof of Theorem 3. 9. The
_-shaded regions correspond to the entries in the first n lines of I'. The learner is forced to
‘take a mistake on one’ of the entnes in each shaded rectangle B “

5g1vmg a contradlctlon Thus I I’ and 80 f(I , ]) = (I’ , _7) for entry (2:, j) and entry

o (2z - 1, ]) Slnce the Tows dlﬁer in each column the adversary can force a rrustake ot one -

L pof these entrles Smce the adversary ha.s access to the random blts of the learner, he can

‘ compute f(I , ]) Just before makmg hls query, and ask the learner to predlct the entry
for ‘which the mrstake W111 be made Thls procedure is repeated for the palr of entrles ;
ocorrespondmg to each element of T. B T B . m
‘ We use a similar’ argument to get an Q(m\/°) bound for m < . Combmed with
i the lower bound of Theorem 35 and Theorem 3. 9 we obtain a Q(km ¥ (n - k) |_lg k_| +
k rmn{n\/— m\/_ }) ower bound on the number of nustakes rnade by a row-filter algo—

rxthm

Corollary 3. 2 Any row-ﬁlter algorzthm makes Q(km+(n—k) l_lg kj +rmn{n\/— m, m\/— })

* mistakes agamst an adversary-selected query sequence

- Comparing this lower bound to the upper bound proven for ConsMa]omtyPrcdzct we see

- that for fixed k the mistake bound of C’onsMa]orztyPredzct is wrthm a consta.nt factor of
'optlmal ; = '

. Given this lower bound, one may question the 2m+1n -2 upper‘boundylfor k= 2 given
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in Theorem 3 6 However, the algorlthrn descrlbed is not a row-ﬁlter algorlthm Also
compared to our results for the learner selected query sequence, it appears that allowmg

the learner to select the query sequence is qulte helpful

3.6 Rsadc‘,nﬂy-direaea Learning

In th1s sectlon we con51der the case that the learner is presented at each step w1th one of
the remalmng entries of the matrix selected umformly and mdependently at random. We -

' present a predrctron algorlthm that makes O(km + nk\/— mistakes on average where H ,

is the maximum Harmmng dlstance between any two rows of the matrix. (The Hamrmng o

distance between two rows is the number of entries on whlch they dlsagree) We note
‘that when H = = Q%) the result of Theorem 3. 8 supersedes this result. A key result of
this section is a proof relating two different probabilistic models for analyzing the mistake
bounds under a random presentation. We first consider a simple probabilistic model kin
which the requirement that ¢ matrix entries are known is simulated by assuming that
each entry of the matrix is seen independently with probability # ‘We then prove that
‘any upper bound obtained on the number of mistakes under this simple probabilistic
‘model holds under the true model (to within a constant factor) in which we have eﬁcactly
t entries l'known This result is eXtremely useful since in the true model the dependencies ¥
among the probabrhtles that matrix entries are known makes the analysis s1gn1ﬁcantly
“‘more difficult. o ‘

We define the algorithm RandomConsistentPredict to be the row-filter algorithm
where the learner makes his prediction for M,-,-"b& choosing one row i’ of I uniformly
at tandom and predlctmg the value My i (If I is empty then RandomConszstentPredzct

makes a random ¢ guess )

Theorem 3.10 Let H be the mazimum Hamming distance between any two rows of M.
Then the ezpected number of mistakes made by RandomConsistentPredict 'is'O(k(n\/ﬁ +
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k Proof Let Ut be the probab1hty that the predlctlon rule makes a rmstake on the (t +1)st
.step That is, U, is the chance that a predlctxon error occurs on the next randomly selected
~entry given that exactly t other randomly chosen entnes are already known. Clearly, the

expected number of mlstakes is }:t s Ut, where .S' = nm. Our goal is to find an upper

r bound for this sum.

The condition that exactly t entnes are known makes the oomputatlon of U, rather
,messy smce the probabxhty of havxng seen some entry of the matrlx is not 1ndependent
of knowmg the others Instead we compute the probablhty Vi of a mistake under the
, s1mpler assumptlon that each entry of the matrxx has been seen W1th probablhty t/ S
k' mdependent of the rest of the matnx We ﬁrst compute an upper bound for the sum

f:ol Vt, and then show that this sum is w1th1n a constant factor of Ets_"ol

| Lemma 3.4 T521V; = O(km + nkvE).
: Proof Fix ¢, and let p =t / S. Also, let d(z) be’ the number of rows of the same type as
 TOwW %. ' ' Lt
k By deﬁmtlon, V,is the probabrhty of a nnstake occurrmg when a randomly selected

‘inknown entry is presented, given that all other entries are known with probablhty p.

~ Since each entry (z, ]) is presented next with probablhty 1 /S’ it follows that-
'k'Vtk"—ZR,,;k\v
where R;; is the probablhty of a mistake occurrmg, glven that entry (z, _7) is unknown
;and presented next. el e
. If d(i) = 1, then we use the trivial bound R,J <1

Otherwxse let I,J be the random varlable descrlbmg the set of rows consmtent with

TOW % and known in column j. Then R;; is the probablhty that elther I is empty, or

that 1;; is not empty and a randomly selected row 7 from I i 18 such that M,J # M,:,

The chance that I;; = 0 is at most the chance that I,J contains no row of the same

" ,-type as i. This latter probab1hty is just the chance that none of the d(z) 1 rows of the

~ same type as ¢ have been seen in column 7 Wthh is eas11y computed to be (1 — p)d(')"l

T T

B T

I T T P
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If I,; # 0, then a row from Iij is randomly selected. Let ¢ be a random variable
descrlbmg the umformly random choice of one of the n rows of the matnx (Note that ¢

is chosen from among all n rows. ) Then the chance of error is

TN R ij L;
Pr[M,; ;é‘M;,-if"e Ij] = Pr[MeJPflg-lE I/\;]ee ]

e DogiMaam, Prli € L]
) ‘ R s Et'#l PI‘[Z E I'J] ; PR
Note that if ¢ and ¢ are the same type then Pr[ € I;] = p, the chance that (z ]) is

" known. Thus the denommator is lower bounded by p(d(z) —1). R

If M 96 M.,, then Pr[i’ € I;;] is the chance that (¢,7) is known and that i and
i’ are con31stent Entry (4, ]) is known with probahlhty D, and ¢ and ¢’ are consistent
if either (i, ;') or - (i, ") is ‘unknown for each column- 7 ;é j in whlch i ‘and ¢ differ. If
h(i,3') i is the Hammmg dlstance between the rows, then this probablhty is computed to
be(l— )h(“,)l ‘ : st ci , 5

Comblmng these fa.cts we have

| E,#,It{,#M. p(l - 2)h(m) =1
1 -1 Ll
Vi < S:};a P ‘+ E D ¥ 6 PG

d(t))l J

1 - h(t z')(l __pQ)h(i #)=-1
- 1= )d(') 1 + =
Z( : d%;g a1

I

Recall that our goa,l is- to upper bound the sum Et=l Vt Applymg the above upper
~bound for V; we get : ‘

Tusy ( Sa- (t/s))dw-l) + z ( 3> d’z(; A (t/sy)hm-x)

t=0 t=0 d(z)>1 i3
()

We now evaluate the first part of the above expressxon We begm by notmg that
- 5-1 E d(i)-1
3 ( 31— (t/S))“(’) 1) <1 2 (1 + ] (1 % —) dt) .
t=0 i=1 ; s"'l

Since "

[ (1-.;.)"“’?? il / (E —/ (—)“"",‘_ =2
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pw'e see that ek

- 15 (H/;(l_ 35-)"“’:’,‘;“14;)’; ; ;>":(1+ w5 ) 7 o

It

i=1

= 14wy omskmil (82
A ,E.:ld() - 69

iE We obtam the last step of the equahty by rewntmg the summatxon to go over all the row

| types there are d(r) terms for rows of type r and thus each row type contnbutes 1to
| the summatxon T ; | S e -
- We are now ready to evaluate the second part of Expressmn 3. 1 “To complete the

proof of the theorern we must show that

SZ( 2 E (’ ” bt (t/S)Z)“"")—‘) 0(nk~/‘ i

t=0 d(l))l 1'#1

| ,We begm by der1v1ng an upper bound for the second part of Expressxon (3 1) of

i1 h,(',") -1 )
s,,(%gd’zﬁ )(1"’/( (s)) )

o h(z i) = 1 then this mtegral is tnvxally evaluated to be S. Otherw1se, applylng the
mequahty e’ 214z we get .

s , t h(n)l | s ’ S |
LG ) b azf eXP{ (5 ) () - >}\ Y
A standard integral table [23] gives ‘ Glenimes e et
[ @uen-nja-cten o
;_/ exp - (( ) Ddi== r—h(”,)_l e
: Comblmng these bounds we have S _ : i
‘ ,s P t‘ka ihan Sﬁ R L .
CEE 1= (—) ) - At € —m—mee 3.5)
:.‘ j"‘f'/" ( NS/ g i') o SIS (3:5)
for h(i,i") > 1. Therefore, the second part of Expressmn 3.1 can be upper bounded by

‘;«“Z d’zft 1)( / (t/s)z ey )

d(§)>1 t':;éz
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1 2n(,d) (.S

ssrpi (1 \/——2;@)) |

ey L +«‘zz“"(‘_’~o< )

| | SR A @ T d(3)

This nnplles the desired bound , " | i " | ' : n
To complete the theorem we prove the main result of this sectlon, namely, that the.

upper bound obtamed under this su'nple probablhstxc model holds (to Wlthm a constant |

factor) for the true model. In other words to compute an upper bound on the number

of mistakes made by a prediction algorlthm when the mstances are selected according

to a uniform distribution on the instance space, one can replace the requlrement that

exactly t matrlx entries are known by the requxrement that each matrlx entry is known

with probablllty £,
Lemma 3.5 2,5;01 U,=0 ( s V;). :
Proof: We first note that : R I LR
- S-,ljis;‘.t,iﬂr, ‘:ts" ;
: .‘ = - 1 -— _') re
s = E() (.S) (i-5) o
To see th1s observe that for each r, where r is the number of known entries, we need Just

multiply U, by the probability that exactly r entries are known assurmng each entry is

known with probablhty of t / S. Therefore,

ZV‘ =SEISEU( )( ) (““)S-' i (36)

T B0

Thus to prove the lemma, it sufﬁces to show that the inner summatlon is bounded below

by a pos1t1ve constant By symmetry, assume that r< S / 9 and let y= S -7 Stlrhng s

(-o(8)

apprommatzon 1mphes that
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Applymg this formula to the desu‘ed summat:on we obtam that

fé;(f)<;><l-%>s"= (L))
L el

' ,"The last step above follows by lettmg z=t-r and reducmg the lnmts of the summatlon

. To complete the proof that the inner summatlon of Equatxon 3.7i is bounded below by a

positive constant we need Just prove that S L
. , B , o
; (H'z)(y ) =01)
r Ty -

| Usmg the mequallty 1+ z < €%, 1t can be shown that for 1+y > 0 1 + y > eTL We

for all 1 <a:< ry/

: _‘ apply this observation to get that

fy ~ v ', ~r" , :’”,1’
o e o (e ()
oY Ny
H_?exp{l_*_ ‘yl'ff}. ef*-p{’”'l'wf y—,x}'

(=) N [ =Ss }
i "p{(r+z)( -w)} ""{(r+z>(y—z)

Since = < ry/ , it follows that Sx2 < ry Applymg thls observatlon to the above

I

1ne<1uahty it follows that = : ~ e ,
r+z> (y :v)”, : { -y }
. ~ > ex
~ ( r Y ; ‘v_‘ p (r+:r)(y—:c)
: S : o -;_' "‘:l:;‘, _ry i S ~5"
B ‘exp,{ry,-}- (y—r):t-—mz} L

o ey -1
> PEECETIL SIS, G .
. explry-ry/S} expll--}

_ Fmally we note that for S > 2 e -173’ > e"’ This oompletes the proof of the lemma =
| Clearly Lemma 3 4 and Lemma 3.5 together 1mply that E, s-1 U, (km + nk\/_ H),

~g1v1ng the clesn'ed result i , j e Fii i ' )

This completes our dlscussmn of learrung k bmary-relatmns
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k Lower o .. Upper T T

Director 5 Bound , Bound Notes

Learner | 2 4+(n—%)igk-1] km+(n—k)lgk] |

Teacher ‘ km+(n—k)(k-1) km+ (n—k)(k-1)
Adversary , km+ (n—k)|lgk] O(km4nymigk) ! ,
Adversary | L 2m4n~2 2m4+n-2 ' k=2
Adversary | Q(km+(n-k)lg k+min{ny/m,m/n}) | km+ n\/(l:-—ﬂ?n. row-filter algorithm
Random By (n- Hlugk-1} O(km + nkvVH) avg. case, row-filter alg.

Table 8.1: Summary of our results for learning a k-binary-relation.
3.7 Conclusions and -Open Problems

In this chapter we have studied the the problem of learning a binary relation between
two sets of objects under the extended mistake-bound model Our specific results are
summanzed in Table 3.1. In this table all lower bounds are information-theoretic bounds
and all upper bounds are for polynomial-time learning algorithms.

From observmg Table 3.1 one can see that several of the above bounds are tight and
several others are asymptotically tight. However, there is a gap in the bound for the
random and adversary (except k < 2) directors. Note that the bounds for row-filter
algonthrns are asymptotically tlght for k constant. Clearly, if we want asymptotlcally
~ tight bounds that include a dependence on k we must 1ncorporate k into the projective
geometry lower bound. (Currently, the relation created by the adversary has only two
row types.) | o

‘Recall that the resuits of thisi chapter were motiva.ted by the problem of 1earning an
arbltrary bmary relatlon Since an unstructured relation is hopeless to learn, we forced
some structure by providing the learner with prior knowledge that there are only k row

‘types. As demonstrated by the allerglst example, for some situations such structure is

tDue to Manfred Warmuth. See Appendix A for details on his algorithm and its analysis.
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qulte natural ~ However, as we see in the next chapter, there are other mterestmg ways

’, in Whlch a relat;on can be structured

T R S

e P g i 2%,



Chapter 4
Learning Total Ordersﬂl

In thrs chapter we continue our study of learmng bmary relatlons under the extended
mistake-bound model. Here we structure the relation by giving the learner prxor knowl-
edge that the relation is a total order. (For example the predicate may be “<”.) One can
vrew this problern as that of learnmg a total order on a set ofn ob]ects where an instance
corresponds to comparmg whrch of two obJects is greater in the target total order Thus
_ thrs problem is Tike comparlson based sortmg except for two key dxﬂ'erences we vary the
, agent selectmg the order in Wh]Ch comparrsons are made (1n sortmg the learner does the
selectxon) and we charge the learner only for all mcorrectly predzcted oomparzsons V' '

| Before descrlblng our results, we motrvate thls sectlon wrth the followmg example
There are n basketball teams that are cornpetmg m a round-robm tournament That is,
each team w111 play all other teams exactly once. Furthermore, we make the (adrmttedly
sunphstlc) assumptron that there is a ranklng of the teams such that a team wins 1ts
match if and only 1f 1ts opponent is ranked below 1t The learner wants to place a $10 bet
on each game if he bets on the wmnmg team he wxns $10 and 1f he bets on the losrng
team he loses $10. of course, the goal of the learner is to wm as many bets as possrble
h We formahze the problem of learmng a total order as follows The mstance space

X, = { ,n} x {1 ,n} An mstance (z ]) in X 1s in the target concept if and

This chapter deseribes joint research with Ron Rivest [22].
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; only it ob]ect : precedes obj ject J in the correspondmg total order.

If computation tlme is not a concern, then the halvmg algonthm makes only O(nlg n)
rmstakes However we are interested in eﬁ'icxent algonthms and thus our goa.l is to design
an efficient version of the halvmg algorlthm In the next sectlon we discuss the relat;on

betWeen the halvmg algorlthm and approxxmate countmg Then we show how to use

- an approxrmate countmg scheme to eﬁicrently 1mp1ement a randormzed version of the'
'approx1mate halving algonthm and apply this result to the problem of learning a total

. order on a set of n elements. Fmally, we dxscuss how a maJorxty algorlthm can be used

- to 1mp1ement a counting algorlthm

4 1 The Halvmg Algorlthm and Approxrmate :

Count ing

: In thls sectxon we review the ha.lvmg algonthm and approxxmate countlng schemes We

,ﬁrst cover the halvxng algorlthm (6, 43] Let V denote the set of concepts in C that are
. consxstent W1th the feedback from all premous quenes leen an mstance z in X for
each concept in V the halvmg algorlthm computes the predlctlon of that concept for z and

: predxcts accordlng to the ma]onty Fmally, all concepts ln v that are 1ncons.1stent w1th

: the correct clasmﬁcatlon are deleted thtlestone [43] shows that thxs algonthm makes at

most lg lC’ | rmstakes Now suppose the predlctlon algorlthm predlcts accordmg to the

ma]orlty of concepts in set V’ the set of alI concepts m C conswtent thh all zncorrectly
predxcted mstances thtlestone [43] also proves that thls space-ejﬁczent halvzng algonthm
. rmakes at most lg IC | nnstakes So for any predlctlon algorlthm A that only remembers
' 1ts nnstakes the number of mstances stored by A is bounded by MBZ(A C., )

We deﬁne an approa:zmate halvzng algorzthm to be the followmg generahzatmn of the

' halvmg algonthm leen mstance z in X,, an approxrmate halvmg algonthm predlcts in

“agreement with at least cp]Vl of the concepts in V for some constant 0 <p< < 1 /2

R
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Theorem 4.1 The approzimate halving algorithm makes ut most log(l —¢)<1 |Cn| mistakes

for learning C,,.

Proof: Each time a mistake is made the number of concepts that remain in 'V are
reduced by a factor of at least 1 — . Thus after at most log(1 —g)-1 ]C’ | rmstakes there is
only one consistent concept left in C,,. o _ |

-~ We note that the above result holds also for the space-efficierit version of the approx-
imate halvmg algorithm. - - ‘ e ;

- When  given an instance a: € X,, one way to predict as dictated by the halvmg
algorlthm 1s to count the number of concepts in V for Wthh c(a:) = 0 and for which
c(:v) 1 and then predict Wlth the ' majonty As we sha.ll see by extendmg thls idea
we can 1mplement the approx1mate halvmg algorlthm usmg an approx1mate countmg:
scheme o N

We now mtroduce the notlon of an approx1mate countlng scheme for countmg ‘the
number of elements in a ﬁmte set S. Let z be a descnptlon of a set S, in some natural‘
encodmg An ezact ‘counting scheme on mput T outputs ]S,] w1th probablllty 1. Such a
scheme is polynormal—lf it runs in time polynormal in |z. Sometlmes exact countmg can
be done in polynonual tlme, however rnany counting problems are #’P-complete and thus
assumed to be intractable, (For a discussion of the class #P see Vahant [64] ) For many ,
#P-complete problems good apprommat:ons are posmble [33 60 63] A randomzzed
approzimation scheme R for a countmg problem satlsﬁes the followmg condltlon for all
€6 > 0: e L i

[(ll_:')_R(m55)<]8|(1+e)]>1—6
‘where R(z,¢,6) is R’s estimate on input z,¢,and 8. In other words, with hlgh probablhty,
R estimates |S,| within a factor of 1 + €. Such a scheme is fully polynomial if it runs in ,
time polynormal in{z],4, and Ig 3+ For further discussion ‘see Sinclajr [60].

- We now review work on countlng the number of linear extensions of 4 partial order. -
~ That is, given a partlal order on a set of n elements; the goal is to compute the number of

‘ total orders that are linear extensions of the given partial order, We dxscuss the relation-
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‘shxp between this problern and that of computmg ‘the volume of a convex polyhedron.

(For more detanls on this subject, see Sectlon 2.4 of Lovasz [45] ) Given a convex Set S

“ and an element ¢ a of R, a weak separatzon oracle i
i l.’lAsserts that a E S; or’ f’ o

9. Asserts that a¢ S and supphes a reason why In partxcular for closed convex sets

in R, if a € S then there exists a hyperplane separatmg a frorn S. So 1f a ¢ S, the'

" oracle responds with such a separatmg hyperplane as the reason why a ¢ s.

We now dlSCllSS how to reduce the problem of countmg the number of extensmns of a
o partlal order onn elements to that of computmg the volume of a convex n- dlmensmnal
‘ .polyhedron glven by a separatlon oracle. The polyhedron built in the reductlon w1ll bea

; subset of the {0 l] (i.e. the umt hypercube in #") where ea,ch dunensmn corresponds to

one of the n elements Observe that any. mequahty zi > z, deﬁnes a halfspace in {0, 1]

‘ Let A(t) denote the polyhedron obtamed by taklng the zntersectzon “of the halfspaces 3
ngen by the 1nequaht1es of the partxal order 1. (See Flgure 4- 1 for an example with -
= 3.) For any parr of total orders t1 and t2, the polyhedra A(tl) and Alty) are

‘Slmphces that only mtersect ina faoe (zero volume) a pair of elements say z; and z;

,that are ordered dlﬁ'erently in ty and i, (such a pair must ex1st) define a hyperplane

i = x; that separates A(tl) and A(tg) Let. T be the set of all n! total orderson n

elements Then

{01 U Alt). . (4.1)

~t€Tn

In other words the union of th‘e‘polyhedra assocxated w1th all total orders’ ylelds the unit
hypercube We have already seen that polyhedra assoclated with the t € T, are dxs_]omt .

- To see that they cover all of [0,1]" observe that any point y e [0 1]" defines some total

order t, and clearly y € A(f). Let P be a partial order on a set of n elements From

“equation (4 1) ‘and the observation that the volumes of the polyhedra formed by each
total order is equal, it follows that the volume of the polyhedron deﬁned by any total'
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L i

: (1"1‘0)“ st N

©000) (1.00)

Figure 4-1: The pélyhedron formed by the total order 2 >y > .

order is 1/n!. Thus it follows that for any partial ofder P =

" number of extensions of P — volume of A( P)

= " (4.2)
- Rewriting equation (4.2), we obtain that
’T number of extensions of P = n! - (Voiﬁfrie (j)'f‘ A(P)) . ‘ o (43)

- - Finally, we note that the "Weak ‘Séparation oracle is easy to implement for any partial
order. Given inputé’ a and S, it just checks éaéh‘inequality of the partial order to see if
a is in the convex polyhedron S. If a does not satisfy some mequahty then reply that
a € S and return that inequality as the separatmg hyperplane Otherwme, if @ sa.tlsﬁes
all inequalities, reply tha.t a€S.

' Dyer, Frieze and Kannan [16] give a fully- polynom1a1 randomized approximation
scheme (fpras) to approximate the volume of a polyhedron given a ‘separation oracle.
From equation (4.3) we see that ‘this fpras for estimating the volume of a polyhedron

can be easily applied to estimate the number of extensions of a partial order. We note
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i that Dyer and Frleze [17] proved that it is #’P hard to exactly compute the volume of a

& polyhedron given exther by a list of its fa.cets or 1ts vertlcee

Independently, Matthews [47] has descnbed an algonthm to generate a random linear | |

' extensxon of a partial order Consrder the convex polyhedron K defined by the partial

order Matthew’s main result is a technlque to sample nearly umforrnly from K. Given

5 ksuch a procedure to sample umformly from K one can sample uniformly from the set ~
~ of extensions of a pa.rtlal order by choosmg a random pomt in K and then selectmg the

" total order correspondmg to the ordermg of the coordmates of the selected pomt The

procedure to generate a random lmear extensmn of a partlal order is then used repeatedly

f,to approximate the number of hnear extensxons of a partlal order

',4 2 Appllcatlon to Learnlng

We begln thrs section by studymg the problem of learmng a total order under teacher-
‘ ‘dlrected and self-dlrected learning. Then we show how to use a fpras to’ 1mp1ement a
randomized version of the approxxmate halving algorlthm, and apply thls result for the

problem of learmng a total order on a set of n elements

Under the teacher—selected query sequence we obtam an n — 1 rmstake bound The'

teacher can umquely spec1fy the target total order by glvmg the n — 1 mstances that

- correspond to consecutive elements in the ta.rget total order. Since n — 1 mstances are ‘

| _ needed to umquely specrfy a total order, we get a matchmg lower bound. kaler {69]

has shown that under the learner-selected query sequence one can also obtain an'n — 1

i rmstake bound. To achleve this bound the learner uses an insertion sort as'described for
mstance by Cormen, Lexserson, and Rivest [15] where for each new element the learner

;guesses it is smaller than each of the ordered elements (starting wrth the largest) until a-

v,mlstake is made. When a mistake occurs thls new element is properly posrtloned in the
chain. Thus at most n-—1 nnstakes will be made by the learner Furthermore the learner

~can be forced to make at least n~—1 rmstakes The adversary gwee feedback using the
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following simiple strategy: the first time an object is involved in a comparison, reply that
‘the learner’s prediction is wrong.-In doing so, the adversary creates a set of chains where
‘a chain is a total order on a subset of the elements. If ¢ chains are ‘created by this process
then the learner has made n = ¢ mistakes. Since all these chainsvmust be combined to get
a total order, the adversary can force c—1 additional mistakes by always replying that a
lestake occurs the first time that elements from two different chains are compared. (It
{is not hard to see that the above steps can be mterleaved ) Thus the adversary can force
n — 1 mistakes. - ,
Next we consider the case that an adversary selects the query sequence . We first prove
‘an Q(n lg n) lower bound on the number of rmstakes made by any predlctlon algonthm
We use the followmg result of Kahn and Saks [34] leen any partlal order P that is not

a total order there ex1sts an mcomparable palr of elements .’1:.,.1!:J such that

'3 number of extenswns of P w1th ;< z, < 8
1" number of extensions of P =11’

‘So the adversary can always pick a pair of elements so that regardless of the learner’s
prediction, the adversary can force a mistake while only eliminating a constant fraction
of the remalmng total orders. ; | / | »

‘Finally, we present a polynormal predlctlon algorlthm makmg n lg n'+(lge)lgn mis-
~takes with very ‘high probability. We ﬁrst show how to ise an exa,ct counting algorithm
R, for counting the number of concepts in Ch, consmtent with a glven set of examples, to

implement the halvmg algonthm.

»Lemma 4 1 Gwen a polynomzal-tzme algorzthm R to ezactly count the number of con-
~cepts in C conszstent wzth a gwen set E of czamples, one can eﬂiczently zmplement the

halvzng algorzthm for C

| ,,.Proof ‘We show how to use R to efﬁc1ently make the predlctlons reqmred by the halvmg
-algorithm. To make a predxctxon for an instance z in X, the following procedure is used:
Construct £~ from E by appendmg z as a negative example to E. Use the counting

valgonthm R to count the number of concepts Cc-€Vy that are consistent with E-. Next
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j construct E* from E by appendmg T as'a posmve example to E.” As before, use R to

_‘ "ﬁ-’count the number of concepts Ctey that are consistent with E*. Fmally if |C- 1 > IC*‘I :

then predict that zisa negatlve example otherwnse predlct that z is a positive eXample

Clearly a prediction i is ‘made in polynormal tnne, smce it just requlres calhng R twice.

= It is “also clear that each predlctlon is made accordlng to the ma.Jorxty of concepts in V |

to obtaln an efficient 1mplementat10n of a randormzed versxon of the approx1mate halving -

Valgonthm g

eTheorem 4 2 Let R be a fpra,s for countmg the number of concepts in C’ conszstent
3 wzth a gwen set E of ezamples If IX | is polynormal in n, one can produce a predzctzon ‘

: ‘algomthm that for any é >0 runs in time polynomzal inn and lg and makes at most

Ig |C | (1 + -L) mzstakes with probabzlzty at ieast 1 = 6 e

' :Proof The pred1ctlon algonthm 1mplements the procedure descnbed in Lemma 4.1
;W:th the exact counting algonthm replaced by the fpras R(n, 1 ,5-‘—[) Cons1der the
predlctlon for an mstance z€ X Let V be the set of concepts that are cons1stent w1th
: ,all previous mstances Let rt (respectxvely r7) be the number of concepts in V for which
‘ ;.7: is a pos1t1ve (negative) instance. Let r“' (respectlvely 1"“) be the estimate output by R

- for rt+ (r )."Since Ris a fpras with probablllty at least 1 ~ m

-

r

1+€ r (1+e)r

(1+c)r and 1+

" where e'- 1 /n Wlthout loss of generahty, assume that the a,lgonthm predlcts that z

.1s a negatwe mstance, and thus -2 r"‘ Com’ouung the above 1nequaht1es and the

' observatlon that r— + r”‘ ]Vl we obtaln that r- 2 ;;_-(Ll-_,l_?

, fof the concepts in V. To analyze the rmstake bound for thxs algorlthm, suppose that each

;predlctlon is approprxate For a smgle predlctlon to be approprlate, both calls to the

= ‘fpras R must output a count that is w:thm a factor of 1 +e of the true count. So any

We rnodlfy this bas:c techmque to use a fpras mstead of the exact countmg algonthm ,

S L
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given prediction is appropriate with proba’bility at least 1 -?TJ,-(‘S;-[g and thus the probability

that -all predxctlons are approprlate is at least -

i) e

Clearly if all predlctlons are appropriate then the above procedure is in fact an implemen-
tation of the approx1mate halvmg algorithm with ¢ = 'T(TTV and thus by Theorem 4.1
at most log(; -1 |Cn| mistakes are made. Substituting € with its value of £ and simpli-

fying the expression we obtain that with probability at least 1 — &,
Ig|C. | 1glCal .

—15?1‘6 18(1+m)~

# rmstakes + “(4.4<)

o 2 5
Since m > 1 .t

1 ER 1
(it ) le(1+1-2)
' 1

ReLtr ~ Tt+ig(1-3) L
,,e‘lwee__,~@@*g

1+1g(1—--) :

Applymg the mequahtles lg (1 - -) > 2155 and 1 + lg (1 —i ) <1~ -5— 1t follows that

(-2 o

T
1+1g(1-1) T 1-%E
S o g
n—1=2ljge
—1ge ..
n

Finally, applying these jnequalities to equation (4.4) yields that

! mistakes < — lglCnl_ , < lgiC | (1+lge) e
e »»@(1+:53:ﬂ - 5
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Note that we could modlfy the above proof by not requlrmg that all predlctxons be 7

1 appropmate In partlcular if we allow 'y predlctxons not to be approprlate then we get’ a’v

‘rmstake bound of Ig|C, | (1 + L) + 7.

We now apply this result to obtain the mhain result of this sectlon Namely, we descnbe

i - arandorhized polynomial predlctlon algonthm for learmng a total order in the case that'

“the adversary selects the query sequence

c Theorem 4.3 There ezzsts a predzctzon algonthm A for Iearmng total orders such that
< on mput § (for all 6> O), ‘and for any query sequence provzded by the adversary, A
Tuns in time polynomzal inn and lg } and makes at most nlgn +(lg e) lgn mzstakes with

g probabzlzty at Ieast 1 ~ 8.

: Proof Sketch We apply the results of Theorem 4 2 usmg the fpras for countmg the
- number of extensions of a partlal order glven mdependently by Dyer, Frreze and Kan-
" nan [16], and by Matthews [47] We know that with proba.blhty at least 1—86, the number
of mrstakes is at most 1g|C, | (1 + -5—) Smce IC' I = n' the desxred result is obtamed =

We note that the probablhty that A makes more than n lg n + (lg e) Ign nustakes does
~ not depend on the query sequence selected by the adversary The probahlhty is taken

" over the coin ﬂlps of the randormzed approxrmatlon scheme

Thus, as in learnlng a k-bmary-relat:on usxng a row-ﬁlter algonthm we see that a

| - learner can do asymptotlcally better w1th self- dlrected learnmg versus adversary-dlrected

learning. Furthermore whlle the self-dlrected learmng algorlthm is. deterrmmstlc the
adversary directed algorlthm is randormzed To accommoda.te such randormzed predlc-
: ,txon algonthms in our extended mistake- bound model we prov;de the learner with an
~ input & and allow the algorxthm to exceed the “worst- case mistake bound with a prob-
’ ,ablhty 6. '



4.3. MAJORITY ALGORITHMS VS COUNTING ALGORITHMS 7

4.3 MaJorlty Algorlthms Vs Countlng Algorlthms

In the last section we saw how a counting algorxthm could be used to lrnplement the -
halving algorithm. In this section, we consider the condltlons under which the halving
algonthm can bé used to implement a counting’ algonthm That is, we further explore
the relationship between counting schemes and the halving algonthm
Let W be a set of elements for Wthh some subset S of the elements are distinguished.
We use the function g that maps an element of W to {0,1} to represent which of the
elements of W are distinguished. Spec1ﬁcally, forwe W, g(w)=1if and onlyif wisa
dlstmgulshed element. Let T* be an alphabet used to describe some- subset of W Let f
be a function from £* — 2 that maps o € =* to the subset of W that it describes. We
den“o‘te”'if(a:)‘ by V,. Let ty =|V,|, and let d, be the number of ‘_clxstmgulshed elements
in V,. Formally, we have d, = |{w € Vo : g(w) = 1}|. Finally, u, =~|‘v¢,| ~d,. Thatis,
Ug is the number of undlstmgulshed elernents in Ve. So dy + up = Throughout this
kbsectlon we assume that there is a procedure SIZE(O’) that on ;nputk o returns %, in unit
tlme , ‘ ‘
‘ A ma]orzty algorzthm takes as 1nput o and outputs a b1t that is l 1f d u,, and 0
1fd < ua That is, | | - ' o
MAJonITY(a) = { L %f ds 2 Uo
: o T O_»xfd,(u, .
Thus a majority algorithm solves a decision problem. On the other hand, a counting
algorzthm must output d,. | o
‘In Lemma 4.1 we used a countmg algorxthm to 1mplement a rna_]onty algonthm
(There W=C, and an element of Wis dlstlnguxshed if and only if it is consistent ‘with

the given set of examples ) In this section we discuss how a ma,]onty algonthm can be

.. used to 1mp1ement a counting algonthm The results of this section are prehrmnary

, ,Although we ‘describe two techniques to' oonvert 4 majorlty algonthm to a counting
‘algorithm, we do not have applications for these techniques that yield any previously

aunknown’ results ‘We apply the first technique to an example problem, however, it is
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 trivial to construct a ?counting,algorithm for this problem. -

431 First Approach

o In thls sect1on we e describe ¢ our first approach for usmg a ma]omty a.lgorlthm to lmple- .

ment a counting algorlthm We then show that our algorlthm can be used to convert

an a.lgorlthm that deterrmnes whether a majorlty of k- CNF formulas classifies a given

mstance as pos1t1ve to one that cornputes the number of k CNF formulas that classify

the given mstanCe as positive. -

- We now descrlbe our first approach Here we recursrvely a.pply MAJo RITY, at ‘each

step reducing the la.rger of d, and ua ‘bya factor of at least two To use thls approach,

Um addition to the MAIORITY oracle a CONSTRAIN oracle must be prowded The spem—

ﬁcatlon for the CONSTRA!N oracle is as follows

ST e new—object(d = ft,/2],u,) ifd, > u, (e Muomy(a) 1)
cons'rRAm(a) =
ey new—ob;ect(d,,u,-— ['t /2 1fd <u, (ie. MAJORITY(O’) =0)
where new—object(d 'u) creates a word o E 2‘ euch that d =d and Uy = u. So the
orade co NSTRAIN just reduoes the larger of d and u, by a factor of [t, /2] The result

'of the CONSTRAIN oracle is 1llustrated in Flgure 4-2

Theorem 4 4 ()ne can construct from a MAJOR]TY sm-: and CONSTRAIN oracle a

countzng algorzthm that on znput o uses at ‘most lg(t,) calls to each oracle.

- Proof We construct a recursive countmg procedure that takes 1nput o, and uses CON-— '

STRAIN to reduce the larger of d, and Us. The mltlal call should be E'zact-—C’ountI(a)

Ezact—Countl(a)
1 1fsxz1~:(a) =0
=»'2 " 'then return 0 \ E (N
*3; . else return ft,,/2]MAJomTY(a) +E’zact—-CountI(consrnAIN(or))

- We ﬁrst argue that th1s ‘procedure is correct. - Each tlme CONSTRAIN is called “we

~ know that d, is reduced by exactly f tof 2] MAJORITY(O‘) So the total decrease in d from

Ak el i pbener e

o PN e
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- Yo ) : CONSTRAIN(G) -

, Flgure 4-2: An xllustratlyo‘n of the co NSTRAIN oracle when the ma_]onty of the elements
in V, are dlstlnguxshed ' : ~
1ts ongmal value is accumulated in hne 3 of the procedure Fmally, when t, = 0 then

clearly d, = 0 thus the base case is correct ‘ o t

Smce at each step t¢7 is reduced to Lto/ 2], at most lg(t,) recursxve calls are made
Furthermore, MAJORITY SIZE, and CONSTRAIN are called only once for each recurswe
In ferms of our originel goel of couuerting a mejority algerithm inte a,nccuuting‘elgoy-

rithm we have the following corollary of Theorem 4.4.

Corollary 4.1 Let M be a majority algorithm for’W using £*. Let Taq(0) be the run-
ning tzme of M on input o. Furthermore, suppose that CONSTRAIN can be zmplemented

in tzme Tc(a) on input o. Then there exzsts an exact countmg algorzthm that runs in

'ytzme at most O((TM(a) + Tc(a')) lg t,)
“We ‘ﬁowa‘pply‘ ‘this "con’verswn to the followiﬁg' problem. 'GiVen‘f'a boolean vector
z = {0,1}", compute the number ‘of k-CNF formulas over n variables for ‘which z is

a positive example. 'As Angluin noté}s [4], Valiant’s algorithm for PAC-learning k-CNF
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'ylmplements the halvmg algorlthm That 1s, glven an instance :z:, it rephes that zis a
~ positive 1nstance if and only if at least half of the rema.lmng k- CNF formulas classxfy z as
a positive example Furthermore each prednctlon is made in polynormal time. Therefore
~for the glven countmg problem we have the needed maJonty algonthm We now apply
Corollary 4.1 to k- CNF to obtam the followmg result :

x Lemma 4.2 There e:z:zsts a polynomzal tzme algomthm to exactly count the number of

k- C'NF formulas for which s some z € X, isa posztwe mstance :

' Proof Let o be selected from {0 1}" where the mterpretatmn is that o gives the
: ass1gnments to the n variables. So V, is computed by evaluatmg the target formula on
the assrgnment given by ¢ and mcludmg those that eva.luate to 1. Thus Vahant s [66]

: algonthm for learnmg k-CNF can serve as the ma jorlty algorlthm We now prove that the

o CONSTRAIN oracle can also be 1rnplemented in polynormal txme As Anglum [4] notes, if

- ‘Vahant s algonthm pred1cts O then there exrsts some clause T m the learner s hypothasxs :

that evaluates to 0. So by rernovmg 7 the requn'ements of CONSTRAIN are sat1sﬁed =
: We note that this result is easily obtamed mthout usmg Corollary 4.l. By study-
“ing the recursive structure of the countlng algorlthm, we obtam the followmg countlng :
algonthm for k- CNF Let T be the numnber of poss1ble clauses of size k or less that are |
:true for mstance z. Smce the target formula can contaln any subset of these clauses (but

e ‘none of the clauses that are nega.txve for z), the number of k- CNF formulas that predxct

-----

l 4.3. 2 Second Approach

f In thls sectlon we descnbe our second approach for usmg a rna]orlty algonthm to im-
plement a countmg algonthm To motivate this approach we cons:der how the ﬂrst B
‘approach might fail. The algonthm Ezact-—CountI can be used only if one can remove
elements of V, in a controlled ma.nner However, it may be the case that one cannot
- remove. elements from V as desrred but can create some o such that V 5V, and

ffurthermore, all elements of V,i =V, are dlstmgulshed (or undrstlngulshed) Our seoond
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- Vewaw©.d

: ,'Vo

1 Uy undistinguished

Fxgure 4-3 ‘An ﬂlustratxon of the EX PAND oracle for the case that a ma]onty of V, is
dxstmgulshed T el g e o
:approach is ba.sed on these 1deas mstead of a,d_]ustmg the size of d, and u, by reducmg
their sizes, we achleve the same effect by approprxately mcreasmg “the size of the smaller
T i WIS ‘,

To use this approach in addition to the MAJORITY oracle, an EXPAND oracle must
be prov1ded instead of the co NSTRAIN oracle The specification of the EXPAND oracle is
as follows:

[ new-object(dy,u, + 1) ifdy 2 s
EXPAND(U z) { n:w—ob;eczgdﬂ+:t,; if do <u: ; ;
So the oracle EXPAND just adds i elements to the smaller of d and u,, The result of
the ExPAND oracle is illustrated in Figure 4-3. |

We now describe the details of our second approach to convert a majonty algorithm

to a counting algorithm.

Theorem 4.5 One can construct from @ MAJORITY, SIZE, and EXPAND oracle, a count-

ing algorithm that on input o uses ‘at most 1g(t,) calls to each oracle.
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Proof As in Theorern 4 4 the ba.SIC idea i 1s to use the MAJO RITY oracle to compute d,.

g We do this by 1ncreasmg the smaller ofd, and u, until they are equal. As before, we use |

a bmary search techmque to eﬂicrently perform thls task where at each step we use a

“call to MAJORITY to determme in Wthl’l du‘ectlon further adJustments should be made }

“ The details are as follows .

: Ezact—CountQ(a ﬂ,z)
1ifi=0
then if MAJORITY(U) = 1
then return (SIZE(U) +8)/2
~ else return (size(o) — ﬂ)/2 k
“else if MAJORITY(EXPAND(g, 8)) = MAJORITY(G)
- then Eract-Count2(expanp(o, B), B+ fz/2] |_z/2_|)
else Ezact—CountQ(EprND(a ,B) ﬂ -[i/2], [z/ 2|)

~J O Ut N

The initial call should be Ezact—Count2 (0',0 t,). The vanable B is the current estlrnate o
i «.‘of the number of elements that need to be added to the small side to make both 51des ‘

: equal and i the size of the next adjustment to be made to B.

We ﬁrst argue that the procedure is correct Let ﬂ;,n denote the “input values of

| rl‘ﬂ and ¢ to the lth call of Ezact- Count? Let o = =.EXPAND(o, ﬂl) Fmally, we use d

= | ‘(respectlvely u,) to denote d,, (respectlvely u,,) W:thout loss of generahty, assume that

4 > u,. So for all I,
: ‘Odl do—d,,

e U =y + ,61“,= u, + B, and

e Q,J;‘ e z','é_- [i,_1/2j.l,l

We clalm that when the rnput 1= 0 in Ezact—CountQ d, 4"11}‘. ‘We pfave‘%this; using the

)followmg lemma

Lemma 4 3 For alll ld,, - u,ll < z,

' Proof ‘We use an mductxve proof onl. Clearly, the base case, {dy = u,,l < t,,, holds

S e Smean sy T i T

et e R e
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We now prove the mductlve step Assume mductlvely that |d1—u;| = |d —u,~pB| < 4.

Our goal is to show that

ld - Us = ﬂl+1l <i zl+1 l’l/2l
We separatel)" con51del'. lrvllen d; > u;, cl, < u,, and dl = u.
e Case 1 d; > . In thls case, ﬂz+1 ﬂz + fn/ 2] So we must show that
- That is, we must ,show that: .
LAk (/2] < do = uo = B < 2]+ Tl =i
The inequality d —ug =B < follows immediately from the inductive hypothesis.

For the other mequahty note that [a/2] - [z,/2_| <1 Furthermore, since d; > uj,
d -—u,—ﬂl_d,—-u1>l

) Case 2 d, < u, In thls case, ﬂz-n ﬁ; - ]'z,/2'| So we must s(howktvhatk o ;
' —‘_21/2] <d -u¢,+ﬁ,—-[z,/2] < ‘_21/2_'
The proof for these 1nequaht1es is smular to that of Case 1

. Case 3: d = - For this -case we ﬁrst use an. mductlve proof to show that
di+u= zz (mod 2) The base case follows from the fact that 7 = do + ug. For
the inductive’ step, observe that 4, =44 = I(d,+u,) =(dipr+us)l- Smce d; =y, it
tnust be that ¢; divisible by two, and thus' [‘z; / 2] Tz; / 2] ‘The 1nduct1ve hypothesis

rmnedlately follows from here.

N Thls completes the proof of the lemma R - o ' l | l

Smce the recursmn contmues untll Yy = 0 1t follows from Lemma 4 3 that when z =0
in E‘a:act Count.? d; = u, Thus we know. that for ﬂ the ﬁna.l value of ﬂ,, we have that
d, = us + B. Applying the equality that d, 4+ 4, = t and solvmg for d,,, we see that
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o Lower | :Uppe‘r g =
Director | Bound | Bound : Notes
Teacher | n—1 on—=1
Learner n-l | n=1*. |

- | Adversary | Q(n lg n) nlg n4 (lg e) lg 'n randomized a.lgorithrn

Table 4 1 Summary of our results for learnmg a total order s '_

dg = = (t, + ﬂ)/2 (Smce d, = u,, it follows that i, + ﬂ is even. ) The Ccase that d, <u,i
k handled snmlarly Thus we have shown that the output from Ezact-Count? is correct
Smce at each step the increment size 1 is reduced to’ [z/2_| at most lg(t,) recursive
: calls are made Furthermore each oracle is called at most once durmg each recursive call.

In terms of our ongmal goal of convertmg a rna]onty algonthm into a countmg algo-

. rithm we have the followmg corollary of Theorem 4. 5.

| Corollary 4. 2 Let M be a ma]orzty algorzthm for W under 2" ’ Let TM(a) be the

- running tzme of M on mput . Furthemzore, suppose that EXPAND can be zmplemented

in time Tc(o') on input of size at most t,. Then: there ezzsts an ezact counting algorzthm '

. that runs in time at most O((TM(U) + Tc(a‘)) lg t,)

44 coﬁdusmns and :'fo'p'én"‘.beﬁl'éms

- We have studied the the problem of learmng a binary relatlon between a set and itself

*under the extended rmstake-bound model. We have presented general techniques to help

. develop efﬁcrent versions of the halvxng algonthm In pa.rtlcular, we have shown how a
- fpras can be used to efﬁcrently unplement a randormzed vers10n of the approx1mate halv-
 ing algorlthm Our specrﬁc results are summarxzed in Table 4 1. In thrs table all lower

‘k,bounds are mformat:on theoretrc and all upper bounds are for polynormal txme learn-

, "Due to Peter kaler
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ing algorithms. Also the results listed are for deterministic algorithms unless otherwise

stated.

From observing Table 4.1 one can see that all the above bounds are tight or asymp-

totically tlght Although the fpras for approximating ‘the number of extensions of a

partial order is a polynomial-time algonthm, the exponent on n is somewhat large and
the algonthm is quite cornphcated Thus an 1nterest1ng problem is to find a “practical”
prediction algonthm for the problem of learning a total order Another interesting direc-
tion of research is to explore other ways of modeling the structure in a binary relation.
Finally, we hope to find other applications of fully polynomial randomized approximation

schemes to computational learning theory.
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The Power of Teacher-directed and
Self-directed Learning

Not surpnsmgly, in studyxng the problems of learmng blnary relations and total orders,

~we saw that the complex1ty of the learning task depends greatly on the director (i.e. the

agent selectmg the presentatlon otder of the mstances) Thus, to study these problems we -
used the extended fistake-bound model introduced in Cha.pter 2. For the more typical
domain of concept learnmg, in all prevxous work using an on-line model with the absolute
mistake-bound success cnterla, an adversary has been the director. | ‘

" In this cha.pter we address some of the questions ra,lsed by the extended Imstake-
bound model. Namely, in an on-line model, what is the power of a teacher or the learner
selecting the instances when the learsier is judged by the number of mistakes he makes?
For teacher-directed learning we consider theworst-case ‘mistake bound of 'a.ny"learnef
that predicts according to some concept that agrees with an pfeviously seen instances.
Informally, we say the teachmg dzmenszon ofa concept class ls the zmmmum number of

instances a teacher must reveal to umquely 1dent1fy any target concept chosen from the :

class ,

We show that thls new dxmensmn measure is fundamentally dlﬂerent from the Vapmk-

-~ This chapter describes joint research with Mike Kearns. ~ = = -

87
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" Chervonenkis dimension 10, 40, 67] and the :dimenSion rneasure of Natarajan [51]. We
i also descnbe a strazghtforward relation between the teachmg dxmensron and the number
~of membershxp queries needed for exact rdentlﬁcatlon Next we give txght bounds on

the teachmg dimension for the class of monomials and then extend this result to more

'comphcated concept classes such as monotone k term DNF and k-term u-DNF We also ‘

‘ ‘compute bounds on the teaching dlmensmn for the class of monotone rank-1 decision

trees and orthogonal rectangles in {0, 1 ,n—-l}"l Finally, we build a concept class

- Cy for which the teachrng dlmensmn is IC’ | -1 and descnbe concept classes for which
,k a s1gmﬁcantly better bound is possrble As an example for concept classes closed under e

: exclusxve—or, we prove that the teachmg dlmensmn is at most loganthrruc in- the size of :

- the concept class

In the second part of this cha.pter we study self-dlrected learning when it is apphed |

: to the domam of concept learmng That is, when the learner chooses the inistance se-

: quence how many 1ncorrect predlctxons are made before the target concept is umquely

specrﬁed'? We give tight bounds on this measure for the class of monomials, k-term DNF
formula, and orthogonal rectangles in {0 1,- ,n-—-l}" These bounds demonstrate that

~ the number of mistakes can be asymptotlcally less than the number of querres We then

show that for concept classes for which the frontler of the rule space in Mltchell’s version

space algonthm [49] is always of size 1, the learner can make at most a smgle mistake.

Finally we explore the followmg interesting paradox raised by our results: for many con-

cept classes ‘the number of mistakes made with teacher-dlrected learmng may be worse

that the number of mistakes made with self-directed learmng.

5. 1 The Teat:liing | Dlmensron |

’ In thxs sectlon, we study the power of havxng a helpful teacher a.s the du'ector in the
- extended rmstake-bound model We begrn by formally deﬁmng the teachmg dzmenszon

~Let an znstance sequence denote a sequence of unlabeled mstances, and an ezample se-

g e

ot
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quence denote a sequence of Iabeled instances. For concept class C, and target concept

- CcE€ C,,, we deﬁne a teachzng sequence T as an example sequence for C, that uniquely

specxﬁes c. That is, all concepts m C except for c dxsagree thh the classxﬁcatlon of
some instance in 7. We define the teachmg dzmenswn TD(C,,) of a concept class C, as

follows: , PRy

"~ ¢€Cn \T€T(c)

o0 =g mi ,;,)

where T(c) is the set of all teaching sequences for ¢. In other words, the teaching di-
mension of a concept class is the minimum number of examples a teacher must reveal to -

uniquely xdentlfy any concept in the class. RN T

Observe that the teachmg dnnens:on ofa concept class is equal to the optlmal rmstake

bousd under the helpful—teacher director of the extended mistake: bound model. To see

“this correspondence, recall that in teacher-directed lea.rmng, we con81der the WOrst°
" mistake bound over all cons1stent learners Clearly T5(C,) is a lower bound for the
"opt:mal rmstake bound unless the umque target concept has been 1dent1ﬁed a nustake’

“could be made on ‘the next predlctlon Furthermore, TD(C’ ) is an upper bound for '

the optimal rmstake bound since no xmstake could be made after the target concept is

P

‘ umquely 1dent1ﬁed

In the next sectlon we cornpare the teachmg dlmensmn to other d1mens1on measures
that have been used to charactenze learnable concept classes Then we compute the

teachmg dxrnensmn for several well-studled ooncept classes, and gwe general results that

'help to cornpute the teachmg dxmensmn for other concept classes

”‘511;1 — »cbin'parison' »to' Other’ ’D’ir‘hénéion 'Mé’agﬁr‘e“s? e

In this sectlon we compare the teachmg dlmensmn to two other dimension measures that

- have been used to describe the complex1ty of concept classes.
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. concept | instances i

 Ctage |+ A
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"'Figlire’ 551:‘,A coneept class C, for which TD(C,,) =’;1C,,| BT
o Vapmk-Chervonenkns Dxmensmn '

. We now show that the teachmg dunensmn is fundamentally dlfferent from the well—studxed

: .Vapmk-Chervonenkls dlmensmn (See Sectlon 2. 3 1 for the deﬁmtlon of the Vapmk- '

’ _Chervonenkls dunensxon) ‘As we discussed i in Chapter 2 the VC- dlmenswn has been

- very. 1mportant in computatlonal learmng theory The rmults of Blumer et al. [10] prove - |
that the VC dlmensmn charactenz& what is PAC—learnable (dlsregardmg computation
: t1me) using statxc samphng e

- We now compare the teachmg d1rnens1on to the VC-dlmensmn We begm by showj’ :

ing that nelther of these dlmensxon measur&s dommates the other in some ca,ses the L |

._’TD(C ) > VCD(C ) and in other cases TD(Cn) < V6l

Lemma 5.1 There is A CenCept class C for whi ﬁ'(c,‘..)’.'-\_;’}c,‘.1”_'1 aﬁavcb’(cn); 1.

Proof: Consider 'thetonéept class C, in Which arget concept cm.set cla,ss1ﬁes all

~ instances as positive. In addltlon, for each z € X

e clasmﬁes all mstances but z as posmve (See Flgure 5 1. ) No concept in C,, has two
negative 1nstances S0 clearly no set of two pomts is sha.ttered Since any singleton set

is shattered, vep(C,) = 1 Finally, since each’ msta.nce dlStlngUISh&B only one of the

ere is a concept ¢ € Cp, such that

concepts ¢i, . ,qxn' from cmget, the TD(C,,) = IC',.l —‘:‘1.‘;5 e dtoigl
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o T1 T2 0 TIn=2 Tpo1l Tn Tnal o T iign—1
PN T f g i T
Slam2) T T ’” R R TR
‘3"-1‘—--~-—+++.,..Jr

" Figure 5-2: ‘A"concept class C, for which' VCD(C ) > TD(Cn)

Thus the VC- d1mens1on can be arbltra.rxly smaller than the teachmg dlrnensmn Fur¢
thermore, we note that the concept class used in the proof of Lernma 5 1 has the largest

posmble teachlng dxmensmn
Observation- 5.1 For any concept class C TD(C) <,IC| - 1 -

Proof: Each concept in C must dxffer from all other concépts for at east one instance.
Thus for each concept that is not the target concept there must be an example that it
and the target concept classify differently.” 7 ¢ R LR T DR

We now show that the teaching dlmensmn may be sma.ller than the VC-dimension.

: Lemma 5. 2 There is a concept class C’ for whtch TD(C,.) < VCD(C',.)

Proof: Let C, = {coyC2.: SyCni1} ‘be a concept class over the mstance space Xn =
,{:co, Ty .o i s Entlgh-1 } where n = 2k for some constant k. The concept G clasmﬁea mstance
k:c, as pos1t1ve and the rest of ToyeorsTnel as negative. The remaining lgn instances for -
¢; are classified according to the binary representation of i. (See Figure 5-2.) Clearly
{&ny. vy Bnplgr-1} IS & shattered ‘set and thus VCD(C,.,) =lgn = l'élg |Cn] ‘However,
7p(C,) = 1 since instance z; ‘uniquely defines concept G e
Since for all finite C,, ven(Cn) <lg |C | and TD(Cn) >1 it follows that VCD(C ) <
1g|Cn| - TD(C,) and thus the concept class of Lemma 5.2 provides the max1murn factor |

by which the VC-dimension can exceed the teachmg ditnension for a finite concept class.
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: Comblned with Lemma 5 1 we have a cornpiete charactenzatlon of hovv the teaChing‘

‘ dlmensmn relates to the VC- dlmenswn

L We now uncover another key dlfference between the VC dlmensmn and the teachmg y

i 'dunensmn the potentlai eﬂ"ect of removmg a smgle conoept from the concept class. Let

" : C’ be a concept class W1th ven(C,) = d, and let C’ Cy = {f} for ‘some f €C,.
:Regardless of the chome of f ; clearly VCD(C” ) >d- 1. In contrast to this we - have the

2 followmg result

Theorem 5.1 Let C, be a concept class for whzch TD(C ) > IC l— k. ‘Tlicn. there ezists
an f € C such that for C' - {f}, TD(C”) < k

Proof Let f be a concept from C tha.t requlres a teachmg sequence of length TD(C ).

Let T be an optimal teachmg sequence for f (1 €. ITI =71D(C,)). We let C, = -{f},

T ‘and prove that TD(C’ ) < k. To achieve thxs goal we must show that for each concept

c € C there exists a teachmg sequence for ¢ of length at most k. Wlthout loss of

generality, let f’ €C) be the target concept that requlres the longest teachmg sequence

- We now prove that there is a teaching’ sequence for f’ of length at most k.

T he intuition for the remamder of this proof is as “follows. Smce T is an optimal

, teachmg sequence, for each mstance :c. €T there must bea concept fi € C' such that
flz;) # f,(:r,) Furthermore f, ;é f, for 4 # J- However 1t may be that az; €T
,dlstmgulshes f from many concepts in C’ We say that all concepts in C! = { f,} that

dlstmguxshes from f are eliminated as the poss1b1e target “or free”. Intultlvely,vsmce
ithe teachmg dunensxon s large few concepts can be ehmmated “for free”. We then use
‘this obSerVatlon to show that TD(C!) is small. - T

- We now formalize this 1ntu1t10n Let a:., € T be an mstan(:e that i and f’ classify

5 dlfferently (Smce Tisa teachlng sequence such an 2, must exist. ) We now deﬁne a set
F of concepts that are dlstlngulshed from f “for free For ease of exposition we shall
also’ create a set S that will contain Ca ~F— { f} R
- We build the sets. F and .S’ as follows. Imtlally let S = { f'} and let F=/{ce
={r bl elz.) = f’(:c,.)} That is F m:txally contains the concepts that are also

it S

TR R it e E s A5

st

R

Uy
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distinguished frorn f by z. and thus eliminated “for ’free” - Then foreach z € T — {z.} of
all concepts in € = T —S that dlsagree w1th f on z place one of these concepts (choose
arbitrarily) in S and place the rest in F. Since T is a teachmg sequence at the end of
this process |S| = Tp(C,) and C, = TUSU{f}. Combmmg these observations with the
assumption that ‘TD(C )= > |Cp| — k we get that |T| =|Cn| = TD(Ch) — 1:5 k — 1. That
is, at most k- 1 concepts are ehmlnated “for free ‘ 1
We now generate a teachmg sequence for f’ of length at most k By the deﬁmtlon of
F and .S' any concept in C, = {f'} that class1ﬁes z, as f' classxﬁes 1t must bein F. That'
is, all concepts in' S are dlstmguxshed from f' by z.. Furthermore since |Fl< k-1
at most k — 1 addltlonal instances are needed to dlstmgmsh f’ from the concepts in F.
Fmally since C, = F U S it follows that there is a teachmg sequence for f’ of length at
most 1 + (k - 1) = k. This c0mpletes the proof of the theorem ' =
So when k = 1 Theorem 5 1 1mphes that for any concept class C for Whlch TD(C’,,) =
|C’ | - 1 there emsts a concept whose removal causes the teachmg dlmensmn of the
rernammg class to be reduced tol. We brleﬁy mention an mterestmg consequence of this
result Although it appears that for a “concept class C,, with ven(C,) = |C,| =1 there
is little the teacher can do, this result suggest the’ followmg strategy: first teach some
concept f'in C - { f} and then (1f pos51ble) list the mstances that f and f' classify
dlfferently B , ‘
| Whlle we have shown that the teachmg dlmensxon and the VC dunensmn are fun~
damentally dlfferent there are some relatlons between them. We now derlve an upper

bound for the teachmg dimension that is based on the VC-dimension.
Theorem ‘5.2k For ‘akny ckon:'cept class C’,{; .
TD(Cn) < vcn(C )+|C | 2VCD(C")

Proof: Let z;,...,z; be a shattered set of size d for d = vcp(C,,). By the definition of
& shattered set; in Aan;example sequence consisting of these d instances, all but one of a

set of 2¢ concepts are eliminated. Thus after placing 1,..., 4 in the t’eaching sequence,
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“there are at most |C’ [— 94 + 1 concepts remammg Fmally, we use the naive algonthm of
~ Observatlon 5.1 to eliminate the rernammg functlons using at most IC | —2? additional

‘examples SR Cees Sy R s gy

Natarajan’s 'Dimensio’n Measure £

In this sectlon we compare the teachmg dlmensxon to the followmg dlmensmn measure

4 deﬁned by NataraJan [51] for concept classes of Boolean functlons ’

For allc € C,, there emsts a labeled sample .S' of |S | < d
ND(C ) mxn such that ¢ is consistent W1th S and for all c’ € C’ that

are consxstent thh .S'c,c - c e

Natara]an shows that thls dlmensmn measure charactenzes the class of Boolean func-
’ tlons that are learnable w1th one-mded error from polynormally many examples He also ;

gwes the followmg result relatmg this dlmensmn measure to the VC- dlrnensmn

Theorem [Natarajan] For concept classes C chosen from the domazn of Boolean func-

tzons overn vanables, ND(C ) < ven(Cy ) <n- ND(C,,)

’ Note that the deﬁmtxon of Natarajan s dlmensmn measure 1s sumlar to the tea.chmg G

d1mens1on except that 1f there is more than one oonoept consxstent w1th the g1ven set of
, examples ‘the learner is requu-ed to plck the most specxﬁc one Usmg thls correspondence

: we obtaln the followmg result

pLemma 5. 3 For concept classes C chosen from the "don“zaink,o‘f Boolean fun'ctiﬂons,
o (C, ) > ND(C,-,) e i PR

Proof: Suppose there exists a concept class for which TD(C,,) < Np(Cy). By’ the
‘! definition of the teachmg dimension, there exxsts a sequence of TD(C' ) examples that
' umquely spec1fy the target concept from a,ll concepts in C,. Let this sequence ‘of TD(C’n)

',:j examples be the labeled sample S, ‘used in the definition of ND(Cy). Smce S. umquely




5.1 THE TEACHING DIMENSION -~ = =~ . .95

specifies ¢ € Cy, there are no ¢ € Cy, for ¢’ # ¢ that are consistent with S,. This gives a
contradiction, thus provmg ‘that TD(Cr) = ND(Chp). - B L .

Combmmg Lemma 5.3 with the theorem of Natarajan gives the following result.

-Corollary 5.1 Foffconce'pt classes C, chosen from the domain of Boolean functions over

n variables, vep(Cp) < n - 1D (Chr).

5.1.2 Computing the Teaching 'D’ivmensio‘n :
In this section we é’omp‘u‘te the teath'ing' dimension for éeverél concept classes, and pfbvide
general techmques to aid in computing the teachmg dimension for other concept classes.
“ We'begin by notxng that given a concept class C and target concept c € C the problem
of ﬁndmg an optimal teaching sequence is equivalent to ﬁndmgvan optimal set covering.
(See Garey ‘and Johnson [19] for the definition of the set covering problem.) To see these
-are equivalent problems observe that one can view the instances as the ob jects in the set
cover problem, and ‘the concepts as the sets. Finally, an object is in a set if and only if
‘the concept associated with the set disagrees with the classification of the target concept
" on the instance associated with the object. Clearly an optimal tea,c'hihg‘ sequence directly
‘corresponds to an optimal set covering.- 2 i
While it is A"P-complete to compute an optlma,l set covering’ [19] Chvatal [14] proves
that the greedy algorithm (Wthh is a polynomial-time algorithm) computfs a cover that is
within a logarlthmlc factor of optimal. While this problern appears to be well understood
there is one very important distinction—in the set covering problem no assurnptlons are
-made about the structure of the sets, whereas for the problem of computmg an optimnal
‘teaching’ sequence’ there is assumed to by a short’ (polynonnal-sxzed) representatlon of
“the obJects contained ‘in each set. Thus we suggest the followmg question: - - What is
_the complexity of the set covering problem when there is structure among the objects
~contained in each set? o ; , "
Although ‘the problem of computing’ the optimal teaching sequence for teaching a

given concept is interesting, for the remainder of this chapter we focus on compiting the
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fteachmg d1mens1on for various concept classes We start by descrlbmg a stralghtforward

irelatlon between the teaching drmensmn and the number of membershlp querles needed

to achleve exact 1dent1ﬁcatxon

'Observatron 5.2 "The number of membersth querzes needed to e:cactly zdentzfy any

 givence C, is at Ieast TD(C,).

- Proof Suppose TD(C ) is greater than the number of membershlp querles needed for'

exact 1dent1ﬁcat10n By the deﬁmtlon of exact 1dent1ﬁcat10n, the sequence of rnernber-

ship queries used must be a teaching sequence that is shorter than the claimed shortest

p teachmg sequence. This gives a contradlctlon TR L i

Thus an algonthm that achreves exact ldentlﬁcatlon usmg membersh1p quenes pro-

* vides an upper bound on the teachlng d1mens1on

~ We now cOmpute the teachmg dimension for several concept classes Recall that in
;Chapter 3 we proved that for the ‘concept class of k bmary-relatlons (where the corre-
o spondmg matrix has n rows and m columns), the teaching dimension is km+(n—-k)(k 1).
In Chapter 4 we showed that for the problem of learmng a total order on a set of n ob-
: Jects the teaching dlmenswn isn— 1. In the remainder of this sectlon we study the

* teaching d1mens10n for: monotone monormals arbitrary monormals, monotone rank—

L decision trees, orthogonal rectangles in {0 1 Cyn— 1}ul monotone k- term DNF, and

; k term u- -DNF.
f ,'_Monomials

»We now’ cornpute the teachmg dlmensron for the class of monomials. For the case in

- which the drrector is an adversary, Lrttlestone [43] descrlbes an algonthm that makes at

- most 2rlgn +2 rmstakes for learmng monotone monormals, where n is the number of

«evarlables and r is the number of relevant variables.’ He then nges a transformatlon to
 the class of arbltrary monomials that makes only one addltlonal mrstake We now prove
ca tight bound on the teachmg dimension for the class of monotone :monormals and then

. generahze this result for arbitrary rnonormals

S i A
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Theorem 5.3 For the concept class C, of monotone mono’mials over n variables

h TD(C’,.) mm(r+1 n)
where v is the nm;nb»er of relevant vr’a(ﬁ’a‘b‘les.

Proof: We begin by exhibiting a teach‘ing’s‘equenoe of length min(r +1,n). First present
a positive example in which all variables in the target monomial are 1 and the rest are 0.
For example, if there are five variables and the target is V30305 then present “01101,+".
This example ensures that no 1rrelevant variables are in the target monomial. (Any
example in whlch a relevant varxable is 0 must be negatlve) If all var1ables are in the
monormal then th1s posmve example can be ehmmated , |

Next present r negatlve examples to prove that the r relevant varlables are in the
monomial. To achieve thls goal take the posrtlve example and negate each relevant
variable, one at at time. For the example above the remamder of the teaching sequence
is “00101 ” “01001 ? and “01100 ” . So for each relevant varlable v, there is a positive
and negative example that differ only i _m the value of v, thus »provmg that v, is relevant.
Thus this sequence is a teaching sequence.

We now prove that no shorter ‘sequence of examples suffices. If any variable is not
in the monomial, a positive example is required to rule 'out the monomial containing
all variables. We now show that r negative examples are required. ‘What information
is revealed by a smgle negatlve example" At best 1t proves that at least one relevant
variable, from those that are 0, must be m the target Suppose a set of r—1 negative
examples (and any number of pos1t1ve examples) proved that all r relevant variables
must be m the target We oonstruct a monormal mlssmg a relevant varlable, that
is cons1stent with this example sequence for each negatlve example select one of the
relevant variables that is 0 and place it in the monomial. Thls procedure clearly creates
a consistent monotone monomial with at most r — 1 literals. .~ -~ . -~ ®
- We now extend these ideas to give a tight bound on the teaching dimension for the

class of arbitrary monomials. ‘The key modification is that the positive examples not only
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prove which variables are relevant, but they also provide the sign of the relevant variables.

(By the sign of a variable we simply mean whether or not the variable is negated.)
Theorem 5.4 For the concept class C, of monomials over n variables
TD(Cr) = min(r + 2,n + 1)

where r is the number of relevant variables.

Proof: First we exhibit a teachmg sequence of length min(r +2,n+ 1) We present two
. positive examples, in each make all literals in the target monomial true and reverse the
setting of all irrelevant variables. For example if there are five vanables and the target
monomial is Tyv,vs then present “01001,+” and “01111,4”. Next r negative exa,mples
afe used to prove that each refﬁaining literal is in the monomial: take the first positive
example and negate each relevant variable, one at a time. For the example above, the
remainder of the teeching :sequence”iys 11001, -7, “00001,~", and “01000 =7

We now prove that the above example sequence is a tea,chmg sequence for the target

monomial. We use the followmg facts.

Fact 5.1 Let C, be the class of monomials and let ¢ € C. -be the target concept. If some
variable v is 0 in a positive ezample then v cannot be in c. Likewise, if v is 1 in a positive

ezample then T cannot be in c.

Fact 5.2 Let C, be the class of monomzal and let c € C be the target concept Let
+ € X, be a positive e:z:ample and z- € X, bea negatwe ezample Ifz* and 2~ are
identical ezcept that some varzable vislinzt and 0 in z- then v must appear in c.

Likewise, if z“‘ and z- are zdentzcal ezcept that some variable v is 0 i inz* and 1 in z~

then T must appear in c.

We first prove that no irrelevant variables are in a monomial consistent with the posi-
tive examples. Since each irrelevant variables is set to both 0 and 1 in'a positive example,

it follows from Fact 5.1 than each of these variables could not appear in any consistent
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monomial. (Each relevant variable has the same value in both positive instances. ) From
Fact 5.1 it also follows that the pos1t1ve examples prov:de the s1gns of the relevant vari-
ables. (If all vanables are in the monomlal then only one pos1t1ve example revealing the
sign of each vanable is needed, ) | . |

We now show that any monormal consistent with the negatlve exarnples must oontam
all relevant variables. For each relevant vanable v, the teachmg sequence contains a -
positive and negative example that differ only m the assxgnment to Oy} so by Fact 5.2, v,.
~ must be relevant Thus the above example sequence isin fact a teachmg sequence. .

We now prove that no ‘shorter sequence suffices. If any varlable, say v; is 1rrelevant
then at least two positive examples are required in a valid teaching sequence since the
teacher must prove that both v; and 7; are not in the target monomial. Finally, the
argument used in TheOrem 5.3 proves that r negative examples are needed. n

Observe that Theorems 5.3 and 5.4 can easﬂy be modxﬁed to glve the dual result for

the classes of monotone and arbltrary 1. DNF formulas

Monotone Rank-l _Decislon ’I‘rees |

Next we consider - the concept class of monotone rank-l decmon trees Let V, =
{vi,v2,...,va} be a set of n Boolean variables. Let the instance space X, = {0, l}"

The class C, of tmono'tone rank-1 decision trees {18] is defined as follows. - A concept
¢ € Cuisalist L= ((y1,b1), .. (yesbr)) where each y; € V, and each b; € {0,1}. For a
instance z € X, we define L(z), the output from 'L on input z, as follows: L(z) =b;
where 1 < j < £ is the least value such that y; is 1 in z; L(z) = 0 if there is no such‘ 7.
Let b(v;) denote the bit associated with v;. One may think of a rank-1 decision tree as
an extended “if—then—elseif—. .. else” rule. We note that this class is equivalent to
‘1-decision lists as deﬁnerl'by Rivest [56]. See Figure 5-3 for an exam;:)le'monotone'ranl‘(-‘l
;de‘c'ision“tree on vi,+..,v7. Some positive instances for this concept are “0100111” and
;‘,"0010‘000”, and —some negative instances are “0000101” a‘nd “0100000”.

- We now give an asymptotically tight bound on the 'teaching‘diménsion ,f'or the class
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- Fig:ure’ 5.3 A diagram showmg the followmg monotone rank 1 decision’ tree
{(v3;1),(v1,0), (ve,l) (V4 1), (v7,0), (v5, 1)),

"of monotone rank-l decision trees. S
' Theorem 5.5 For the c’o:r'icept class C, "‘of monotone rah’fc‘-“l “decision trees:
R

: Proof We construct a teachmg sequence of length at most 2n - 1 For each varlable v;

']‘(1mag1ne that all 1rre1evant variables are at the end of the hst w1th an assocmted b1t of

: 0) we ﬁrst teach b(v;) and then we teach the ordermg of the nodes

To teach b(v;) present the 1nstance in whlch v is 1 and all other vanables are 0 Then

b(v;) is 1 if and only ifr= (vivg -+ «v,,) 1s a positive example Thus usmg n examples,
- we teach the bit assocxated wrth ea.ch variable. Next we teach the ordermg of the nodes. g

 Observe that for consecutive riodes v ‘and v_, for whlch b(v;) = b(v_,), reversing the orderof

“these nodes produces an equivalent concept Thus the learner can order them arbltrarxly

- Foreachl1<i<n<1we present the example in which all varlahles are 0 except for ;.

~ and all v; where j > and b(v;) # b(v.) (Figure 5-4 shows the teachmg sequence for the

. target concept of Flgure 5 3.) Observe that the ith example from this second part of the

| . teachmg sequence proves that v; precedes all nodes v; for which j >4 and b(v,) # b(v)).

Thrs ordermg mformatlon is sufficient to reconstruct the ordermg of the nodes EERE )

~We now show" that the upper bound of Theorem 5.5 is asymptotxcally tlght by provmg
the the teachmg dlmensron of motiotone rank-1 decrsxon trees is at least n. Unless the

- learner knows b(v;) for all 7, “he could not possrbly know the ta.rget concept However, to

e g
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Figure 5-4: Teaching sequence for the target 'conce"p't shown in Figure'5-3.
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o Flgure 5 5 ‘The teaching sequence for a concept selected from the class of orthogonal
- rectangles in {0,1, cym=1}4 for n = 20 and d 2 i

teach b(v.) (for 1 <i< n), n examples are needed ‘any smgle example only teaches b;

for the smallest j for whlch i is 1.

bOrthogonal Rectangles m {0 1,- ,n - l}d

We now consider the concept class, Box?, of orthogonal rectangles in {0,1,---,n=1}4.
~ Maass and Turan [46] have shown a mlstake bound of 8(dlgn) for learnmg Boxd when

~an adversary selects the query sequence
5 Theorem 5. 6 For the concept class Cd of orthogonal rectangles in {0 1 nel}d:
B 'I“D(Cd) = 2 + 2d

- Proof: We buxld the followmg teachmg sequence T Select any two opposmg corners of

- the box, and show those pomts as posmve mstances Now for each of these points show

the followmg d negatlve instances: for each d1mens1on, give the nelghbormg point (unless

 the given point is on the border of the space {0,1,- +yn—-1 }in the glven dlmenswn) just

outside the box in that dxmensxon asa negatnve mstance (See Fxgure 5-5 for an example

| teachmg sequence) Clearly the target concept is cons1stent with T, thus to prove that
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Tisa teeching sequence ‘we need only show that it is the only concept consistent with
T. Let B be the ‘target box and suppose there is some other box B’ that'is consistent
“with T. ‘Since B # B’ either B’ makes a false positive or false negative error. However,
the two positive exampies ensure that B’ D B and the knegative'examples ensure that
B D B'. Thus such a B’ could not exist. (
We now show that no sequence T’ of less than 2 + 2d examples could be’ a teachiﬁg
.sequence. ‘Suppose n > 4 and let the target cbncept be'abox d'e’ﬁned‘by'oppo'sing corners
1¢ and (n<2)?. We first argue that T" must conitain two poSitive'points-——-if'T' contained a
‘single positive point then the'bo'x‘containing' only that point would be consistent with 7.
‘Thus any teaching" sequerice must contain at least two positive points. Finally to prevent
a hypothesis B’ from mak‘ing a false vpositiVe error, there ‘must be a negative example
that eliminates ‘any hypothesis that moves each face out rsby ‘even‘one'unit. 7 Clearly a
single point can only serve this purpose for one face. Since a d-dimensional box has 2d

faces, 2d negative eXamplesare needed. - o i g

Monotone k-term DNF' Formulas

]We now descrlbe how bounds on the teachmg dlmensmn for 31mple concept classes can
be used to denve bounds on the teachmg dxmensron for more complex classes. We begxn
by usmg the result of Theorern 5.3 to upper bound the teachmg d1mens1on for monotone
'k-term DNF formulas 'We note that 1t is crucial to thls result that the learner knows
k. While the tea.cher can force the learner to create new terms, there is no way for the'

'teacher to enforce an upper ‘bound on the number of terms in the learner s formula
Lemma 5.4 For the class C, of mo'notone ‘k’-term DNF form’ulas,; S ‘
o TD(C ) <£+k

where f is the number of lzterals zn the target formula

~ Proof: Let f=t;VtaV.arV tk be the target formula, and let f(:c) z€ X, {+, --} |

denote the value of f on input z. We assume, without loss of generahty, that f is
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‘reduced meanmg that’ f is not equrvalent to any formula obtamed by removmg one of . i

‘1ts terms Thus for all # and j, LDt (where t, o t " denotes that for any mstance T, j’ fo

- J(:c) + = ti(z) = +) The approach we use is- to mdependently teach each term of o

- the target formula.

For all i we build the teachmg sequence T, for term ¢; (as if ¢; was a concept frorn the
© class of monotone mononuals) as descnbed in' Theorem' 5 3 As an’ example consider the -
‘ ‘case in whlch there are five variables and the target is 1)21)3’05 v v1v3 For the terrn VgUsV5

| ;the teachmg sequence is “01101,+", “00101 =7, “01001 -” and “01100 ». Observe that L

- ;’the other term v;vs contams a vanable namely vy that is not in v2v3v5 ‘Since v is0

for any instance 'z in the above teachmg sequence, T is posmve if and only if VU3vs is

true on input z. leewme the vanable vy isin '02’03'05, but not in V103, As we shall see, -

“the teachmg sequences for '022)3'05 and V103 when combmed form a teachmg sequence for B

k '02'03‘1)5 Vv 011)3 ‘ : e : .
|  We now use the ideas from the’ab‘ove example"*to’ prove that T' = Tng o Tpis a
“ teachmg sequence for f. ‘The key property we use is: ‘

- for a,ny z E T,,f(:z:) +1f and only 1f t (:z) o (5 1)

pTo prove that property (5 1) holds we prove that for all z E T., all terms except for t ‘

. are negatlve on on z. Recall that all vanables not in ¢ are 0 i in every z € T;. Thus we

need _]ust prove that each tenn of f, except for t,, must contain- some varlable that is
not in ¢;. Suppose for term ¢;, no such vanable exrsts Then t would contam a subset
of the vanables 1n ti. However thls vxolates the assumptlon that fis reduced Thus
property (5 1) holds Vg

o - We now use property (5 1) to prove that T is a teachmg sequence for f We ﬁrst show

i ‘that fis consistent with T. From property (5 1) We know that fis posrtlve on z € T; if

‘and only if ¢; (:r) +—and since T isa teachrng sequence for t it follows that f (a:) =
1f and only if z is positive. Thus f is conmstent with T e b
. We now use a proof hy contradlctlon to show that T umquely specrﬁes f For ‘mono-

. tone monormals gi,02;- ., gk SUpPpOSE g = g,v Vg is consrstent with T yet g # f Then
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‘there must exist some term ¢; from f ‘th'at is not equal to 'any‘i;erfn in g. Without loss of
i generality"suppoSe‘ that g,(m) = + for a positive point z € T;. (Some term in g must be
true since g is assumed to be consrstent with T;.) By property (5.1), this nnphes that g;
~can only contam those Vanables that are in ‘t;. Finally, since _q, must reply correctly on
all negative points in ¢; it follows that g; =; ngg the desired contradiction.
~To corhplete the proof of the theorem, we need just’cornpute thls size of T. "k'From
‘Theorem 5.3 we know that for each 4, T3] < < r+1 where r is’the*nur’nber of literals in ¢;.
' Thus it follows that |T| < £+ k where £ is the number of hterals inf. o0 om
We note that by using teaching sequence from monotone 1- DNF formulas as the

“building blocks” we can prove a dual result for monotone k-term CNF formulas’.

';k-term ,u-DNF Formulas

‘'We now extend the idea of Lemma 5 4 to use teachmg sequences for monomials to build

a good teaching sequence for a k-term’ p-DNF formula.

Lemma 5.5 For the class C’ of k term y-DNF formulas,

'rD(C ) <n+2k

Proof: As in Lemma 5.4 we asSume ’that’; the’terget formula f - 81 Vi Vs Vigis
reduced. Once again, the key idea here is to mdependently teach each term of f. For
each term of f we begm by lettmg T be the teachlng sequence for t (as if t; was a concept
from the class of monormals) as descnbed in Theorem 5 4 Then we modlfy T=T7---T;
as follows. For each singleton term #; (e.g. t; = vj or ; = ¥;) modlfy all examples in
T =T hy'.setting v; so that t; is false. For each'remaining‘term t; r‘no‘dify T so that at
least one literal from term t; is false in all examples'in T = T;. (Since fis i ‘p-fo‘rrnula
_-and all rernaining terms contam at least two literals, this goal is easily achieved.) -

We first prove that 7 is a teachmg sequence for f It is easy to see that for any
: fmstance z € T, all terms in the formula, except for t;, are false on 1nput 2. The literal

in any smgleton term ¢; is only true for elements in T;. For any other term t,, for any
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1nstance TE T T; at least one hteral from t is false and thus t;is false What remains to

, :be proven is that T} (1 <i< k) isa teachmg sequence for 178 However, if one individually

B }cons1ders each T; this may not be true. The key o’oservatlon 1s to first consider the portion

. .of the teaching sequence associated with the smgleton terms It follows from the proof
of Theorem 5.4 that each s1ngleton'1s a term in the ‘formula Fmally, since each variable
‘Lcan only appear in one terrn, the portlon of the teachmg sequence “associated w1th each :

.remamlng termis a teachmg sequence for that term “Thus the techmque of Theorem 5.4

~ -can be used to prove that T is a teachxng sequence for f.- D SR
Classes :Closecl Under‘XOR" ,

: We now discuss a s1tuatlon in whlch one can genera.te a teachmg sequence that has length

- logarlthm]c in the size of the concept class For cl,o) € C we deﬁne c= clxon c2 as

 follows: for each instance z € X,., c(z) 1s the exclusive-or of cl(:c) and cz(:r) We' say

| ‘a concept class Cis closed under XOR 1f the concept ¢ obtamed by takmg the blthse

excluswe-or of any pair of concepts c,,c, € C’ (for all ) ]) is a.lso in C’
kaheorem 5.7 If C zs closed under XOR then there e:z:zsts a teachmg sequence of size at
most [lg(]C ] -]+ 1. ' ‘ ‘

'Proof We construct a teachlng sequence usmg the followmg algonthm

Bmld—teachmg-sequence ( fmget, C ) k
‘1 Repeat until fiarge is uniquely determined

2 .. Find instance, z, for Wthh fmm dxysagrees wﬂ:h a non-ehrmnated :
s ' function from Chn , »
.3 . Usec as the next exa.mple

We now show that each msta.nce selected by Buzld-teachmg-sequence removes at least
‘half of the non- elumnated functlons from C’ — {fuarget}. Consider the example z added
'm step 2 of Buzld-teachzng-sequence Let  contain the examples that have already been
| presented to the learner, kand let 'V conta,m the concepts from Cn — { frarget} that are 7 |
consistent with 7. We noW”shoré that at ‘least"llalf Vorfy the concepts iny must disagree

~with z. Suppose that z is a positive example. If all the concepts in 'V predict that z is
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next instance

m—
s 1
g2 V7777 1 ] : f@glegztl///mol —_ ]
~previously

_Figure 5-6: Result of combining with XOR.
_negative, then a: elirrﬁna.tes'all remaining concepts ’in V besridesthe target. Other‘wise,
there exists some set V2t of concepts that predict z is posmve (Let V; = V VI be
- the concepts frorn V that predict z is negative.) By the ch01ce of z, it must be that
V-l = 1—-—1et o1 be a concept in V. We now use the fact that Chis closed under Xor
to prove that for each ooncept 92 € Vi, there is a one-to-one rnapplng to a concept in
'V " First consider the result of takmg f @ gl Since all elements in V are consistent
with instances in 7, for these instances f @ g1 is 0. For the instance z, f @ g is 1. Now
“consider taking f @ g, @ g; for g, € V+. Since the instances in 7 are 0 in f @ g, in
foad® 9 the instances in 7 are the same as in f. Forz, f ® g1 ® ggy is 0. Finally, since
all concepts in V+ ‘must dlsagree w1th each other on some instance in X, — 7 — - {z}, the
’concept f EB 91 @ g2 € V forrns a one-to-one mappmg thh the conoepts 92 € V"’ (See
‘Flgure 5- 6 ) '

i _Repeatmg thls same argument when z is a negative instanoe, we conclude that on each
instance at least half of the concepts in V are eliminated. 'Since’ Build-teaching-sequenee'

removes at least half of the non-eliminated cohcepts with each example, after at most
) |1g(ICx| = 1)) examples V contains at most one concept from C, — {f}. Finally, one
additional example is used to distinguish this remaining concept from the target concept.

-Thus the length of the teaching sequence is at most |lg(|Cn] —1)] + 1. Lo,
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?5 2 Self—dlrected Learmng

. We now focus on the case in wh1ch the learner selects the query sequence We ﬁrst
" consider some of the concept classes drscussed in Sectxon 5 1 2 when studymg the teachmg

~ d1mens1on, and then descrlbe a sufﬁaent condltlon for when the leamer can make a single

. mistake.

“As we saw in Chapters 3 and 4 for the problem of learnmg k- bmary-relatlons (where‘

“the matrxx has n rows and m columns) when the learner selects the query sequence the

number of mistakes is 9(km + (n— k) Igk), and for the problem of learmng a total srder

in the case that the learner selects the query sequence, there isa tlght mistake bound of
n-—1. We now consider the rifstake bounds under self-drrected learmng for the classes of

: monetore monormals monormals, monotone k- DNF forrnulas and orthogonal rectangles o

'*m{01 o 1}"

U 2 1 Monomlals

“‘We ﬁrst glve an algorlthm to learn monotone monormals and we then modxfy it to learn'

arbrtrary monormals B

- "?Theorem 5. 8 There e.z'zsts a learning algorzthm for learmng monotone monomwls that i |

“makes at most one mzstake under self- dzrected leammg

! ‘K"Proof The learner uses the followmg query sequence, always predxctmg that the 1n-
lstances are negatlve and stopp1ng when the ﬁrst rmstake occurs. Fn'st consrder the
' ‘instance in whlch all vanables are 0. Next consrder the n instances in whlch a smgle
“variable is 1. Then cons1der the ( ) mstances mn whxch two vanables are 1 and so on.

V (See Flgure 5-7. ) ' o ,' i “ | |
Let ¢ be the target monormal and let ¢ be the ‘horiomial con51st1ng of the vanables
‘that are 1 in the lncorrectly predxcted ;nstance z. We now prove that d=c Clearly
any variable in ¢ must also be in ¢—if variable © is in ¢ then v must be 1 in any

- positive example. Suppose that some irrelevant variable v'is 1 in the incorrectly predicted
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01.0 .-000:, —
000 01,0, -
000 --- 001, —
110 «-+ 000 , -~
101 .-000, —

Figure 5-7: Learner~se1ected query sequence for learnmg the monotone mononua.l
T122T3. Note that the last instance is- the first one mcorrectly predlcted by the learner

instance, yet it is not in c. ‘Consilde‘“rthe positive‘instanCe z’ Whi‘ch is the same as z except
that v'is 0. “Clearly z’ * must precede z in ‘the query sequence’ deﬁned above. 'Since the
Jearner reaches the instance z it follows that 2’ must be a negatlve 1nstance, glvmg the
 desired contradiction. i s .
We now modify these"ide‘as to handle the situation in which some vanables in the

monomial may be negated.

Theorem 5. 9 There ezists a learnzng algorzthm for learmng arbztmry monommls that

makes at most two mzstakes under self- dzrected learnmg '

Proof: The algonthm used here is a s1mp]e modlﬁcatlon of the algonthm for learnmg
, monotone ‘moniomials. Suppose that the learner knew the s1gn of each va.nable ‘Then the
ﬁ learner can use the algorithm for learning monotone monormals where settmg a variable
to 0 (respectlvely 1) is interpreted as setting the variable so that the oorrespondmg literal

is false (respectively true).. . .. - T ek ey g ey
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Fma]ly, we use a standard trick [43] to learn the sign of each varlable makmg only -

one rmstake For arbltranly chosen mstances, make the predlctlon that the 1nstance isa
 negative instance. Let z be the posmve mstance ohtamed on the first mistake.- The sign

of each relevant vanable is ngen by its assxgnment in z. . . .

,"5 2. 2 Monotone k- term DNF formulas

k In thls sectlon we consxder learnmg monotone k-term DNF formulas under self-dlrected
learning. We obtain our algonthm for learmng monotone k-term DNF formulas by ex-
‘tending the algonthm of Theorem 5. 8 to handle the conJunctlon of k monotone monomi-

als.

Theorem- 5 10 There ezists a Iearnzng algomthm for the class of monotone k te'rm DNF

formulas that makes at most k mzstakes under self dzrected learmng

' Proof Sketch The algorlthm used here is a modxﬁcatlon of tha.t descrlbed in Theo-

rem 5.8. The query sequence selected i 1s hke the one shown in Flgure 5 7 except that'
. an instance z is predxcted as posntlve 1f the monormal correspondmg to any mcorrectly

predicted mstance predicts that z is pOSlthe Usmg the same techmque as in the proof

of Theorem 5. 8, one can show that the target formula is just the disjunction of the

~ monomials correspondmg to the mcorrectly predxcted msta.nc&s Sl L ey -

5. 2. 3 Orthogonal Rectangles in {0 1,-- ,n 1}"

Fmally, in thls sectlon we consxder the concept class BOXd of orthogonal rectangles in

{0 -+ ,n~— I}d

Theorem 5. 11 For the concept class of Box there ezzsts an algorzthm that makes at

‘ most two mzstakes under self dzrected Iearnzng

l Proof: Seiect two opposmg corners of the space {0 1 ,n-—l}“ Let L be ‘the line -

through these two Opposmg corners. Our teachlng sequence finds each corner of the

‘.. ‘f/f R

i e F :

o W,
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&

v QO000000

000000
ISR ERE I XXX
v st i s 0000

Figure 5-8: The query sequence for learning a concept from Box3. The filled circles in
the figure represents correctly predicted negative instances. The unﬁlled circles represent .
the instances on the frontier. Finally, note that in the last figure the querying stops when
‘a mistake is made predicting that the corner of the box is a negative instance.

target box by approachmg it w1th a hyperplane perpendlcular to L. That is, for each
opposing corner present the followmg set of mstances predlctlng that each is nega’uve.
Learn-boz-corner (cornef pt) k
1 Query the corner point, predlctxng it 1s negatlve -
2 while no mistake has ‘occiirred :
3 . . for points p in the set of seen points

4 e ~ Query unseen points reachable ﬁ'oxh P by ta,kmg one
A A e ~step in any dimension measure

So basmally, dovetaﬂmg is used to ﬁnd ea.ch corner. See Fxgure 5- 8 for an example of

»the query sequence for leammg a box in two-dlmensmnal space

i At the first mistake, we 'claim that a corner point of the box has been found. Since the
't‘target box is apprdached ,withfa hyperpla:ne perpendicular to the axis between the ':tWO
“corner points of the space, the first point of the box ‘queried must be the corner point.
Finally, we argue that the learner has seen a negative exa.mple (predicted correctly)
_ ‘fcorrespondmg to the negatlve msta;nces in the teaching sequence for Box;{. Note for each
corner that these points are'along “"the’previous position of thehypefplane‘. Finally, the
second corner is found in the same manner. Since a teaching sequience has been seen, the

" learner knows the exact location of the box. .~ =« o s 0 g
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r'r'»a‘x“—)'mgmmme G

CRubSpis

| \ most specific rule
, Fxgure 5 9 The rule space s
5 2.4 Mitchell’s Versmn Space Algorlthm

We have dernonstrated that the number of mlstakes made under self dxrected learnmg
may be qulte small Is there some chara/ctenzatlon for the 31tuat10ns in whlch the learner
~ can perform so well" As a part1a1 a.nswer to thls questlon, we descrlbe a relation between
: this work and Mitchell’s vers:on space a.lgonthm L R
We begm by descnbmg Mltchell s versxon Space a.lgorlthm The rule space (hypothe31s
' space) is the set of all rules avallable to the learner “The 'verszon space with respect to
‘a given sample is the set of all rulec tha,t are cons1stent thh the sample (i.e example
~sequence). The set G is the hst of the most general rules in the version' space ‘The set' S

- 1s the list of most specific rules in the vers1on space. (See Flgure 5-9.) The main ideas of

~‘the verswn space algorithm are’as follows Imtlally let G’ be the forrnula that is always ;

‘,Atrue and let S be the formula that is always false: Then for each example both G and
S are appropriately updated. See Haussler {26 27] for a dxscusswn of Mntchell’s version
- space algonthm viewed under the dlstnbutlon free learmng model '

 We now glve the followmg relation between the version space algonthm and situations
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in which the learner can make-a single miistake.w - - . -

Theorem 5. 12 If for all presentatwn orders of the znstances ]S |=1in Mztchell s ver-
sion, space algorzthm, then there ezzsts a self dzrected leammg algomthm that makes at

‘ most one mzstake '

. V'Pyl"oo\f: ~ T he learning algorithm is as follows. For each rule r in the rule space let 4(r)
be the instance that is ’poeitive if and only if the target ie ror a ,-bgeneraIiZationvnf r.
- Note that since |S| = 1 such an instance must exist for each rule in the rule space. The
algorithm goes through the rules frdvaOSt geneifal to most specific (i.e. go through the
layers of the lattice from top to bottom) and selects the instance i(r) with a prediction
~thatitisa negative instance. We claim that when the first mistake is made, the target
rule is the single rule in S. Clearly; when thé first mistake is made it is known that the
target is r or a generahzatlon of r. However, since the rules are cons1dered from most
b" general to most spec1ﬁc, all rules that are generahzatlons of r must already be ehmmated
* from the version space. “Thus the target ‘rule must be roo Ahob s e e
 Asan apphcatlon note that Bundy et al [12] have noted that for the class of monotone
" monomials* the set 'S never contains more than one hypothes1s :
~ We now extend this result to concept classes that are made of of the dlSJunctlon of

rules from a spaoe for which IS’ | =1.

: Theorem 5’.13 Let Cn bea cOncept class for which |S| = 1 regardless of the presentation
order for the instances. Then a concept consisting of ¢, Vea V...V ¢k for ¢i,. coyCr € Cp
- can be learned with at most k mistakes unden a learner selected query sequence. -
“Proof Sketch: The algorithm used here is a-;rnodiﬁéat‘ion of the algorithm given in the
proof of Theorem 5.12. However, the instance i(r) is predlcted to be positive if it is a

- specialization of a rule for which a mistake was made on a prevnous predlctlons Using

“the same techmque asin the proof of Theorem 5.12, one can show that the target formula

*Actually, they show thxs clalm for the more general class of pure conjunctlve concepts over a ﬁmte
- g6t of tree-structuréed attributes: v L £ , :
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s just ’thedisjunction of the rules kcorresponding'ftof‘theﬂincorrec':tly'predicted'instances.'
Apply:ng the result of Bundy et al {12] we get the result of Theorem 5 10 |
Fmally, all the results we haVe descrlbed relatlng the number of rmstakes made under
a learner selected query sequence to Mltchell’s versron spaoe algonthm can be extended '
- to glve the dual results for when ]Gl =1 Namely, if for C the set G always contams
a smgle element then there ex1sts a self-directed learnmg algonthm that rnakes at most
~ one rmstake Furthermore, there exists a self-dxrected learnmg algorxthm that can learn

i a A s A Aep for €1y.0., .k €C, makmg at most k nnstakes

5.3 - Conclusions 'and*"()pe“n -Problems ¥

= ;"Inthis chapter we have studiedsome of the 'interesting questions related to the extended
. Vnﬁs'take-bOun‘d model. In particular kWe' conslder the deer"Of the‘tea‘cher or learner
selectmg the instances when ‘the learner’s performance is judged on the number of in-
vcorrect predlctxons it makes See Table 5. 1 for a summary of the’ specxﬁc results (The ;
lower bounds for monotone k-term DNF and k- term p-DNF are obtamed by just lettmg
k=1 and usmg the bounds for monormals ) Observe that for these concept classes, the
" teaching sequence selected is hlghly dependent on the target concept In Sectlon 6.6 of
" ’Chapter 6 we describe a sxtuatlon 1n ‘which the 1nstances in the tea.chmg sequence are

mdependent of the target concept ,
’ - Along W1th th1s spec1ﬁc results, we have descrlbed results relatlng the teachmg di-
| .mension to the ‘Vapnik- Chervonenkls dimension and given some general results for both
the case when the teacher or learner selects the instances. ; : |

A Fmally we explore the followmg mterestmg paradox raised by our results for many,
E ;concept classes, the number of rmstakes made under teacher-dlrected learnmg may ‘be
worse that the number of rmstakes made w1th self dlrected learmng Intu1t1vely, the

“brlght” student may learn the lesson qulcker workmg on his own rather than listening
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~ Concept
oo Class

| Director

 Lower
" Bound =

~ 'Upper
- Boud "

Mormnotone

" Monomials

‘Teacher

Learner

min(r +1,n)

Cmin(r +1,n)

1

Monomials

" (r relevant vars.)

Teécher

Learner

rnih(r+2,n+1)
—— Py

min(r 4+ 2,n + 1)
A 7 .

| (£ Ll'itel"als")‘

~ Monotone k-term DNF

Teacher

e+l |

L+k

Learner g

,1‘

k

_F-term :DNF

' Tea.chgr

n+2k

Monotone Rank-1 Decision Trees

Teacher

Orthogonal Rectangles
in {0,1,---,n—1}¢

Teacher

242

2+42d

Learner

2

2

Table 5.1: Summary of results on t

learning.

eacher-directed and self-directed learning for concept
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to the lecture des1gned for the slower student Th1s phenomenon occurs because of the -

restriction that the mistake bound in teacher-du-ected learmng apply for all cons1stent 1

: learners thus it is poss1ble to get better mistake bounds under self-dlrected learmng For
example the self-dlrected learmng algonthm for orthogonal rectangles cleverly dovetails

“towards the corner predlctxng that all instances are negatlve thus makmg only one mis-

‘ take to ﬁnd the corner. ‘However, such a query sequence does not make a good teachmg

sequence since the learner could mstead choose to predlct that all mstances are positive.
A dlrectlon of future research is to further study the helpful teacher and learner

: ,mstance selectors of the extended rmstake-bound rnodel for other concept cla.sses As we
have demonstrated the teachmg dunensxon 1is hxghly dependent on the target concept
| Another mterestmg measure rmght be to cons1der the expected teachlng dunensmns where
| the target concept is chosen at random Whlle, we have shown that the learner can often
make a very small number of mlstakes when 1t selects the query sequence, these learnmg

algorxthms often make many quenes i : Sy ,

Another very mterestmg research dlrectlon would be to con81der a vanatlon of the
‘self dlrected learmng model i in wh:ch each query has a small cost yet each mistake has
a large cost. Such a model would encourage the des1gn of learnmg algorxthms that make

- few nustakes without makmg an exponent1al number of correctly predlcted querles

FRE et i
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| Chapter 6

fExact Identlﬁcatlon of Read-once
‘Formulas Usmg Amphﬁcatlon
Functlons

In this chapter we describe efficient ,algorrithms for ezactly identifying certain families of

_Boolean formulas by observing the target formula’s behavior on examples drawn ran--

domly according to a fixed and simple distribution that is related to the formula’s am- -
plification function. The amplification function Ay(p) for a functlon f:{0,1}¥ — {0,1}
is deﬁned as the probablhty that the' output of fis1 when each of the N mputs to

5 f is 1 mdependently w1th probablhty . Amphﬁcatlon functlons were ﬁrst studxed by

“ Vahant [65] and Boppa.na [11] in obtalnmg bounds on monotone formula. s1ze for the

” ma]onty functxon '

" The method used by our algorxthms 1s of central mterest For several classes of

"formulas, we show that the behavmr of the amphﬁcatxon functlon is’ unstable near the
"'{ﬁxed pomt that 1s, the value of Af(p) vanes greatly thh a small change in p. Thxs in
turn 1mphes that small but easﬂy sampled perturbatlons of the ﬁxed pomt dlstnbutlon

h(that is, the dlstrlbutxon where each mput is 1 w1th probab:hty p, where A,(p) = p) _

Thls chapter descnbes joint research wnth Mike Kearns and Rob Schapire [20]

117
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- reveal structural mformatlon about the formula A typlcal perturbatlon of the fixed

= pomt d1str1but1on would hard-wire a smgle varxable to 1 and set the remalmng variables

“ to 1 with probablhty p.

We apply thls method to obtam eﬁiment algonthms for exact 1dent1ﬁcatlon of classes :

of read-once formulas (in whlch each variable appears at most once) over vanous bases
These include the class of logarrthrmc—depth read-once formulas constructed with three-

| mput maJorlty gates (for which’ the ﬁxed-pomt dlstrlbutxon is’ the unlform dlstrxbutlon),

& ~ as well as the class of loganthrmc-depth read once formulas constructed w1th NAND gates

(for which the ﬁxed—pomt dlstrlbutlon assxgns 1 to each mput mdependently with prob~
'abllity P 62) For these classes, the ﬁxed pomt of the amphﬁcatlon functxon is the
same for all circuits in the class, resultlng in a single srmple dlstrlbutlon for the entire
class. Since these same classes of circuits are known to be not even weakly learnable
~in polynormal time in Vahant s model our results may be mterpreted as demonstrat-
i ing that whlle there are some dlstnbutxons which i 1n a computatlonally hounded settxng
; reveal essentxally no mformatlon about the target circuit, there are natural and 51mple

- dlstrlbutlons which reveal all mformatlon

For the class of read once ma Jonty formulas there is no prev:ous algonthm for exact
: 1dent1ﬁcatxon for Boolean read-onoe formulas (a superset of the class of formulas con-
structed from NAND gates) there is an eﬁicrent algonthm using membershxp queries due
- . to Angluln, Hellerstem a.nd Karplnskl [5] It is mtereetmg to note that 1f we regard our

- algorlthms use of a ﬁ:ced dlStI’lbUthD as a form of random membershlp querles then
these querxes are non-adaptwe each query is mdependent of all prevnous answers. In
‘ contrast all prevxous exact rdentxﬁcatlon algonthms 1ncludmg the algorlthm of Angluln

: Hellerstem and Karpmskl use hlghly adaptlve query sequences We formahze these

notrons and then apply our results in provmg the ex13tence of unwersal zdentzﬁcatzon'

. sequences for classes of formulas. -

i o porgim o T
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6.1 Preliminaries

Given a Boolean functlon f from {0 1}N to {0 1}, Boppana [11 deﬁnes its amphﬁcatzon
function Ay as follows Af(p) Prob[f(X;, 5 XN) = 1] where X, .. XN are inde-
pendent Bernoulli varlables that are éach 1 w1th probahihty p. The quantlty Af(p) is
called the amplzﬁcatzon of f at - Vahant {65] uses properties of the amphﬁcatlon function
for Boolean formulas to prove the ex:stence of a monotone Boolean formula for the ma-
jority function of size 0( N5'3)-, We sometimes find it usefulto glve a few of the variables
special treatment, and so"‘we‘introduce the notation Agisq (p), for S C {z4,.. .,’z‘N}, to
denote the probability that f(X,..., Xn) = 1 where each X; is an independent Bernoulli
variables that is 1 with probability gif z; € §, and With"probabili‘ty p otherwise. For
example A Sz} (p) is the value of the arnphﬁcation function for the function obtained
by hard- wmng T to be 1 in f Fmally, we denote by 'D(”) the dlstnbutlon over {0 1w
deuced by havmg each vanable mdependently set to one w1th probabihty p

Unhke the prevxous chapters in which we used an on-lme learmng model here we
' use a batch’ settmg thh stochastxc mstance select1on Furthermore, throughout this
chapter the instance space is {0 1}” | Flnally, mstead of usmg the absolute rmstake-'
bound crlterion, we use the exact 1dent1ﬂcat10n sucoess cntena. That is, for any §>0,
the learner must w1th probablhty at least 1 6 output a hypotheus that agrees with the
target concept on all mputs Recall that in thls settlng polynomial means polynormal in
N and 1 /6. In this chapter we glve efﬁcxent algorlthms that thh hxgh probabllity exactly

identxfy the followmg classes of formulas 2 S

. ’Th'e class of logarithmic-depth"re'ad:oncey maJorlty “formulas' This class
cons1sts of Boolean formulas of loganthmic-depth constructed from the basis
{MAJ NOT} where a MAJ gate computes the majonty of three inputs, and each ’
variable appears at most once in the formula. Wlthout loss of generahty, we as-

_ sume all NOT gates are at the mput level See Figure 6-1 for an example {formula

from thls class k
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o from the ba51s {NOR} where a NOR gate cornputes the negatlon of the or functxon .

- , formula constructed from a bas1s {AND OR} where each gate has fan-in tWO, the ,

CHAPTER 6. EXACT IDENTIFICATION OF READ-ONCE FORMULAS

! L ol : :
R Ky Xy X Xy Xgg Xy Xg Xy X9 Xy Xpy Xy

Figure 6-1: An 'exam'ple of a read-once m'a‘;jority: formula. =

. The class of logarlthmlc-depth read-once posxtlve NOR formulas Th1s

- is the class of read-once posmve NOR formulas of logarlthrmc-depth constructed :

of two mputs Furthermore, each mput appears at most once in the formula and
: all varlables are posrtxve (non-negated) See Flgure 6-2 for an example of such a

‘formula Observe that any read-once pos1t1ve NOR formula. f is equlvalent to a

output from each OR gate is an 1nput to an AND gate, the output from each AND

*is the class of read-once pos1t1ve NAND “formulas of logarxthm]c-depth constructed '

" function of two mputs Furthermore each input’ a.ppears at most once m the formula ‘

o gate is an 1nput to an oR gate, and the mputs entermg AND gates are ﬁrst negated B
" Thls observatlon is easxly proven by applymg DeMorgan s law to every other level ~

of f. See Fxgure 6 3 for the leveled OR / AND formula equlvalent to the read-once :

pos1t1ve NOR formula shown in Flgure 6 2.

 The class of logarrthmrc-depth read once posxtxve NAND formulas This

from the basis {NAND} where a NAND gate computes the negatlon of the AND

and all vanables are positive (non-negated). Like the correspondence described

T P S T
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: "X33 xzsw,xs X4° XS

. .Figure 6-2: An example Qf a read-pnce_ positive NOR formula. . - -

S l‘ ]
1n - X9 Xy

" Figure 6-3: The Boolean formula kequiu'\(alén; to the read-once positive Nor formula of
et aoncecievt gl e et
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Frgure 6-4 An example of a DNF, formula for E 3 and t =

above any read -once posrtlve NAND formula f 1s equ:va.lent to a leveled or /AND

formula i in which the 1nputs entermg OR gates are first negated

) The class of read-once monotone DNF, formulas' Thls is the class of read-
once monotone DNF formulas for which there are t terms each with £ hterals per

term See Flgure 6 4 for an example of such a formula for Z 3 and t =5.

The key 1dea for all of our learmng a.lgorxthms is to ﬁnd an input probablhty dis- -

: :‘trlbutlon on whlch the target formula is unstable, m the sense that applymg a simple

' filter to thrs drstnbutlon (such as holding - an mput vanable ﬁxed) s1gn1ﬁcantly alters the
 statistics of the forrnula s behavmr Namely, we con31der the distribution D where P |

~is the ﬁxed pomt for the correspondmg amphﬁcatlon functlon We show that ‘the dif- -

,‘ ference in the formula s behavror frorn the ﬁxed dlstnbutxon to the ﬁltered drstrrbutlons

 reveals structural mformatron about the formula sufﬁcrent to construct the correspondmg

- formula

We define the depth of a formula to be the maxrmum number of levels from any input
- to the output We deﬁne the level of a gate 9 to be the number of gates (mcludmg g)
»’ on the path to the output Thus the output gate is at level 1. erew1se, we deﬁne the
 level of an znput to be the level of the gate which the mput enters An mput x; feeds a
- gate g if the path from z; to the output goes through g. For any two input bits z; and
' a:J we define I‘(:c,, z;) to be the gate g nearest the input level that is fed by both z; and

P
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zj- L1kew1se, I‘(z,, Zj, a:k) denotes gate g nearest the mput level that is fed by i, z,, and
, a:;, Smce the formula is read-once, these gates are umque S L

 We use Hoeffdlng 5 mequahty in analyzmg the sa.mple complex1ty of our algonthms,
and so we briefly - revrew these bounds now (We note that these bounds are often referred
to as Chernoﬁ' ‘bounds. ) Let X1,X2, X be 1ndependent Boolean randorn vanables
each W1th a probablhty p of bemg 1. Let S’ 2;—1 X,, the expectatlon of §is thus pm.
LHoeffdmg s mequahty (32, 61] for boundmg the ta.11 of a bmormal dlstnbutlon states that

A

Pr lS>pm+Tl -'«e‘»?"«'v",’ R D
Pr(S >7m];g’ eTIme-P o (6.2)
“Pr[S < Bm) g e=2m(B-p)* ot S (63)

for y 2 pand § <p.

6 2 The Class of Read-once Ma Jorlty Formulas

In thls sectlon we use propert1es of amphﬁcatlon functlons to obtam a polynormal—trme
algonthm that thh hlgh probablhty w111 exa/ctly 1dent1fy any read-once majonty formula
of loganthrmc depth from random examples drawn accordlng to a umform dxstnbutlon

Tlns type of formula is used in Schaplre s [59] proof that a concept class is weakly
learnable in polyn0m1a1 txme 1f and only 1f 1t is strongly learnable in polynormal t1me
That is, the hypothesns output by Schapu'e s boostmg procedure can be v1ewed as a
read—once ma]onty formula whose varlables have been replaced by hypotheses output by
the wealk learmng algonthm We also note that a read-once ma,]onty formula cannot in
general be converted to a read-once Boolean formula over a {NOT on AND} bas:s We

now show that the class of read-once majonty formulas is not learnable in the dxstrlbutlon-

free model

Theorem 6.1 The class of read-once 5majo‘rity formulas 'is not ‘learnable in the

distribution-free learning model (assuming the security of various cryptographic schemes).
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Proof We exhlbrt a predlctxon-preservmg reductlon from N C’1 to thls class, in the style L

of P1tt and Warmuth [54] comblmng thls thh Kearns and Vahant s [36] result that NC!
'1s not learnable (modulo cryptographlc assumptxons), proves the theorem S

Replace each AND gate of the N C‘ c1rcu1t by a MAJ gate w1th one lnput hard w1red

cto 0. L1kew1se replace each or gate of the N C" c1rcu1t by a MAJ gate ‘with one mput :
’ hard—wzred to 1. Fmally, apply Kea.rns et al s [35] techmque of repeating each vanable E

N tlmes in the 1nput to make the formula read-once S ; "

Despxte the hardness of this class in the general dlstnbutlon-free framework we show

that the class is nevertheless learnable when examples are chosen from the umform drstn-

. butlon The algonthm is s1mple and consrsts of two phases In the first phase, we deter-

* mine the relevant vanables (whether they occur in the formula), theu‘ 31gns (whether they
are negated or not), and their levels ‘To achieve this goal, for each varlable we hard-wrre
its value to 1 and estlmate the amphﬁcatlon of the induced functron at 3 usmg examples

' drawn randomly from the umform dlstnbutlon (Here by hard-wmng a varlable to 1

we really mean that we apply a filter that only lets through examples for whxch that

vanable is 1 ) If the vanable is relevant then thh hlgh probabxlxty this estlmate wrll be
s1gn1ﬁcantly smaller or greater than dependmg on whether the vanable occurs negated
| or non-negated in the formula, otherwrse, this estlmate w1ll be near - Furthermore, the
level of the ngen varlable can be determmed w1th hlgh probablhty, from the amount by
whlch the amphﬁcatlon of the mduced functzon varies from 3 g N
In the second phase of the algonthm, we construct the formula. More preclsely,

we ﬁrst construct the bottom level of the formula, and then recurswely construct the

s remammg levels To construct the bottom level of the formula, we begm by ﬁndmg -

trlples of vanables that are 1nputs to the same bottom-level gate ‘To do this, for each
trlple of relevant varrables that have the largest Ievel number, we hard-wxre the three
l vanables to 1 and again estimate the amphﬂcatron of the mduced functlon from random

examples We show that with- hxgh probablhty we can determine whether the three

varrables all enter the same mput level gate based on this estunate We now" brxeﬁy‘
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| de5crihe/how the recursion vlrorks Suppose that we are currently cohstructing level £ of
‘ the formula and we find that z;, z;, and x) meet at the same level-£ gate Then in the
recursive call we replace z;, zj, and zx by a 1eve1-(£ 1) meta-variabley = Ma(z;, 7, 2i).
Since y is a known subforrnula its output on a random example can be easxly computed.
Furthermore since £ is the fixed pomt for the ampllﬁcatlon functlon it follows that y is
1 with probablhty 3. Thus for the recursive call we replace all triples of variables that
meet at level £ by level- (£- .l) rneta-variables; and we easily obtain our needed source of
random examples drawn accordmg to the uniform distribution on the new variable set
from the original source of examples | J

, For the remainder of this sectlon, we explore some of the propertles of the amph-
fication function of read-once maJorxty formulas, leading eventually to a proof of the
correctness of this algorithm. L f/ | _

The following observation can be proved by an easy mductlon on the depth of the

“formula:
‘Observation 6.1 If f is a read-once rnajority formaula, ‘then A j(‘;') =1

~ Proof: By indtrction on the depth ¢ of forlrrula f f. When t =0, the obéervatioh clearly
holds. For the inductive step, let f, f; and f3-ib'eit'he function eorriputed byithe three
subformulas obtained by d'eletin‘“g the output gateof f. Since, by the inductive hypothesis,
An(3) = L for i = 1,2,3 it follows that f= MAJ(fl,fz,fs = 4‘(-1-)3 = -;- Thus, 1 is a
ﬁxed pomt for the amphﬁcat:on of any read-once maJonty formula. e L -
Our approach depends on the fact that the ﬁrst derlvatlve of A y at -‘- is large, meaning
that a slight perturbatxon of D( ) (ie., the uniform dlstrlbutlon) tends to perturb the
statlstlcal behavior of the formula sufﬁc1ently to allow exact identification. See Flgure 6-5
~ for a graph showmg the amplification functlon for balanced read-once rnajonty formulas
" of variotis depths. _ ‘
We perturb D( ) by hard-wmng a small number of vanables to be 1. We begm

' by considering the effect on the function’s amplification of altermg the probability with
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which one of the variables z; is set to 1. This};w’ill be important in the analysis that

~ follows.

Lemma 6 1 Let f be @ read-once majomty formula, and let t be the level of some non-

negated vanable a:, Then Afl{,,}._q (-) = q( ) - ( )H-1

~Proof:’ By 1nduct10n ont. When't =0, the formula consists just of the variable T, and
the lemma holds For the inductive step, let fi, fz and f3 e the functions computed
by the three subformulas obtalned by deletmg the output gate of f; thus, f is just the
majority of fi, f and f3 Note that z; j occurs in exactly one of these three subformulas—
assume it occurs in the first. Since :1r:J occurs at level ¢ — 1 of thxs subforrnula, by the
inductive hypothe31s Am{, A ( ) =7q ( )i - + ‘—'—- ( ) and smce z; does not occur in
the other subformulas A, f.l{z,}hq ( ) =1 lfori= - 2,3. By a straxghtforwa,rd computatlon k
‘we cornpute that if a ma]onty gate has 1nputs that are 1 wnth probablhty P1, P2, and ; Ps
then the output of the gate is one thh probablhty plpg + p1p3 + p2p3 2p1p2p3 Thus
) 1ett1ng p= Am{,,}._q ( ) and pg 2, it follows that

Afl{zj}a—q (%) = £2l +% ~
2

completmg the induction. SRR TSR o Vil g

It can now be seen how we use the amphﬁca.txon function to determme the relevant

significantly when‘a:‘,- i$ hard-wired to'1. Similarly, thesign a.nd the level of each variable
can be readily determined infthis manner. = : ' k

| Theorem 6.2 Let f be a read-once ma]orzty formula of depth h. Let é be an estimate
of a= A,|{,,},_1 ( ) for some vanable z;, and assume that j&— ai < (1) it Then
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. a:, is relevant zfand only zf|a g l| S ( )k+2’

e zij s relevant then 'zt ’occws ne_‘qated if ancl o’nly ‘if& < ‘1. " |

e :r, occurs at level t zf and only zf( )!+1;.( )M'2 < Ia; | < ( )'“ + (E)h+2
. Proof ThlS proof follows from straaghtforward calétlations using Lemma 6.1. We first

consider the case where the glven vanable is‘a relevant non-negated variable that occurs

: h42
at level t. Usmg Lemma 6.1 and the a.ssumptlon that l&=al < ( ) - we get that:

 Likewise, : G ‘
O R0k it net

::_By symmetry we get that for the case in whlch the grven vanable isa relevant negated |
: varxable the above bounds for &—Z now apply for ;¢ Fmally, when the grven vanable :

s not relevant 1t follows from the a.ssumptlon of the theorem a.nd Observatlon 6 1 that |

la - —| < ( ) . The theorem follows 1mmed1ately from these equatrons R

Thus if one estrmates the value of the amphﬁcatlon function from a sample whose

 sizeis polynormal in 2%, then with high probablhty one can determine which vanables are

relevant, as well as the srgn and level of every relevant variable; Namely, using Hoeffdmg s
7 mequahty we can show that a sample of size O(4"(ln + N )) is sufficient to ensure
“that with probablhty at least 1 — 6 all the above mformatlon 1s properly computed We

5 therefore assume henceforth that the level of every vanable has been deterrmned and

o that all varxables are relevant and non-negated

- More problematlc is deterrmmng exactly how the vana.bles are combmed in f A

' natural approach is to try tymg paxrs of varrables to 1, and to again estimate the am- :

' ‘phﬁcatlon of the induced function i in the hOpes that s some structural mformatron will be

revealed. Recall that in the ﬁrst phase of the algonthm we learn the level of each relevant

o _ vanables Thus 1t is sufﬁcxent to focus on the case in Wthh variables at the same Ievel

are tred to 1 The followmg lemma whrch is ‘useful at a later pomt shows' that this

 natural approach fails.

BT @
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Ta-11evers

" }“ﬂl‘evel d ‘

) Flgure 6-6 “‘Thﬁe subdxmsmn of f when :c,and z; meet at a levei-d 'gete;/

Lemma ¢ 6 2 Let f be a read-once ma]omty formula, and let z; and m, be two variables
;whzch occur at level . Then Aﬂ{,,. zi}e=1 ( ) = % + (-) regardless of the depth d of
9=T(ziz)). - s

,,,Proof We spht f into subforrnulas as shown in Flgure 6-6. Cons1der the three subfor-
mulas feedmg g. Two of these subformulas have depth t — d and have one input fixed to
1 Applymg Lemma 6.1, we see that each of these subformulas outputs 1 w1th probabxhty
q = -1- + (%)t Fmally, by Observatlon 6 1 the thlrd formula outputs 1 Wlth probabil-
ity 1. Let ¢ be the probability that the output of g is 1. By a direct computatlon it can
be'seen that ¢’ = ¢*/2+q(1=¢q)+¢*/ 2 = ¢. Finally, 'vxewmg the remammg formula as a
read-once ma Jonty formula with one'level-(d - 1) input modified to be 1 W1th probablhty

4 ,"we can again apply Lemma 6.1 to obtain:

e ®) = 7 (> U
= @+ @0
g % 4 (-12-)t
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L

Thus, if two relevant vanables (of the same level) are t1ed to 1 no mformatron is
 obtained by knowmg the value of the amphﬁcatlon functron That is, the amphﬁcatron i
' function is mdependent of the level at whlch the two variables meet , ,’
Therefore we instead consrder what happens when three relevant varxables of ther,
“same level are fixed to l—m fact Jt turns out to’ be suﬁicrent to do so for trlples of

e ‘varlablen all of which occur at the bottom level of the formula We show that by doing

~so one can determme the full structure of the formula

For each trrple a:,, x, and a:k all occurrmg at level t, there are essentrally two cases to ,

" consider; erther ‘

1. the lowest common ancestor of one pa1r of i, zj and zp (say, z, and T;) is drﬂerent
| than the lowest common ancestor of all three lnputs (1 e I‘(z,,a:,) ;é I‘(z,,:r,,:ck))

-or

9. 'the lowest oommon ancestor of every parr of z., :c, and 25 1s the lowest comrnon
ancestor of all three varrables (i.e. I‘(z., z;) = I‘(:z:.,zk) I’(:c,,a:k) I‘(z,,ml,:ck))

‘We divide th1s case mto two sub-cases

(a) a:,, m] and xk are mputs to the same gate 80 that I‘(:z:,,a:,,:rk) occurs at level

tor

(b) the common ancastor of x5, :c, and :c,, occurs hrgher up in the formula 50 that | e

F(a:,, a:,, :z:k) occurs at some level d < t.

 We are mterested in separatmg Case 2a from the other- cases by estlma.tmg the amplifica-

tron ‘of the functron when all three vanables are tled to 1. Thls is sufficient to reconstruct '
the structure of the forrnula if we can find three vanablee that are 1nputs to sorne gateg

o '(and there always must ex1st such a trxple), then we can essentrally replace the subformula '

consrstmg of the three varrables and the gate g by a new “meta-variable” ‘whose value can

easily be determined from the values of the original three variables Furthermore since 3

s a fixed point for all read-once majonty formulas the meta-vanables statistics will be

R N R TS P
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just like that of the orlglnal vanables Thus, the total number of variables is reduced by
two, and the rest of the formula’s structure can be deterrmned recursively.

The following two lemmas analyze the amphﬁcatlon of the function when three vari-
ables of the same level are hard-wued to 1in both of the above cases. We begin with

Case 2:

Lemma 6.3 Let f be ahrea_d-hnee»m’ujm";ityk formula ‘Let‘x,-, z; kand zj be three level-t
inputs for which I‘(:t,,yx,) = T(zi,zi) = ‘1"‘(5:,,:1:;,) = l"(z.,:c,,mk) =g. Let d be the level
of g. Then Af|{z,,:r:,,xk}¢—1 ( ) = % + 3 (;)H-l‘ - ( )m—uﬂ.

Proof: We ﬁrst spht f into subformulas, essentlally as plctured in Flgure 6-6 except
that all three mputs to the MAJ gate g shown at level d are 1 with probabxhty q. Each of
the subformulas feedmg g hasa level-(t —d) 1nput fixed to 1. Thus, applying Lemma 6.1
we obtam q= + ( )t mi+ . Let q’ be the probablhty of a 1 belng output from g- Then,
, q' = 3q 2q _.; ‘..( + (g)‘ ~é42. - ( )3:-3a+2 Fma.lly, we view the remaining formula as
a formula with one input at level d-1 modxﬁed to be 1 with probablhty ¢’ and apply

Lemma 6.1 to obtain

~-

o~
eI
S

o

l ;.
[ :
W e
—~
[ L)

4 Afiaizznyoet (%) e )4—1 i

q -
- (%)d 4 %.(%)t-‘-l % %,(%)3t—?d-el ';F%‘—“’ (%)d
2

So, unhke the s1tuatlon in’ whlch two va,nables of the same level are hard—wned to
one, here the value of the amphﬁcatlon functlon depends on the level of the formula in
- whlch the three varlables meet. However, when ﬁxmg iy Tj and a:k it may not be the .

case that I‘(x.,zj) = I‘(m,,zk) I‘(z,,zk) (1 e., we may be in Case 1) The next lemma

considers this case.

‘Lemma 6.4 Let f be/ a read-once ma]omty fonﬁula; ' Let x;, =; and z; be three level-t

inputs for which g = F(x,,zj) ;é F(z,,m,,wk) =g. Letd and £ be the levels of gates g
t+1

and g'. Then Afj(z;zjzi}1 (2) =14 3( )
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| o1 tevers

v pleveld

 Figure 6-7: The subdivision of f when Iz, ;) is at level I and [\(z:, 2, z4) is at level
Bare o7, e subdivision.of f when I 2t levell and Iz, ;, 2, eve

'Proof Agam we spht f mto subformulas, as shown in Flgure 6-7. Consider the three :

' subformulas feedmg g. Clearly, one “of these subformulas (the one contammg none of

‘,ac,, z;, or a:k) outputs 1 W1th probablhty .‘" Applymg Lemma 6. 1, we see that the

; fretle
- subformula coutammg only mk computes 1 Wlth probabxhty q’ =31+ ( )t * Fmally, :

applymg Lemma 6.2, it can be shown that the output of the third subformula, which
" ’contams z,, m, and the gate g, computes 1 W1th probablhty g=131+ ( ) . Thus, the
o - -d
: output of g 1s 1 W1th probabxhty q" (q + q')/2 = "2 + 3 ( )1l + Fmally, the desxred

o result follows by applyxng Lemma 6. 1 as in the precedmg lemmas Namely, we now v1ew

o it "the remammg formula asa formula. of helght d 1 w1th one mput modlﬁed to be 1 w1th
- probablhty q". Thus ' i L = U , ; Sy ,

e gy
= 1+3(8)
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‘Note that in this case the amplification: functlon i mdependent of both € and d.
Com’mnmg these lemmas, we now show that Case 2a can be separated from the other

cases by estimating the function’s amphﬁcatlon _w:th triples of variables tied to 1.

Theorem 6.3 Let f be a read-once ma_yonty formula Let .'c,, m, and zk e three Ievel-
znputs Let & be an estzmate ofoz = Aﬂ{,,,,,,,,}._l ( ) for which |a al <3 ( ) Then

t4d -
:1:,, :c, and :z:;c are mputs to the same gate off zf and on[y zfa < + 19( )

Proof ThlS proof is a stralghtforward consequence of the above lernmas Combmmg f

Lemma 6. 3 w1th the assumptlons that d = tand Ia—a] < 3 ( ) we get that in Case 2a:

a<a+3() 2+2(2)*+"3()‘+“ ;Hg()'“

Io-c

leeW1se when in Case 2b since d < t - 1 we get that

a>a- 3()"*.4 % 3()‘+1 -,(2)‘?3-3()’“ g+19()‘+‘

Fmally, comblmng Lemma 6 4 wlth the assurnptlon that |a a] < 3 ( ) we{get that

A (%)t+4 =% +3(%)t+1*3 (%)t+4 I %+21( )t+4
This completes the proof of the theorem S 1 ey ST e

" We are now ready to state the mam result of thls sectlon : co ey

The’orrem 6.4 There ezists an algorithm A that, ~given h N,6 >0, and ezamples drawn
‘ from the umform dzstrzbutzon on {0, 1}N wzth probabzhty 1 - 6 ezactly 1dentzﬁes any
depth h read-once majorzty formula of N varzables, at most n of whzch are relevant
dThe sample comple:uty of algorzthm A is 0(4"(ln 4 lnN )) and the time comple:czty is
T o((n® + N)4"(ln +InN)). | |

Proof: First, for each variable r;, estimate the function’s amphﬁcatlon with z; hard

wired to 1. (We will ensure that, w1th high probablhty, thls estimate is thhm ( )H2 of
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© the true amphﬁcatlon ) It follows from Theorem 6 2 that after thls phase of the algonthm

i w1th hlgh probabrhty we know whlch vanahles are relevant and the ; ‘sign and depth of

~ each relevant vanable (So, we assume from now on that the formula is monotone )

In the second phase of the algonthm, we bulld the formula level by level from bottom ‘

: to top To bulld the bottomn level, for all tnples of vanables :c,, Tj, T that enter the R

;bottom level we estimate the amphﬁcatlon W1th :r,, :c,, ’and Tk hard- w1red to 1. (We Wlll

+
ensure that W1th hlgh probabrhty, thls estlmate is w1th1n 3 ( ) - of the true amphﬁca-

- tion.) It follows from Theorem 6. 3 that we can deterrmne whrch var1ab1es enter the same

bottom-level gates

i We want to recursé to compute the other levels, however, we cannot hard-wue too
‘ :‘many vanables without the ﬁlter requu'mg too many examples The key observation is

 that on examples drawn from the unlform dxstrlbutlon, the output of any subformula is

" one W1th probablhty 3 Thus, the mputs mto any level are in fact dlstrxbuted accordmg e

toa uniform dlstrlbutlon Smce we compute the formula from bottom to top, the filter

can Just compute the value for the known levels to deternnne the mputs to the level

o currently bemg learned Our algonthm is descrxbed in Flgure 6- 8 leen that thh hlgh .|

‘,probabxhty, the estlmates for the amphﬁcatlon functlon have the needed accuracy, the :

, proof of correctness follows from Theorems 6 2 and 6.3.

We now use a standard apphcatlon of Hoeﬁdlng s mequahty to compute size of the |

B8 sample needed to accurately estimate the - amphﬁcatlon functlons Since we want the

e proba'bxhty that all estimates are good” to be at least 1 — 6 we requlre that each of the P

~ two phases has good estlmates with probablhty at least 1-§ / 9.

. We begm by computmg the sample complexlty for the ﬁrst phase of thls algonthm

| From Theorem 6.2 we know that if we compute our estlmates for the amphﬁcatlon func-
tlon to w1thm a factor v —'(E)M? ‘=k‘% (5) of the true value then we can determme
which varlables are relevant and compute the srgn and level of each relevant variable.

' ‘Let & be an estimate of a = }4 f'{x'}...l ( ) We first compute the number of examples m

: needed for whlch z;is 1. We then compute the requxred size m’ of the orlgmal sample 50 ‘, |
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Leam—Majority—Formula(N h)
1 Let my « 32-4* (In§ +1n V)
.2 Draw a set £ of m; examples from the umform d.lStl‘lbllthI’l on {0,1}V
3 For 1<i<N
< &'« examples from & where ;=1
& « fraction of &' that are positive L

V"lfia-fil > ( )h+2

then if &> § then z, is in the formula
else Z; is in the formula
t(z;) — compute-level(&)
10 Let X be the set of relevant literals
11 Let my « 228 -4 (1n3 +3In|x])
12 if mg >my
13  thenf~¢&uU {mg—ml exa.mples drawn from uniform dist on {0,1}"}
14 Bmld—Formula(h X, & ) V P

© 00 -1 B “on -:S

Buzld—Formula(t X £)
1 For all tnples z;, z;, 4 such that t(z;) = t(z,) = i(zk) =t
o2 . &' « examples from £ where z; = z; =2z =1
& «~ fraction of £’ that are positive

3
4 ifa<d +19()t+4‘ ‘
S R e then z;,2;, 2 meet at level-t gate g SRR
6 _ Replace z;,z;,2; by 2; output from g
D ey i € -
8 ift>1 ;
9 then Build-Formula(t — 1,X,£)

Figure 6-8: Algorithm for exactly identifying read-once majority formulas of depth
~h. The procedure compute-level(&) computes the level associated with & as given by
Theorern 6.2.
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i  that W1th hlgh probablhty a sample of size m passes through the ﬁlter
,Usmg Hoeftding’s inequality as glven in Equatlon 6.1 we get that

Prlla—al>4] < Pr[a>a+7]+Pr[a<a 7]

< 9e —2"W

We want the probablhty of obtammg any ‘bad estxmates to be at rnost 6 /4 (The
' remainder of the §/2 probability of error allocated to the first phase is needed for the

fcase in which too much is ﬁltered out of the sa.rnple) Furtherrnore, we need to dmde L

thlS 6/4 probab1llty of error among the N estlmates that must be made Thus we want

2“2m7z<i o

| = 4N
Solvmg for m we get that a ﬁltered sample of sxze
= 8-45'(ln\§ +1nN)
is sufﬁc1ently large to ensure all estlmates are good thh prohablhty at least 1 ) /4

Now we compute the number of examples m' requlred so that Wlth probab111ty at

least 1 - 6 /4 the ﬁltered sample has size at lea.st m. The expected number of examples

B to pass through the filter is m'/2 since we are only hard wmng one vanable Thus ifwe

t:' draw m = 4m examples, 1t follows from Hoeffdmg s mequahty as glven in Equatxon 6.3

v that

" "Pr[nrnmb‘er examples’passing‘through theﬁlter <m] < e~ (=30 =e ™13,

T Setting. I8 < 6/4 we get that a samplee of size m'. "max{‘4m‘,y81n %} is snfﬁciently :

2 large

We now use the above techmque to cornpute the sample complex1ty for the second B

8 phase of the algorlthm From Theorem 6 3 we know that if we est1mate the amphﬁcatlon :

)h+4

~ function to within v = 3( ~ then we can determme 1f any tnple of variables meet
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at a bottom-level gate. Let & be an estimate of a' = Am,"%zk}‘_l ( ) As above, we
first compute the number of examples m needed after filtering, and then compute the
required s1ze of the ongma,l sample m’ so that w1th probabllxty at least 6 / 2, all estunates
'aregood B " : | " R o '
Smce we must compute ( ) < ﬁs /6 estlrnates in thesecond pha,se, we want

2-—2m‘7 <_6_‘_s_ D

= In3
Solving for m we get that ' L ~3i R

: P lnd an
Since v = 3( ) H we get that a ﬁltered sample of size m = ,EQ 4h(ln 4+ 3lnn) is
sufﬁaently large to ensure a probabxhty of at most 6 / 4 of any bad estimates in the second
phase | i ' ‘ - - :

As above, we must now compute the number of examples m' reqmred S0 that with
probability at least 1—46/4 the filtered sample has size at least m. Since we are hard-
wmng three vanables here, the expected number of examples to pass through the filter

is m'[8. Thus if we draw m’ = 16m examples it follows from Hoeffdmg s mequahty as

given in Equation 6.3 that - ... . =
Pr[number examples pa.ssmg through the ﬁlter < m] < e-*m ( "Dz = e'-’""/ L

Settmg e ™ / 128 < 6/ 4 we get that a samples of size m’ = max{lﬁm 1281n%} examples
to ensure that the probability of too few examples passmg through the filter is at most
- 6/4.. |

Cornbmmg the bounds from both phases we get that a sample of size"

223 2 (ln§+lnN+31nn>=0(4h (ln +1nN)))

is sufﬁc1ently large to ensure that w:th probability at least 1 — & all estimates are good.
‘Finally, the time complexity follows from the fact that in the ﬁrst phase N estimates

are needed and in the second phase O(n®) estimates areneeded. - . =
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It follows 1rnmed1ately that any read-once ma_]onty formula of depth O(Ig N ) can be K

exactly identified in polynormal tlme

‘ ,Corollary 6 1 There ezzsts an algomthm A that gwen any h N 5 > 0 and examples' L

 drawn. from the unzform dzstnbutzon on {0 I}N , wzth probabzhty 1 — 8, ezactly zdentzﬁes

any read-once ma]orzty formula over {:cl, zN} of Iogarzthmzc depth The tzme and e

c "sample complexzty of A are polynomtal in N and ln 1/6

: 6 3 The Class of Read-once P031t1ve N OR Formulas |

' In this section we use the propertles of the amphﬁcatlon functlon to obtam a polynormal— }

tlme algonthm that with hlgh probabxhty will exactly 1dent1fy any read-once posmve

| NOR formula of logarlthnnc depth from D(’\) where Ais  the constant (3 f 5)/2 ~ 0 382 =

' ‘\Observe that A is 1 -:¢ where ¢is the golden ratio” (\/_ 1)/2.

It is mterestmg to compare this result w1th what is knovm about lea:rnmg this class

o of forrnulas m other models. It follows from the results of Kearns and Valiant [36], and |

 Piit and Warmuth 53] that learmng th1s class of formula.s is hard in the dlstnbutlon-free

: model (under cryptographxc assurnptlons) Thus there exist dxstnbutxons that reveal ,
e essentlally no mforrnatron about the formula that is useful for predlctlon If one views

, the samphng of the dlstnbutlon D(’\) as a form of non-adaptlve random membershlp ,

k querles our result can also be cOmpared with the algorlthm of Angluln, Hellerstem and

; Karpmslu [5] WlllCh uses membershlp quenes that are consxderably more comphcated and

are hlghly dependent on the target concept on the other hand, their algonthm can be

- used to 1dent1fy a much broader class of formulas

- We show that thls class of formulas is learnable when exa.rnples are chosen from a

: dlstrlbutlon in whlch each varlable is one w1th probablhty . The basic structure of the -

_ algorithm is just like that of the precedmg algonthm for 1dent1fy1ng read-once majorxty
' formulas In the first phase of the algonthm, we determme the relevant vanables and their

~ depths by hard-wiring each vanable to 1, and est1rnat1ng the amphﬁcatlon of the induced

P

R T

S o
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function at A 'using random examples from D™, In the second phase of the alygorithm,

- we construct the forrnula by ﬁnding pairs of variables that are direct inputs to a bottom-

~ level gate. Here, we show that this is poss1b1e by hard-wxrmg pairs of va.nables to 1 and

estlmatmg the function’s amphﬁcatnon After learning the structure of the bottom level
of the formula, we again are able to construct the remaining levels recursively.

We turn now to a discussion of some of the properties of the amplification functlon
of read-once posmve NOR formulas we conclude W1th a proof of the correctness of our
algorithm.- ; | ;

The followmg observatxon can be proved by an easy mductmn on the depth of the

formula:

»Observatlon 862 1Iffisa read-once pasztwe NOR formula, then Af(,\) =

Proof: By mductlon on the depth t of the formula f When t = 0, the observatlon

~clearly holds. For the mductxve step, let f; and f2 be the functlons computed by the two

subformulas obtained by deletmg the output gate of f. Smce, by the mductwe hypothesxs
A;(A) = Xand Ap,(A) = X it follows that f = NOR(f;,fg) = (1 -2 = Thus, A is

- the fixed point for the amplification of any tead once posmve NOR formula. =

Throughout this section, we use the followmg identities to s1mphfy formulas for the

amphﬁcatlon functlon Pl
1L (1=X2=
2. 2 —M=1-X .

. ‘Once again, our approach depends on the fact that the first derivative of A f at X is

: iarge, m’eanihg that a slight perturbation of D™ tends to perturb the statistical behavior
~ of the formula sufficiently to allow exact identification. See Figure 6-9 for a graph showing

= the amplification for balanced read-onCe positiVe Nor formulas of various depths..

Lemma 6.5 Let f be a read-once posztwe NOR formula, and let t be the level of some

; non-negated varzable z;. Then Aﬂ{z,},_q (\)=q(A - 1)’ + /\ - AMA - 1)t
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~ Proof: By induction on t as in Lemma 6 1. When t = 0, the formula consis’tsk jnst

of the vanable 3, and the lemma holds. For the inductive step, let f, and f; be the
functlons computed by the two subformula,s ‘obtained by deleting the output gate of f;
thus, f m Note that z; occurs in exactly one of these subformulas—assume it
occurs f;. Since z; occurs at level t—1of fi, by the inductive hypothesis, A;i(z;}~q A =
q( — 1)"1 + A - /\()\ - 1)‘ 1 and since :c, does not occur in the other subformula,
Aplizi} g (/\) = ). A NoRr gate with mputs ‘that are 1 wrth probabrhty p1 and p2 has
output that is 1 with probabrhty 1- pl)(l - p;), and thus ’

F4 *A!l{rj}«-q’()‘)r' = (1 - q()\ 1)“l ,\+ ,\(,\ 1):-1) (1 _ /\)
e (R EEUEL
= q(z\-l) +(1—,\)(1_A) A(Aw__,l)!t‘

= q(A - 1)‘ + A ,\(A- 1)t B

compléting the induction. A R I RS § B Ll

Since (A — 1)t = (~1)(1 — A)*, when h‘ar'd—Wiring z; to 1 we have that
Afjzy1(A) = A = (,\ )t+l /\ + (1 )‘“(—1)’.» (6.4)

Thus hard-wiring an even-leveled input to 1 increases the‘arnpliﬁcatio‘n and hard--
wiring on odd-leveled mput to 1 decreases the amphﬁcatron function. To givé ‘some
intuition explamrng thrs behavror, consrder the correspondence descnbed in Section 6.1
" between read-once posrtrve NOR formulas and leveled or /AN D/ formulas.” An even- “leveled
input corresponds to an input to an OR and thus hard-wiring that mput to 1 clearly
increases the amplification. However, an odd-leveled mput corresponds to an input that
_ is first negated and then enters an AND gate—thus this case corresponds to hard-wiring
‘the input to an AND gate to 0 which clearly decreases the amplification function.

“As we saw'in the iqids_'t' éectio'n\,"t}re drnnliﬂcetiori*~‘fﬁrict'ion”*t:an“be”‘ used to determine

the relevant variables of f: if z; is relevant then the statistical behavior of the output of
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f changes sxgmﬁcantly when :r, is hard- wxred to 1. Similarly, the level of each variable

can be computed in th1s manrer.

‘ Theorem 6.5 Let f be a read-o‘nce positive Nor formula of depth h Let& be an :estir;rtate

of @ = Ajjz;3=1(}) for some vdriable z;, and assume that |& — af < Al - )\)"/2 ‘Theyn_
3 mJ is relevant zf and only zf]a Al> A1 - ,\)"/2

® z; occurs at levelt zf and only zf(l - )“H A(l )"/2 < Ia /\l < (1 - )““
M1 =) /2.

Proof: We prove thxs theorem usmg straxghtforward calculations from Lemma 6. 5. Let
- the given varlable bea relevant variable that occurs at level . Comblnmg equation (6.4)

‘and the assumption that &~ al < A(l — AR /2 we get that:

;a-m la-Ai A(l -A)"/2 1 EL
A= (A= )™ = A= A1 = N)H/2
(1 =) A1 = 2)H/2

(L= A1 = A)"/2 :‘

A=A =21 - NP2
M= 2P/

oV

Likewise, ; g . oL
Ja- AI < Ia A] + ,\(1 = A)"/2 = (1 )"+1 +(1 = ;\‘)"/2
Finally, when z; is not relevant 1t follows from the assumptlon of the theorem and /

Observation 6.2 that
|a—,\|< Ia /\|+A(1— ) /2—A(1*,\)"/2

The lemma. 1mmed1ately follows from these equations.. R a—
Once again, since we compute the level of all relevant vanables in the ﬁrst phase

we need only consider tylng to 1 pairs of variables thatenter the same level. We now
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consider the effect on the amphﬁcatlon functxon of fixing tWO such mputs Unlike the

case of read—once ma]onty formulas, ‘measuring the amphﬁca,tlon of the functlon when

pairs of variables are tied to 1 reveals a great deal of mformatlon about the structure

of the formula In partlcular, the value of the am hﬁcatlon function when two level-t

vanables, z; and Tj, ‘are tied to 1 depends cntxcally on the depth of I‘(m,, z;).

" The following lemma analyzes the amphﬁcatlon of the formula induced by hard-wiring

two level t va,nables to 1.

Lemma 6 6 Let f bea read-once’ posztwe NOR formula “and let i and z; be two variables
which occur at level t for which g = F(a:,,x,) is at level d. Then Aﬁ{,‘ ',,},_1 \) =
A+ A*"“"(A - 1)“’ —2(A - )““1 R G e T g T R
Proof We spht f into subformulas in the same manner as in’ the proof of Lemma 6 2.
Cons1der the two subformulas feeding D(z;,2;5)- Each of these subformulas has depth :

—d and has one input ﬁxed to 1. Applymg Lemma 6 5, we see that each subformula
outputs 1 w1th probabxhty qg= A ()\ 1)"'”’ 1 Let q’ be the probability that the output |

of F(:c,, a:,) is 1. By a direct computatlon it can be seen that
d = (1 —of

—2(h — (A )t-d+1)+)‘2 —a(O - 1)¢_d+1 e 1),“_“1) {
L= 1—2>\+)\2+2(z\— 1)+ —2A(A —1 [)-d41 4 At-d41 i

it ',

L

;\ + At-—d-ﬁ—l 4 2(A 1)t-—d+1(1 o~ A)
U A + At-d+1 (A 1)t-d+2 el
once positive NOR ‘fo‘r"mule wnth one 1évé1;

(d—1) input modlﬁed to'out ut
1 with’
P p | ith probability ¢, we can again apply Lemma 6.5 to

Finally, v1ewmg the remammg formula asa read-

Ay ) = CO- DA AT

A

)\()\ 1)d~ +/\t-—d+1(/\ 1)&- 2(/\ 1)t+l +A .\()\ )d-
,\+,\* d+‘(,\ 1) oo =D)L
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- : pottmg adt—A/ zie;}e-1 () where tis the 1 ;and z; oh ]
and d is the level of I‘(x. z‘,) Recall that 1\{ ':10}3;2( ) e g e evel oI m ' end z,'” o
"To lllustrate how the value of ¢ adt = A, f,{,",’}._l (A) depends on the level t of z, and f
z; and on the Ievel d, of P(a:,, a:,) m Flgure 6- 10 we plot a,“ for severa.l values of d and ’
¢
Using the same ideas seen in the last sectlon we now prove that given a good”f !
estimate of the amphﬁcatlon functlon one can’ deterxmne which varlables rneet at bottom- -
level gates, ‘ E
Theorem 6.6 Let f be 4 r’ead-once posztwe NOR formula. Let z, and :c, be two level-t ,‘
inputs. Let & be an estimate of a = An{x",,}._l (/\) Jor which ]a al <M1= /\)"”/2 ~ ‘
j
Then :c, and z, are znputs to the same bottom Ievel gate of f if and only zf ;
Y +2(,\ )'+1| > (1 A ,\(1 /\)‘“/2
 Proof: This proof is a stralghtforward consequence of the above lemmas Let a;; = g f
Aflzi iz 31 (/\) for the case in which I‘(x,,:c,) is at level ¢ and 1et gy = ‘Af'{z"xj}._l (z\) i ]
for the case in whlch I"(:z:,,a:_,) is at level d < t. Frorn Lemrna 6 6 we have that ! '
at,t = +'(/\ - I)M1 2(/\ )Hl s i

SR I,
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Thus we have that , e
los = A+ 200 = )] = (1 = AP B (6.5)
Likewise, we compute that

gy = A — 2()‘ 1)t+l At_d+l(1 ))d-—l( 1)d
Thus, g
1" /\ d-1
Iadt—}+2(A )H-l'_At( B ) .
Smce ——— >1,d<t—1,it follows that o . |
o = A+ 200~ 1)‘“1 < (—;\—) = (66)

Thus for the case in ‘Which'z, and z; meet at a bottom-ievel gate, from equation (6.5)

and the assumption that |& — af < A(l - )‘+l / 2t follows that .

&= A +200- 1>'+‘\><1 N = A(1~f\>'+?/,z.

Likewise, for the case in which z; ‘and z; do ‘ot meet at a bottom-level gate, equa-

tion (6.6) and the assumption that |a ~a < M1'=A)*+1/2 gives that

A r2 1] < (A=A
o = (=M AL = N2

ThlS completes the proof of the theorem ~ o ]

. We are now ready to state the main result of this section:

Theorem 6.7 There ezists an algorithm A that, given h, N,6§>0, and exar‘hp'lés"dfaibn
from the distribution DY, wzth probabzlzty 1-4, e:mctly zdentzﬁes any depth h read-
once posztwe NOR formula of N variables, at most n of which are relevant The sample

complezzty is O((% )"(ln +1n N)), and the time complezity is O((n?+N) (% )h(ln 6+1n N))
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Learn-NOR—formula(N,h)
1 Let my—4. (§)h+3 (ln-? +1nN) o
2 Draw a set £ of my 'ex:a.mples from D) &
3 For1<i< N e ,
&« examples from £ where z; = 1.
& « fraction of £’ that are positive
if |6~ Al > A(1= A)h/2 o
then z; is in the formula el
(=) — compute-level( &) =
9 Let X be the set of relevant literals ‘
10 Let my —4 . (i—)”s (ln§ + 21nn)
12 if my > m, ST

0 -1 > o

© 13 v them €« £y {mg;mivexampleé ’drawn from "D('\)}i
14 Build—For_mulg(h,A',S) L W ~ :

: Build—berhula(t, X , g) e Ry

1 For all pairs z;, z; such that Hzi) = t(z;) = ¢t |
&'« examples from £ where z; =gj=1
&« fraction of £ that are positive
A=A 2A = 1)) > (1o Ay g
then z;,z; meet at level-t gate g ;
" Replace Zi,2; by z; «— output from g

N el
ift >1 e B
: then'Build—Formﬁld‘(t— 1,X,6) L

| Figure 6-11: kAlgorith:m for eSEéctly 'iidAe"'nti‘fying re$&46néé pos1t1ve NOR formulas of depth

~h. The procedure compute-level(&) computes the level associated with & as given by
'??eorern 6.5. : : , : S s '
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Proof: Our algonthm for thxs problem is very much hke the one given for learning read-
once majority formulas. Flrst for each vanable a:., estlmate the functlon s ampllﬁcatlon
“with z; hard-wired to 1. (We w1ll ensure that, wrth hlgh probabxhty, this est1mate is
within A(1 = X)"/2 of the true amphﬁcatlon ) 1t follows from Theorem 6 5 that after this
:ph‘a's‘e”of the ‘algorlthm, with high probability we know ‘which variables are relevant, and
the level of each relevant variable. ‘ T
‘In the second phase of the algonthm, we recurswely bu;ld the formula from bottom to
top To bmld the bottom level for all pau‘s of variables :c., :x, that’enter"'the'ht)ttom level
‘we estlmate the amphﬁcatxon w1th z; ‘and 25 hard- W1red to 1. (We will enstre that, with -
‘high probablhty, this estlmate is within .\(1 )\)"“’1/ 2 of the true amphﬁcatlon ) It follows
from Theorem 6.6 that we can deterrmne whxch vanables enter the same bottom-level

gates.

We want to recurse to compute the other ‘levels; however, wefcennot hard-wire too
many ‘variables without the ﬁlter requmng too many examples Once again, we use the
observatlon that on examples drawn from 'D('\) the output of any subformula is one with
probablhty )‘ Thus, the mputs 1nto any level are m fact dlstnbuted acoordmg to ka
Since we compute the formula from bottom to top, the ﬁlter can Just compute the value
for the known subformula to deterrmne the inputs to the level currently being learned.

Our algorithm is described in Fxgure 6-11..

‘- Given that, with high probability, the estimates for the em‘p‘liﬁcatiorl function have
‘the needed accuracy, the proof of correctnes‘s“follovvsfrom‘Th'e‘orem‘s 6.5 and 6.6. The
bounds of the’ tlme and ‘sample complex1ty are’ cornputed usmg Hoeﬁ'dmg ] 1nequahty

just as in the proof of Theorem 6.4

" We begin by computmg the sample complemty for the ﬁrst phase of this algorithm.
From Theorem 6.5 we know that the estimates for the amphﬁcatlon furiction need ‘only
“be computed to within'y ='A(1 — )‘)"/2 ‘Since we must compute N estimates in this

phase, we want 2e‘2’"“’ < L. Solving for m we get that, with probability 1 —6/4, a
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5. ﬁltered sample of size e o :
i e lﬁ’,n 2(,\), (lns'H“N)
s suﬂicxently large Flnally, an mltxal sample of sme L

m -—max{ T /\2ln6

s sufﬁcxently large to ensure that with- probablhty 1 6 /4 enough samples’pa's.s; through ‘

~the ﬁlter :

, We now compute the sample complex1ty for the second phase of the algorlthm From'

_Theorem 6. 6 we know that the estimates for the amphﬁcatxon functlon need only be

'flcomputed to within a. factor of y.= M1 = Akt /2 Smce we must compute ( ) < n2/2 ,

Vestlmates in the second phase we want 2(3"2’"‘"2 < 26 /4n =6 /2n Solvmg for m we get

;that W1th probablhty 1- 6 /4 a filtered sample of size

Rk e
;_2()\) (ln6+2lnn) o

, '/'-1s sufﬁaently large Since we are hard-wxrmg two varxables here, we must take

m ma.x AZ’A4n6 e o

:exa.mples to ensure that w1th probablhty 1-5 / 4 enough pass through the ﬂlter SR

Comblmng the bounds from both phases we get that a sarnple of size

4(A)h+5(ln +lnN+21nn) ((,\) (In +lnN))’

is sufﬁcxently large to ensure that with probabxhty at least 1= 6 all estimates are good.
Fmally, the time complexxty follows from the fact that in the ﬁrst phase N estimates

:";are needed and in the second phase O(n"’) estlmates are needed s -

Tt follows 1rnmed1ately that any read-once posmve NOR formula of depth at most

O(lg N) can be exactly 1dent1ﬁed in polynonual tune

| ’, Corollary 6. 2 There ezists an algorzthm A that gwen any 6 > 0 and ezamples drawn
Xt from DO over {0 l}N s with probabzlzty 1~ 6 ezactly zdentzﬁes any read-once posztwe

NOR formula over {z,,.. ,zN} of Iogarzthmzc depth The time and sample complezity of

A are polynomial in N and ln 1/5
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6.4 The Class of Read-once Pos1t1ve NAND For-v
mulas

‘In thls section we describe how our algonthm for learmng any’ ‘logarithmic-depth read-
‘once posmve NOR formula can be used to learn any logarxthnuc—depth read-once positive
‘NAND formula. We obtain thls result by giving a 51mp1e transformation from read- once
iposmve NAND ‘formulas to read-once posmve NOR formulas. A

Tt is easily shown using DeMorgan s law that if each'lnput io”a’g read-on‘ce“posit.iire |
‘NXN"D": formula is negated and the oo’tp‘ut[is “also negated then*the"fésuli:iog 'forrAm'ila'
s in fact a read-once’ posxtxve NOR formula Thus we get the followmg coroilary to
‘Theorern67 B S i e

Corollary 6 3 There ezzsts an algonthm A that, gwen any 6 > 0 and e:camples drawn '
B from D=3 over {0 l}N ) ’wzth probabzhty 1-6, ezactly zdentzﬁes any read-once posztwe
!{NAND formula over {:vl, ,mN} of Iogarzthmzc depth 77ze tzme and sample complexzty
:ofA are polynomzal in N and In 1/5 e

Proof: Slmply use the algonthm descrlbed in Fxgure 6 11 Wlth the fo]lowmg modn‘ica- v
‘tions: On line 5 of Learn-N OR—formula and line 3 of Bmld-—Formula let & be the fractlon
of the example set that are negative. We also note that DY can be eas:ly sxmulated _

from D™ by just mvertmg all bits in each example. ~ GETE e |

6.5 - A Subclass of Read-once Monotone DNF For-

e

mulas .

In thls sectxon we use the propertles of the amphﬁcatlon functlon to exactly identify
read -once monotone DNF formulas of ¢ terms with £ literals per term. For the case that
t and ¢ are provxded we give an algorlthm that with high probablhty exactly identifies
- the forrnula from D) where p* = (1 <22 If { and ¢ are not known then we give

an algonthm to learn this class of DNF when prov1ded with D® for all 0 < p<l.

e e N S
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Our algonthm for learnmg any DNF' formula 1s very much hke the algonthrns we

presented in the precedmg sectlons In fact, it is a sunpler algonthm smce all relevant B

variables have depth two all 1nputs enter an £—mput AND gate and then the output from L

'each AND gate enters a smgle - mput OR gate Thus in the first pha.se we determine k

(with hlgh probability) which variables are relevant by hard- ‘wrrmg each variable to 0

and estimating the ampliﬁcation of the induced function. To reconstruct the formula, in : -

e ~the second phase we just determine whlch relevant varlables enter the same AND gate v

no recursion is needed To aehieve this goal we hard wire all pairs of relevant vanables

i to0 0 and estlmate the amphﬁcatmn of the mduced functlon w1th high probabxhty this

3N easﬂy compute that p —_ (1 = 2—1/t)1/l

.,estlmate va.rxes sxgmﬁcantly between the case in whlch both hard-wrred varrables enter
the same gate and the case in whxch they enter d1fferent gates. : ‘
We now explore some propertles of the amphficatlon functlon for these class of for-
. imulas endmg in a proof of correctness of thls algonthm We begm by observmg that
‘»"A,(p) 1- (1 ~p ) As we sha.ll see, ,a value of P for Wthh small changes i in the ,
‘amphﬁcatxon function can be detected is the value p for whlch A f(p ) = 7. One can"

We now cons1der the effect on the amphﬁcatlon functlon from hard-wmng a smgle

’vvarnable to 0

,fLemma 6 7 The amphﬁcatzon functzon Aﬂ{, ’}._0 (p ) = 2(1—t)/t

Proof Since zj is hard-wxred to 0, the term contammg z; must always be 0. Thus the
:amphﬁca.tlon functlon of the 1nduced functlon is equlvalent to the amphﬁcatlon function

~for a formula with only t — 1 terms, each of Wthh has £ hterals per term. Thus

 Afjajyeo #") = : 1_(1 (p )t)t_
S : 1 2—1/t)t-1 l, :

Smce settmg a smgle mput bit to 0 has a mgmﬁcant effect on the amphﬁcatxon function

at p*, we are able to- detect which varlables are relevant
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Theorem 6.8 Let f bea DNF, formula Let & be an estzmate ofa = AfI{,,}_o (p ) for :
'some variable T; and ‘assume that {a a| < In 2/4t Then :::J is relevant zf and only if

a<i-In2/4t.

' Proof We ﬁrst con31der the case m whlch z, is relevant Usmg Lemma 6. 7 and the

assumptlon that |a a| < 1n2/4t we get that

V ,_;&...;. < a—-—+]n2/4t

= ( 2"‘)/2+1n2/4t

Finally, since 21/ t = 61“2/ t> 1 + ln 2/ tit follows that

ln 2/2t +1n 2/4t —In2/4t.

l\:>|r--'
wl»—-

~ We now consider wthe case in which 2 4 is not relevant{ It iduaws from the{assnrnption
of the theorem and the fact that Af(p ) = 1 that & > 1~ 1n2/4t This completes the
:,proofofthe theorem A A Sl s e e
For the second phase of the algorithm we must deterrmne whlch of the relevant vari-
}ables are in the same term of the formula (i. e., enter the same aND gate). We thus
consider what happens when two relevant vanables are fixed to 0. We will show that by
:domg s0 one can determme the full structure of the formula : | i
For each pair z; and z; of relevant varlables, there are two cases that may occur:
Either z; and z; enter the same AND gate, or and zj enter different AND gates. To
reconstruct the formula, we need Just separate these two cases. Once we know which
variables enter each AND gate we are finished s1nce all anbp gates enter a single or gate.
The followmg two lemmas analyze the a.rnphﬁcatlon function in each of the above cases.

We begm with the case in whlch x; and z; meet .at the same AND gate.

Lemma 6.8 Let f be a DNF} fofmula. Let z; and z; be two relevant mputs that enter
 the same gate. Then Afjfzi i3m0 (p") =1 —ou=/t -
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;iProof Thls S1tuatlon 1s exactly hke tha.t in Lemma 6 7 - "‘ - : :‘, ; | = o

‘ Next we consider the case in Wthh :c, and a:, meet at dlfferent ga,tes o

B Lemma 6 9 Let f be a DNF, form'ula Let x, and z, be two relevant znputs that enter i

- at dzﬁerent gates Then Aj|{z,,z,}.—o (p ) =1~ 2(2")/‘ ' »

- Proof Smce z; and :cJ are hard-wxred to 0, the term contammg z; and the term con-
: tammg z, must always be 0. Thus the amphﬁcatlon functlon of the induced function o

: 1s equlvalent to the arnphﬁcatlon functlon for a formula with only t — 2 terms, each of

’«Wthh has ¢ hterals per term T hus ,
Amx,}-o @ ) =1- (1 (p )‘)""',- 1- ,('2"‘,’f)"‘_";

~ Combining these ”lemfn"a,s,“we now show that the‘tvéo‘easee ﬂescribed above can be
- separated by estlmatlng the functlon s amphﬁcatlon W1th palrs of vanables tied to 0
Theorem 6.9 Let f be a DNF, formula Let z; and :1:, be two relevant varzables Let &
be an estimate OfAﬂ{m"x;}._o (»* ) for whzch ]a al < ln2/4t Then m, and x, are znputs
to the same gate if and only zfa > 1~ 1n2/4t R L e
= Proof ThlS proof is a stralghtforward consequence of the above lemmas. We also use

" the followmg two 1nequa11t1es 2‘/' Z1s ln2/t and 2(“')/‘ > for K >1. Combmmg

Lemma 6.8 with the assumptlon that Ia a| < ].n2/4t glves, when a:, a.nd x_, ‘enter the i

samegate o
&> -1n2/4t oy
= 1-gu-wn_ 1n2/4t
s 1-1n2/4t |

- Likewise, comblnmg Lemma 6. 9 with the assumptlon of the theorem gives, when 2 and

z; enter dlﬂ’erent gates S i

& < , a'+‘ln2/4t . Lt
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1.—'227" +1n2/4t

1-2““0/*2‘/t +1In 2/4t o
1= opee
1-(1+ 1n2/t)/2+1n“2/4t .

1.
5 - 1n2/4t

IA

ni

This completes the proof of the theorem ', i e . om
We now apply these propertles of the amphﬁcatxon functlon to obtam an algonthm

to exactly 1dent1fy a read-once monotone DNFt

Theorem 6.10 There zs an algonthm that gzven D(”) for Pt = (1 — 27U with
probability 1—§, ezactly zdentzﬁes any read-once monotone DNFZ formula of N variables,

at most n = tf of 'whzch are relevant For any ﬁzed value of L, the sample complezity is
: O(tz(ln 1/8 + In N)), and the time complezzty is O(tz(N + nz)(ln 1/6 + lnN))

Proof: Our algonthm is fa.lrly 31mple Fxrst for each vanable a:,, ectlmate the iunctlon s

amphﬁcatlon with z; ha.rd-w1red to 0 leen that the estimate is accurate enough it
follows from Theorem 6.8 that we can determine whlch variables are relevant Then in
“the second phase of the algorlthm we bulld the formula by deterrmmng whlch variables
enter the same gate. From Theorem 6.9 we know we can do this from estlmatlng the
amphﬁcatlon function when each palr of vanables is hard-wxred to 0 Our algonthm is
described in Figure 6 12. _

+ Finally, we compute the size of the sample needekdk for the estimates to have the desired
‘accuracy From Theorems 6.8 and 6.9 we know that in both phases of the algorlthm the |
-estimates for the amphﬁcatron function need only be: computed to w1th1n a factor of

=In2/4t. Usmg Hoeﬁ'dmg s inequality we get that for the ﬁrst phase a filtered sample
‘of size 17t2(ln 8/6 + In N) is sufficient; and in the second phase a filtered sample of size
17£(ln 4/6 + 21nn) is sufficient. Finally we observe that for a fixed £, p* <2V for all ,

‘t > 1. Since, for ﬁxed {,wehavea constant upperbound for p* we kriow that an additional
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, vLearn—DNF(t l, V) e
-1 Compute p* = (1 - ‘1/‘)1/l .

2 Draw a sufficiently large set € of examples from D(” )
‘3For1<z<V 5 e o
4 A examples from & where ;=0
5 & « fraction of £ that are posmve
6 V_lfa<——ln2/4t e '
T then z; is relevant e
8  ~  else z;isnot relevant -
9 For all pan’s zi,z; of relevant Vanables

-1 - & examples from & where :z:, = a:, = 0
11 &« fraction of £ that are positlve ‘
12 ﬁa>——hwu' , ~
3 then z; and z; in the same term i
4 else @i and z; not in the same term

B : Figure 6-12: Allg‘o‘r"ithm’for exactly identifying DNF} fbrmulas.

. sample of size O(ln 1 / 6) sufﬁces to ensure a large enough sample passes through the ﬁlter

_Thus the sample complexxty is O(tz(ln ( ) +InN).

Fmally, the time complexity follows from the fact that in the ﬁrst phase N estlmates

3 are needed and in the second phase O(nz) estimates are needed e e I

66 UmversalIdentlﬁcatlonSequences ot

: “In this section we descnbe an’ mterestmg consequence of our results Observe that if

Cowe regard our algonthms use of a ﬁzed dlstrlbutlon as a form of “random” membershlp i

“queries, then 1t is’ apparent that these’ querles are non-adaptwe each query is mdependent

2 of all prevxous anSWers In other words, our algorlthms ple all membershlp querxes hefore .

“seeing the outcome of any. From thls observatlon we can apply our results to prove the
exxstence of polynon‘ual size umversal zdentzﬁcatwn sequences for classes of formulas ie.,

sequences of instances that dastmguxsh all concepts from one another -
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" Morefo‘rmally,f"we define an instance sequence to be an unlabeled sequence of in-
..stances, ‘and an ezample sequence to be a ~labeled'sequence of instances. We say an in-
astance"sequence s distz'ﬁgz’lishe‘se concept c¢ if the example sequence‘ obtained by 1abe1ing
S accoruing to ¢ distinguishes ¢ from all other concepts in C,. A universal tdentification
sequen’ce for & concept class C, is an instance sequence that distinguishes every con-
cept ¢ € 'C,. In other words, a umversal identification sequence gives a single teaching
-sequence (rnodulo dlfferent labehngs) for all concepts in the class.
To provide some intuition for this result, we describe why our algorlthm for learning
read- once ma;onty formulas implies the ex1stence of a universal identification sequence
- for this class. Let C, be all loganthrmc-depth read-once majority forrnulas on n variables.
- Our main result of Sectlon 6.2 yields that for any c € C,., with hlgh proba.blhty a random
-example sequence exactly 1dent1ﬁes c. By a simple’ countlng argument it is easy to
prove that |C,| < 20(nlen), Thus if § = 2"‘"'5 » for a sufficiently large constant k, the
probability that a random instance sequence falls to 1dent1fy anyc € C), is stnctly less
“than 1. Thus thére exists some instance sequence that exactly identifies all ¢ € C,.
The followmg theorem glves general conditions for when a probablhstlc exact iden-
tlﬁcatzon algorithm xmphes the existence of a polynomial- length umversal identification

sequence We then apply this theorem to our algorithms of the previous sections.

'Theorem 6.11 Let C, be a c"o'y‘m’epir:'c‘zas‘'sj such that |Ca| < 2™ for some polynomial
p(n). Let A bea algomthm that, given & > 0 and ezamples drawn from some fized
distribution D, ezactly zdentzﬁes any ceC, wzth probabzlzty 1- -8 . Furthermore, suppose
_that the sample complezity of A is q(n) ln" (1/5) for some polynomzal q(n) and constant

Wk : Then there ezists a polynomzal-length unwersal zdentzﬁcatwn sequence Jor Cy,.

Proof: The proof uses a standard probabilistic' argument Let .S' be the random example
- sequence drawn by algorlthm A when learriing some ¢ € C. Since algorithm A achieves
exact identification of ¢ with probability 1 — § we have that the“probabllxty, taken over
-all random example sequences for ¢, that A fails to exactly identify the partzcular target

concept ¢ is at most &. Letting 6= 2‘1’(") -1 4 follows that the probability, taken ‘over all
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: frandom mstance sequences that A falls to 1dent1fy any target concept cis at most 1 /2.
. :Thus an instance sequence of length: q(n)(p(n) + 1) drawn’ randomly from D exactly, o
 identifies any ¢ € Cy Wlth proba,brhty at least 1 /2 Therefore there must exist some :

instance sequence S of this length that exactly 1dent1ﬁes all c€ Ch. S5
We now show that S dzstznguzshes allece C’ For ¢ € Cy, let Se be the example

sequence ‘obtained by lahehng S accordmg to’ c Suppose that S exactly 1dent1ﬁes C

i‘yet there exists some ¢ € Ch, (¢ # ¢) that is" also oonslstent with S.. Smce S exactly

‘identifies‘all ¢ € C',,, it follows that ¢ must also be consistent with S.. However there

must exist some z € S such that S. and S glvmg a contradrctlon Thus S is a universal

‘identification sequence for G a0 -

* We note that if the hypothesrs output by A can a.IWays be represented using at most

“p(n) bits then |Ca | < 2°("), We now apply this theorem to our exact 1dent1ﬁcatxon "

”algorlthms to obtam the followmg corollary

Corollary 6 4 There emzsts polynomml—length umversal zdentzﬁcatzon sequences for the

“classes of Ioganthmzc-depth read-once maJarzty formulas and lagarzthmzc-depth read-once

'jf‘posztzve NOR formulas.

: 6.7 Coﬁclusions aricl: Opeh Problems o

" There are several other mterestmg consequences “of our algonthms—-the proofs of these '

‘;results will appear in the long version of our paper [20]
‘We have proven that our algonthms are robust agamst a large amount of random

o mzsclasszﬁcatzon noise. Speclﬁcally, if 70 ‘and 171 represent the respectrve probablhtres

“ that outputs of 0 and 1 are misclassified, then a robust versron of our algonthm can -

A fhandle any noise rate for whlch o +'M ;é 1 the sample slze requxred increases only by

_ an inverse quadratlc factor in |1 = 170 S

 We also- have developed an algorlthm that learns any (not necessanly 1ogar1thm1c-

depth) read-once majority formula in the dlstrxbutron-free 1earmng model against the -

e eo——
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uniform distribution. To obtain this result we first show that the target formula can be
‘well approximated by truncating the‘ formula to have only logarithmic depth We then
generalize our algorithm for learmng logarithmic-depth read-once majorlty formulas to
handle such truncated formulas. ,

- We expect that the general techmque outlined here—that of 1nferrmg structural infor-
mation about the target formula by observmg 1ts behavior on a critical dlstrlbutxon—can
be apphed to other classes of formulas. In this direction, we have shown that for any
read-once formula f built from an arbrtrary monotone gate whose amphﬁcatron functlon
has a fixed point pfor 0 < p < 1, and that also meets some symmetry condltlons our
technique can be used to determme which variables are relevant and the depth of each
 variable from a polynomlal-swe sample drawn from D(") Although we suspect that the
’second phase of our techmque w111 also work for these classes of formulas, we currently
are unable to prove such a general result w1thout knowmg more about the glven gate

However, 1f thrs method is to be successful for a wrder class of forrnulas (e g. not
necessanly read once formulas), one of the main techmcal advances needed is a method
of partially analyzmg the probablhstlc behavxor of the formulas in the absence of complete

independence arnong the mputs '




Chapter 7

: ,'In thxs thesxs We studled several learmng problems under varrous formal learmng models

_ In the ﬁrst part we conSIdered a nustake—bound model T o study how the the complexlty k

of the learner s task depends on the sequence of querxes presented to the learner, we
,presented an extended mlstake-bound model in whlch the query sequence is selected by o

e a helpful teacher by the learner by an adversary, or at random 0

Usmg thls extended rmstake-bound model we studxed the problem of learmng a
‘ relat1on between two sets of ob Jects I the relatlon has no structure, the learner cannot‘
possxbly make good predlctlons Flrst we 1mposed structure by restnctlng one set of

~ objects to have relatively few “types . Next we consrdered the problem of learmng a

;total order on a set of elements That is, we restncted the predlcate of the relation

SRk S

" to be a total order In studymg the problem of learmng a total order, we uncovered an

"mterestmg relatlonshlp between learmng theory and randonnzed approxrmatlon schemes
Next we applled the extended rmstake—bound model to problems from the domain

of concept learnlng First we considered the questlon what is the minimum number of

examples a teacher must reveal to umquely 1dent1fy the target concept? As we saw, it |

: 1; an mterestlng paradox that for many concept classes, the number of rmstakes made
.w1th a helpful teacher may be worse than the number of mlstakes made when the learner

selects the sequence. In the case that the learner chooses the sequence of questions, we
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showed that the number of mistakes can be signiﬁCantly smaller thaﬁ"thye number of
queries ‘needed. | :

Finally, we presented a new technique for exactly 1dentzfymg read-once formulas from
random exa,mples Our method was based on samphng the 1nput-output behavior of
the target formula on a probab111ty distribution which is determined by the fized point
of the ‘form‘ula’s ampliﬁcatio‘n function. We pfe‘sén‘ted algOrithms'for exactly identifying
families of reéd-once formulas over various BaseS—including formulas of majority gates
and a large sﬁbclass of formulas over the standard basis. ~‘Fina11y, we applied these results
to prove the existence of polynormal length umversal zdentzﬁcatzon sequences for large

classes of forrnulas
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.‘App'endix'iA s i

| Warmuth?s AlgOrithm for Learning

Binary Relations -

We now present Manfred Warmuth’s algorithm for learning k-binary-relations; this algo-
rithm achieves an O(km + n+/mIg k) mistake bound against an adversary-selected query
sequence. ‘Both the a.lgbrithm and the analysis are entirely due to Manfred.

-

VA 1 The Algorlthm

The algorlthm is based on the welghted-ma]onty algonthm of thtlmtone and War-
muth {44] Let n be the number of rows in the matrix to be learned and m be the
nurnber of columns. We say an entry (z, ]) is known if the learner was prevmusly pre-
sented that entry. We assume without loss of generahty that the learner is never asked
to predict the value of a known entry The primary data structure for the algonthm is
a weighted directed graph G on n vertices where vertex v corresponds to matrix row i.
'(The learner also keeps a matrix contammg the known entries. ) Imtlally, we let Ghbea
complete graph with all edge weights set to 1 | | o |

- We now describe how the learner makes a prediction for an unseen matrix entry (2, 7).

When making a predxctnon for (i,7), we say that vy is active if entry (k,7) is known. To

161
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- | make its predlctlon the learner takes a we1ghted maJonty of all active neighbors of v;.

~ After recelvmg the true value of (7,7), the learner sets the welght of the edge from v; to

Vg to 0 if (k,7) # (2,7). Fmally, when a rmstake occurs the leamer doubles the weight of
the edge from v; to vy if (k,]) = (z,]) [ P

We note that each predlctlon can be made in time O(n) since 1t just lnvolves lookmg

_up the predxctlons made by the actxve nexghbors of the node of interest and takmg a

| maJonty vote. .

A2 The'AnalySis i

' We now analyze the number of xmstakes made by thls algorxthm We begln w:th some

: prehrmnary deﬁmtlons and lemmas that are used in the proof.

Deﬁmtxon Al A functzon f Rt 5 R"’ is concave (respectwely convez) over an mterval
. DOfR+ szorallxeD f"($)>0(f"(z)<0) B D

~In our analy51s we w1ll repeatedly use the followmg two standa.rd lemma.s [25 50]

4

' Lemma A 1 Letf be a functzon from R“' to R*’ that is concave over some mterval D of '

R"’ Let g € N, and let xl,:rz, :z:q € D. Then :

Zw. <SS = Zf(w,) > qf(S/q)

l—l : : i-l S ) :
G Lemma A 2 Let f be a functzon from R* to R"' that is convez over some znterval D of
»R"' Let gEN, and let z,,25,...,2, € D Then | |
Zz. S s => Zf($)<4f(5/q)
o :=1 o=l o : Ay
A basm observatlon that is essentlal to the a.nalysm is that the edge wexghts cannot

' get too large N amely we have the followmg lemma

“ Lemma A3 Throughout the Iearmng session, the wezghts on all edges adjacent to any

' . node sum to at most n=1,
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‘Proof We use a proof by mductlon Clearly the base case holds For the mductlve step'

observe that whenever a rmstake occurs, the amount of wexght set to 0 is at least as large e

as the amount that is doubled ‘ ‘ | P | u
- When making a predlctlon for (3, ]), we deﬁne the force ofa rmstake to be the number

of rows of the same type as row i that were active (i.e. column j was known) when the

mistake occurred. We now upper bound the number of mistakes of a given force that can

‘occur for a given row type.

‘Lemma A.4 For each row type r and force f there are at most m mzstakes of force f

B Proof We use a proof by contradlctlon Suppose that for row type r the learner makes
m+1 force f mistakes. Then there must be two mistakes that occur for the same column.

Suppose the first of ythese mistakes occurs when predicting (i,7) and the second occurs '
when predlctlng ,7) where both rows 1 and i’ are of type r. However, after makmg a
force f mistake when predicting (4,7) that entry is known and thus the force of the (z )
mistake must be at least f +1 giving the desired contradiction. Ry .

We are now ready to proof the main result of this section.

Theorem A.1 Warmuth s algomthm to leam k- bmary-relatzons under an adversary-

~ selected query sequence makes at most O(km + ny/mlgk) mistakes.

" Proof: The proof is structured as follows Let f; be the force of the ¢th rmstake, and let

t be the total number of mistakes made by the learner. We prove that for the set I that

contains all edges connecting two vertices of the same type:: 8 ‘ |
SheTluwe (A

=1 el S : ~

where w(e) is the welght of edge e. The remalnder of the proof proceeds as follows Next

_ we obtain an upper bound for the right ‘hand side of equation (A.1). We then prove a

lower bound of the left hand side of equa,txon (A.1). F mally, we coribine these bounds

to obtain an upper bound on the number of predlctron mistakes made by Warmuth’s

algorithm.
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Let n; be the number of TOWS of type 1. We now derrve equatlon (A 1) glven above .

’ Observe that a force f mrstake causes the werghts on exactly f edges from I to be

;} 'doubled Thus after all rmstakes have occurred

Tifi = ] w(e)

~ : ce€l '
where w(e) is the ﬁnal welght of edge e. Takmg loganthms of both srdes we obtam

) equatron (A. 1) , ; o
‘We now prove an upper bound on the rrght hand side of equatlon (A 1) Let 1 (z) be' ‘

‘ 7the edges in 1 associated with row type i Then i '

Elg w(e) < Z Z lg w(e)

Ce€l o . i=1 eel(:) : :
“ If there is only a smgle row of some type then that row does not contrlbute anythrng

to the sum and thus W1thout loss of generality we assume that n, > 2 for all i From

- Lemrrm A.3 the sum of a.]l inner wexghts ad]acent toa vertex is at most n—1. Furtherrnore, ,

: the number of werghts adJacent to a ‘vertex- of type 1 1s n; —f 1. Smce the functlon g

flz) = lg zis ea.srly shown to be convex and for all z n, > 2 if follows from Lemma A2
e S . S R - , L ¥
Zlgw(e) < Zn.(n,
: GGI } :—l
S Zn lg
4= B

Fmally we apply Lemma’ A 92 and the observatlon that the functron f (:z:) = z? 1

s convex over {1, oo] and the equahty 21—1 n, =n to further bound equatron (A 2) as
: follows f TP S B
bob> lgw(e) sznﬂg"‘l
GAa=1 CEI(’) : ”-1 : ng

S k( ) Ig (n—l)k

n

= ,k (lgk-i-lg(l—;))

k

- ‘<'—]c-,1g»k--1ge (A

(A 2)y "
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| S

Figure A-1: First ¢ 'aememg of the”éequence (1™ (2)™(3y™ . ...

where the final step follows from the mequahty e'ﬁ > 1 - —. ,
We now compute a lower bound for the left hand side of Equatlon (A.1). Let ¢ be
the number of rmstakes of non-zero force By Lemma Adit follows that there are at

" most ‘km ‘mistakes of force 0 and thus

tst'+km. o | ‘ (A.4)

Let f; be the force of the ith non-zero foi‘oevrrﬁs‘ta;ke: and let ¢/ be the number of non-zero
force mistakes made when predicting an entry in a row of type i. (Thus =5t/ = ¢.)
| From Lemma A .4 it follows that the sum of all non-Zero force mistakes of type i is lower

bounded by the sum of the first t! elements of the sequence

(1)"‘(2)"‘(3)"‘ cae
‘The sum of the first ¢! elements of the sequence is Yl . where ¢; is the length of ”
. column i in the matrix shown in Figure A-1. Let S(z) = 7., ¢. Since ¥, 4, = ¢/ and
~ 8(z) is concave, it follows by Lemma Al that
SIS Sk

=1 i=1
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: 2
S t' el ,
| 2-?‘2‘(5‘1) o

Slrmlarly, since E-—1 th=1 :and z (;‘;’; - 1) is concave, applying Lemma A;‘l we obtain

~ that

| N

|v'

DY; Ef' T

i=1 =l ; :

k )2

23 (—-—- 1) |
> — | A.

~ Finally combmmg Equatlons (A 3) and (A 5) we get that | : '

km ¢ '
S i PR <__. il
- 2 (km 1) lgk lge

AV

Solvmg for t’ ylelds that < \/ 2mn? lg F—onm lg e+ km. Next we apply Equatlon (A 4)

“to get that t < /' 2mn\/ nigk — lg e + 2km Fma.lly, sunphfymg the above mequa,hty we

: :‘iget that : Sl e
t<n\/2mlgk+2km SRR

glvmg the deslred upper bound on the number of Imstakes made by Warmuth’s algonthm
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Vapnik-Chervonenkis dimension, 29-30,
90-94

ven(C), 29

version space, 112
weak separation oracle, 70-71
XOR, closure under, 106-107





