MIT/LCS/TR-381

Cryptology and VLSI (a two-part dissertation):

I. Detecting and Exploiting Algebraic Weaknessges in Cryptosystems
II. Algorithms for Placing Modules on a Custom VLSI Chip

_ Alan T. Sherman
MIT Laboratory for Computer Science
Cambridge, MA 02159
October 1986

© Massachusetts Institute of Technology 1986

Support for this research was provided in part by the National Science Foundation (NSF) under
+ contract number MCS-8006938, by the Defense Advanced Research Project Agency (DARPA) of the
Department of Defense under contract number N00014-80-C-0622, and by the U.S. Air Force under
contract number AFOSR-F49620-81-0054.

Cryptology and VLSI (a two-part dissertation):
I. Detecting and Exploiting Algebraic Weaknesses in Cryptosystems
II. Algorithms for Placing Modules on a Custom VLS Chip

by
Alan Theodore Sherman

- Sc.B., Mathematics, magna cum laude, June 1978
Brown University

S.M., Electrical Engineering and Computer Science, J une 1981
Massachusetts Institute of Technology

- SUBMITTED TO THE DEPARTMENT OF
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
- IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE
DEGREE OF

-DOCTOR OF PHILOSOPHY
IN COMPUTER SCIENCE

: at the _
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1987

© Massachusetts Institute of Technology 1986

Signature of Author : _
Department of Electrical Engineering and Computer Science
' . October 15, 1986
Certified by
= Ronald Linn Rivest
Thesis Supervisor
Accepted by

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

Cryptology and VLSI (a-tviro-part'dissertation):

I. Detecting and Exploiting Algebraic Weaknesses in Cryptosystems
II. Algorithms for Placing Modules on a Custom VLSI Chip

Alan Theodore Shermant

_ Submitted on October 15, 1986, to the Department of Electrical Engi-
-neering and Computer Science at the Massachusetts Institute of Technol-

ogy in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Computer Science.

Abstract

- This dissertation describes two separate and independent investigations in cryp-
tology and VLSI. Part I explores relationships between algebraic and security proper-
ties of cryptosystems, focusing on finite, deterministic cryptosystems whose encryp-
tion transformations form a group under functional composition. Part II explores
the problem of automatically placing modules on a custom VLSI chip, focusing on
the placement heuristics used in the MIT Py (Placement and Interconnect) System.

Part I. The Data Encryption Standard (DES) defines an indexed set of permuta-
tions acting on the message space M = {0, 1}%4. If this set of permutations were closed
under functional composition, then the two most popular proposals for strengthening
DES through multiple encryption would be equivalent to single encryption. More-
over, DES would be vulnerable to a known-plaintext attack that runs jn 22° steps
on the average. It is unknown in the open literature whether or not DES has this
weakness. :

Two statistical tests are presented for determining if an indexed set of permuta-
tions acting on a finite message space forms a group under functional composition.
The first test is a “meet-in-the-middle” algorithm which uses O(vK) time and space,
where K is the size of the key space. The second test, a novel cycling algorithm, uses
the same amount of time but only a small constant amount of space. Each test
yields a known-plaintext attack against any finite, deterministic cryptosystem that
generates a small group.

The cycling test takes a pseudo-random walk in the message space until a cycle
is detected. For each step of the pseudo-random walk, the previous ciphertext is
encrypted under a key chosen by a pseudo-random function of the previous ciphertext.
Results of the test are asymmetrical: long cycles are overwhelming evidence that the
set of permutations is not a group; short cycles are strong evidence that the set of

1Author’s address: MIT Laboratory for Computer Science; 545 Technology Squafe; Cambridge,
MA 02139,

permutations has a structure different from that expected from a set of randomly
chosen permutations. _ :

Using a combination of software and special-purpose hardware, the cycling test
was applied to DES. Experiments show, with overwhelming confidence, that DES is
not a group. Additional tests confirm that DES is free of certain other gross algebraic
weaknesses. But one experiment discovered fixed points of the so-called “weak-key”
transformations, thereby revealing a previously unpublished additional weakness of
the weak keys. ' : :

Part II. The PI System is a fully automatic system for laying out custom VLSI
chips. PJ decomposes the layout process into separate placement, routing, and com-
paction phases, each of which are further decomposed into subproblems and solved by
specialized component algorithms. A novel crossing placement step breaks the signal
routing task into independent, fixed sized, switch-box channel routing problems.

Given a list of arbitrarily shaped rectangular modules and a list of nets which
specify how the modules are to be interconnected, PJ first finds a nonoverlapping
- layout of the modules on a rectangular surface. Modules may be flipped and rotated,
but must be aligned with the edges of the chip. Pr's placement algorithms attempt
4o minimize total chip area and the amount of wire needed for routing, while leav-

ing enough space for routing. Subsequent routing and resizing phases complete the
layout. . :

Py’s placement strategy is built around a framework in which approximate and
‘partial placements can be represented and manipulated. Within this general frame-
work, P1 first computes a placement hierarchy using a top-down recursive mincut-cut

algorithm and then refines this initial approximate placement into an exact place-
ment. To compute the exact placement, PI traverses the placement hierarchy in
postorder, orienting the modules and determining how modules should be placed rel-
“ative to each other. A data structure called the placement tree supports this process.

Key Words and Phrases - P ' E :

General Terms: Algorithms, combinatorial optimization, complexity theory,
cryptanalysis, cryptography, cryptology, theory of computation, very large scale in-
~ tegration (VLSI). o

Specific Terms: Channel definition, channel routing, closed cipher, compaction,
crossing placement, custom VLSI, cycle detection algorithm, Data Encryption Stan-
dard (DES), finite permutation group, global routing, graph partitioning, group de-
tection game, idempotent cryptosystem, layout algorithm, mincut, multiple encryp-
tion, pad placement, PI Project, PI System, placement algorithm, pure cipher, RSA
_cryptosystem, weak keys. S

Thesis Supervisor: Ronald Linn Rivest ‘ _
Title: Professor of Electrical Engineering and Computer Science -

4

Acknowledgments

I am deeply grateful to my thesis advisor, Professor Ronald Linn Rivest, for
several years of helpful guidance, supervision, and encouragement. It has been an
enriching experience to work under such an outstanding researcher, educator, and
thoughtful human being. :

I thank Professors Shafi Goldwasser, Charles E. Leiserson, and Silvio Micalj for
their comments and advice as thesis readers. I would also like to €Xpress my appre-
ciation to Burton S. Kaliski for his remarks on preliminary drafts of my work.

Several of the algebraic tests described in the first part of this thesis have been
applied to the Data Encryption Standard (DES) using a combination of software
and special-purpose hardware. I am especially grateful to Burton Kaliski for his
contribution to this experimental work. Burt performed a herculean role in designing,
building, and testing the special-purpose hardware. Leon Roisenberg assisted Burt
in building the hardware, and supporting software was written by John Hinsdale,
Kaliski, and Rivest. I would like to thank the Functional Languages and Architectures
(FLA) Research Group at the MIT Laboratory for Computer Science for letting us
use their hardware laboratory. My thanks also go to the International Business
Machines Corporation (IBM) for donating an IBM Personal Computer which served
as host to the special-purpose hardware. _ _

Since part of my thesis deals with my work on the PI System, I would like to
acknowledge the other students who also participated in the design and development
of PI. The major contributors were Alan Baratz, Arthur Chin, Chee-Seng Chow,
David Christman, Ali Ghaznavi, Alain Hanover, David Hsu, David Jilk, Joe Kilian,
Jim Koschella, Michael Koss, Gordon Linoff, Andrew Moulton, Mark Novick, Ron
Pinter, Flavio Rose, and Susmita Sur., The PI Project reflects the combined work of
these people.

Through their interest in PI, and through their use and modifications of PJ, the
General Electric Research Center (GE) in Schenectady, New York, also contributed
to the PI project. I thank Robert M. Mattheyses and Ross Stenstrom for sharing
their thoughts and experiences with using PT at GE.

I am deeply grateful to Tomoko Shimakawa for her love and support, and for
drawing all of the thesis figures. ' : '

Ray Hirschfeld built a large version of IATEX, making it possible for me to compile
this document.

My thanks also go to Lészlé Babai, Robert W. Baldwin, Don Coppersmith, Gary
Miller, and Adi Shamir for helpful comments. .

Finally, T would like to thank the organizations that supported me financially
during my graduate studies. Most of my financial support came in the form of
research and teaching assistantships. The MIT Laboratory for Computer Science
provided my research assistantships, which were sponsored in part by the National

5

Science Foundation (NSF) under contract number MCS-8006938, by the Defense
Advanced Research Project Agency (DARPA) of the Department of Defense under
contract number N0O0014-80-C-0622, and by the U.S. Air Force under contract num-
ber AFOSR-F40620-81-0054. These grants also supported the P] Project. I carried
out my teaching assistantships in the MIT Department of Electrical Engineering
and Computer Science, where I helped teach courses in algorithms and introductory
computer science. In addition, the General Electric Foundation/Ford Foundation
awarded me several forgivable loans. I appreciate all of this generous support.

e e i eburs s b B

Contents

Abstract

.

Acknowledgments . B : : : 5
List of Figures L . - : - 13
List of Tables ' S _ - . - 18
1 Introduction and Overview ‘ R o 17
1.1 Cryptology S P ... 18
12 VLS. .ottt it et e e e [21
1.3 Research Contributions 23
I Detecting and Exploiting Algebraic Weaknesses

in Cryptosystems 25

2 Relationships Between Algebraic and Security Properties of Cryp-
tosystems 27
2.1 Is the Data Encryption Standard a Group? e e e e e 28
2.2 Meet-in-the-Middle Attack Against Group Ciphers 31
2.3 Algebraic and Security Properties in the RSA Cryptosystem 33
3 Preliminaries a7
- 3.1 Finite, Deterministic Cryptosystems [L. 37
3.1.1 Definitions - 1
3.1.2 Notation and Terminology e e e s 38
3.1.3 Algebraic Properties of Closed and Random Ciphers 39
3.2 The Data EncryptionStandardo 41
321 Backgroundttt i e e e 41
3.2.2 Is DES a Group?—A Priori Beliefs e e e e e 45
3.2.3 Previous Cycling StudiesonDES 45
3.3 TheBirthday Paradox vt v vt v v vt v v v v v v 47

4 Testing Cryptosystems for Algebraic Structure . 49

4.1 Conducting and Interpreting the Algebraic Tests 49
4.1.1 Testing Framework e e e e e e e e 49

4.1.2 Interpretingthe Results e e e e e e e e e 50

4.2 Maeet-in-the-Middle Closure Test ¢, ... 51
43 CyclingClosure Test v v v vttt ot b v st s v v a v o 53
4.4 Additional Algebraic Tests. e e e r e e e e e e 56
44.1 Overview and Motivation e e e e i e e e e e 57

442 PurityTest v o v it i i i i s i i e ... 5T
443 Orbit Test ¢ . v v v v o ot v v o m et ettt ae o a s 58
444 SmallSubgroupTest 58

4.4.5 Extended Message Space Closure Tests e .. 58

446 Reduced Message Space Tests e.... 59

. 5 Attacks Against Group Ciphers - ' 60
5.1 Meet-in-the-Middle Known-Plaintext Attax:k e e e e e e e e " .. 60
5.2 Cycling Known-Plaintext Attack et e i e e e e 60
6 Experimental Work on DES _ o o 63
6.1 Summary of Experimental Results e e e e e .. 63
6.2 Two Structural Findings e e aa e e e e ... 65
6.2.1 Complementatlon and Dra.lnage Properties 65

. 6.2.2 Fixed Pointsof the Weak Keys e e 66
6.3 CyclingHardwarettt it einennns 69
6.4 Detailed Descriptions of Expenments e e h e e e e e e ... 70
64.1 Notation............... e r e e e 71
642 Next-KeyFunctionsccuoi oo eeuenens 71
-6.4.3 Selection of Experimental Parameters e ... N
6.4.4 Detailed Experimental Results e e .. T2

7 Open Problems : _ _— B 4
7.1 OpenQuestlonsaboutDES SO i 4
7.2 Complexity of Detecting Algebraic Properties . . e P £
| 7.2.1 Group Detection Game (GDG} e e e e e e e ... 79
7.2.2 Discussion. e e e e e e e e e e e ... 80

8

ROV

B el Y

o B 9, ot e b, syt P S,

gty Mt A it Bt

II Algorithms for Placing Modules *
on a Custom VLSI Chip

8 The PI Project

8.1 Overview of the P1 System
8.2 How PI Lays Qut a Chip: An Example. . . .-

9 Preliminaries

9.1 ThePISystermn ot oot v o v oot nasesanncsss
9.1.1 Objectives i v it v vt et et e e e
9.1.2 Input/Output Specnﬁcatmns @ e e e
9.1.3 Modesof Operation e e e e e
9.1.4 Layout Model e e e e e e e e e
9.1.5 Major Design Decisions B
9.16 Layout Representation [P
9.2 Definitions and Notations « ¢ v v v v v v o v o e s v o v v o s o
10 The PI System’s Post-Placement Algorithms
 10.1 Power-Ground Routing. P C e
10.2 Signal Routing e e e e .
10.2.1 Channel Definition e e e e e
10.2.2 Global Routing e e e e e s e e e e e e
10.2.3 Crossing Placement et e e e et
- 10.2.4 ChannelRoutingt
10.3 ResizZing o ¢t v v v i i et ittt e v s s ot s o e
11 The PI System’s Placement Algorithms .
‘11.1 Overview of PI's Placement Algorithms e e e e s
11.2 PI's Placement Problem v i it v oo
11.3 The Placement Tree e e e e ae e e e e
"~ 11.4 How PI Refines the Placement Tree
11.4.1 The Initial Placement Tree e e e e e e e
11.4.2 The Refinement Process e e
11 4.3 PI's Mincut, Orientation, and Hardening Refinements
12 Detailed Descriptions of PI’s Placement Algorlthms
12.1 Estimating Chip Size and Shape e e e e
12.1.1 How PI Estimates Logic Box Shape
12.1.2 How PI Estimates Logic Box Area
122 Pad Placement v ¢t ¢ v v o st s s v s o v m e e e s s
12.2.1 How PI Places Pad Modules. e e e e e e e e e
12.2.2 Pad Placement Issues,as Seenby PI e e e PR

9

12.3 Top-Down Mincut Partitioning 138
12.3.1 Summary of Mincut Process T
12.3.2 Partitioning the Modules S 139
12.3.3 Drawing the Floorplan e e e e e ... 141

12.4 Module Orientation e e e e e e e e e e 143
12.4.1 Orientation After Mincut e e .. 144

. 12.4.2 PI’s Orientation Cost function f e e e e e e .. 145

12.5 Bottom-Up Hardening v v eenn.... ... 146

. 12.5.1 Summary of Hardening Process 146
12.5.2 How PI Computes Separation and Offset 148
12.5.3 Placing Two Modules Across a Channel 149
12.5.4 Placing Two Hardened Pi-Boxes Across 2 Channel 150

13 Extensions to the PI System . 153

13.1 Additional Placement Algorithms153
13.1.1 An Aliernate Control Strategyo o v e.o... 154
13.1.2 Bottom-Up Pairing, 154
13.1.3 CombinatorialSearch 156

13.2 A New Crossing Placement Algorithm 158

13.3 Ideas for Channel Routing e e et e e e e 158

134 Pl at General Electric c e e e e e 159
1341 How2PI Extends PI T ... 160
13.4.2 Experimental Results PRI R R 160
134.3 Discussion e e e e e a e e e 161

14 Open Problems : ' _ 162

14.1 Abstractions of PI's Placement Problems e e e ... 162
14.1.1 A General Context for Placement Problems 162

. 14.1.2 Three Placement Problems 163

142 MincutIssues 0000y e ee e e e e e e e 165

15 Discussion : : ' 167

151Rela.tedWork.-...... e e e e e i e e ae et 167
-15.1.1 Other Layout Systems e e e e e e e e e e e e e e 167
15.1.2 Previous Work on Mincut S .. 168

15.2 PI System: Implementation, Contributors, Status Documentation . . 169
15.2.1 Implementation. e e e e e e e e e . 169
1522 PlIPeople PN e e e e e e 170
15.2.3 Current Status and FuturePlans 171

_ 15.2.4 Worksonthe PISystem e e e 172

15.3 Critiqueofthe PIProject ¢ ..., 172

10

.

P VR

[O N IO

i e N W

[

[N R e

S N

[P

EESIPUIPLY

15.3.1 Major Contributions

15.3.3 Conclusions

Bibliography -
About the Author

15.3.2 Reflections on the Major Design Decisions

11

This document was produced at the MIT Eabbrdtory for C’omputcr Science using the
EMACS tezt editor, the IATEX document preparation system, and an Imagen laser-
driven zerographic printer.

. 12.

SR ety b Voot i P e b

B P

bt K B a

kS ot P b s S Rk

[X

-

W

List of Figures o

21
2.2

3.1
3.2

4.1
4.2

- 8.1

6.1
6.2
6.3

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17

11.1

Cycling closure test takes a pseudo-random walk in the message space 30
Meet-in-the-middle attack against group ciphers - 32
DESisacascadeof 16 tounds o v oo v v v v v e i ... 43
Computation of DES’s nonlinear f function 44
Meet-in-the-middle closure test (MCT)o oo v v ou s 52
Cycling closuretest (CCT) oo v it aeenn 54
Cycling known-plaintextattack 62
In experiments 1 and 2, both walks entered the samecycle. 66
Experiment 7 discovered fixed-points of the weak keys 68
Block diagram of special-purpose hardware 70
Outlineof PISystem o v v v v v v i it ittt v e e 87
Pad placement e e e e e e e e e 91
Building the approximate placement: Mincutstep A 92
Building the approximate placement: MincutstepB 93
Building the approximate placement: Mincutstep C 94
Approximate placement after mincut o000 95
Determining exact placement: Hardeningstep A 96
Determining exact placement: HardeningstepB 97
Determining exact placement: HardeningstepC 98
Exact placement with placement hierarchy 99
Module placement it i e 100
Channel definition before power-ground routing 101
Routingof groundtreeo 102
Routingof powerforest 103
Channel definition after power-ground routing 104
Global routing of signalnets. oo o oL 105
Layout after channel routing of signalnets v e e s 106
Outline of PI’s placement process w121

13

11.2
11.3
114
11.5
11.6
11.7
11.8
11.9

12.1
12.2
12.3
12.4
12.5
12.6
12.7

131
13.2
13.3

Pad-ordering heuristic
Partitioning modules in the context of an approximate placement . . .
Module orientation in the context of a placement tree,
Hardening computes an offset and separation between two pi-boxes . .
Hardening involves tradeoffs between area and wire length
Special case of hardening: Placing two modules across a channel ..
General case of hardening: Placing two pi-boxes across a channel . . .

Bottom-up pairing refinement . . .,
A nonslicingplacement

14

- List of Tables

6.1 Summaryof DESexperiments.
6.2 Byte substitution table for pseudo-random next key function.
6.3 Closure experiment with identity next key function
6.4 Closure experiment with identity next key function e
6.5 Closure experiment with pseudo-random next key function.
6.6 Extended closure experiment with pseudo-random next key function .
6.7 Purity experiment with pseudo-random next key function
6.8 Purity experiments with pseudo-random next key function.
. 8.9 Orbit experiment using composition of weak keys
6.10 Orbitexperiment v 4 v v bt ettt e e

15

16

Alan T. Sherman; Thesis: Octbber 14, 1986

Chapter 1
Introduction and Overview

Over the next decades, cryptology and VLSI will play an increasingly important role
in our lives. As people make greater use of computers to conduct business transac-
tions and to store and communicate confidential information, we will depend more
on cryptography to safeguard the privacy, authentication, and integrity of digital
information. As VLSI technology makes it possible to build miniature silicon chips
cheaply and reliably, more products—from dishwashers to space ships—will exploit
the power of the microchip. Already, many people enjoy the harmonious combination
of cryptology and VLSI through automatic teller machines and smart credit cards.

Cryptology and VLSI are appealing not only for their important practical appli-

“cations, but also for the deep issues they raise in understanding what makes compu-
tation easy and what makes computation hard. Cryptographers attempt to create
problems that are infeasible to solve for anyone who does not possess the secret key,
and cryptanalysts strive to defeat the cryptographers. VLSI chip designers attempt
to exploit the power of parallel computation, but they must first confront the difficult
problem of laying out their chips efficiently. _

This dissertation describes two separate and independent investigations in cryp-
tology and VLSI. Part I explores relationships between algebraic and security proper-
ties of cryptosystems; part II addresses the problem of placing modules on a custom

“VLSI chip. Each part grapples with practical issues using a blend of theoretical and
experimental approaches. For example, part I proposes new algorithms for detecting
and exploiting algebraic structure in cryptosystems and applies some of these algo-
rithms to the Data Encryption Standard (DES).! Similarly, part II describes new

‘methods for laying out custom VLSI chips automatically and discusses how these

- ideas were implemented in the PJ (Placement and Interconnect) System.? Although

IDES is a federal standard for the cryptographic protection of computer data, adopted in 1976 by
the United States National Bureau of Standards.

3The P] System is an automatic layout system for custom VLSI, developed at MIT under the
leadership of Professor Ronald Rivest.

17

18 | Alan T. Sherman, Thesis—Part I: October 14, 1986

- there are many important relationships between cryptology and VLSI, and although |,

these relationships were partially responsible for my initial interest in VLSI, this
dissertation makes no attempt to explore these relationships.

. Organized in three sections, the rest of this chapter introduces and outlines each
part of the dissertation and summarizes the main research contributions. Additional
introductory material of a more detailed and technical nature is found in chapters 2
and 8.

1.1 Cryptology

Cryptology is the science of making and breaking codes and ciphers.® Although cryp-
tology has been and continues to be of great interest to governments, military forces,
and amateur mathematicians, today cryptology is becoming increasingly more im-
portant in the public sector.* As we depend more and more on computer networks
and information systems, the need to protect digital information and computer trans-
actions grows. Without cryptographic protection, grave dangers exist for fraud and
invasion of privacy. :
' Communications security deals with a variety of problems associated with the safe
transmission of information among parties in the presence of adversaries. Three of
the most important problems of communications security are the problems of secrecy,
authentication, and integrity. The secrecy problem is to ensure that a message can be
read only by the intended receiver. The authentication problem is to provide assur-
ance to the intended receiver of a message that the received message actually came
from the claimed sender. The integrity problem is to guarantee that an adversary
cannot modify messages without being detected.

‘Conventional cryptography works by taking advantage of a powerful asymmetry:
the sender and receiver share some secret information, called the key, that that is
unknown to the enemy. During encryption, the message and the key are thoroughly
mixed in a complicated way. If the encryption process is secure, only someone who
knows the key can unscramble the message. Two crucial ingredients of this process
are the random selection of the key and the mixing operation that is hard to reverse.

In public-key cryptography, a different asymmetry exists [154]. Here, separate keys
are used for encryption and decryption. Only the receiver holds the secret (decryp-
- tion) key. Everyone else, including the adversary, has access only to a corresponding
public {encryption) key. Anyone can encrypt, but only someone who knows the se-
cret key can decrypt. Although public-key cryptography avoids the need for the

3Strictly speaking, cryptography is the field of making codes and ciphers, and cryptanalysis is the
field of breaking codes and ciphers. Together cryptography and cryptanalysis comprise cryptology,
which is one branch of the larger domain of communications security.

*Although communications security is studied extensively in the classified world [72], T have never
had access to any classified materials. ‘

e e

Chapter 1: Introduction and Overview " 19

sender and receiver to exchange secret keys, the sender must have assurance that
the public key he believes corresponds to the receiver is actually the public key of
the intended receiver. One important advantage of public-key cryptography over
conventional cryptography is the additional capability it provides to create digital
signatures [226].

Much of my interest in cryptology has focused on the question, “What does it
mean, in a precise mathematical sense, for a cryptosystem to be secure?” This
is a crucial question. Without an answer to this question, our understanding of
cryptology is foggy and our assessments of cryptosystems are unscientific. Of course,
there is no single answer to this question. Security is a relative concept which depends
on many factors including the resources and capabilities of the enemy, and what it
means to “break a cryptosystem.” Security also depends on what one means by a
“cryptosystem.”

- - In his seminal paper on cryptography, Claude Shannon proposed an information
theoretic definition of security, called perfect secrecy [150]. Shannon’s notion of se-
curity requires that the enemy have insufficient information to decipher encrypted
messages, even if given unlimited computational resources. The well-known one-time
pad satisfies Shannon’s notion of perfect secrecy.

More recently, several attempts have been made to base definitions of crypto-

. gra.phlc strength on computational complexity [130,138,147]. Informally, these defi-
nitions say that a cryptosystem is secure if and only if breaking it requires an unrea-
sonably large amount of time or space. Over the past decade, several computational
complexity based cryptosystems have been proposed [226,252,207,217,239,246,129)].
In some cases, researchers have proven that their cryptosystems satisfy particular def-
initions of security. However, even for such “provably secure” cryptosystems, security
is conditional on unproven conjectures in computational number theory. Specifically,
cryptographers have attempted to link the difficulty of breaking their cryptosystems
with the difficulty of solving mathematical problems that many experts conjecture
are difficult to solve. The most popular of these problems have been the integer
factoring problem, the quadratic residuosity problem, the discrete logarithm prob-
‘lem, and the elliptic logarithm problem. Since computer scientists have not proven
any nontrivial lower bound on the amount of computer resources required to solve
any nontrivial problem, this approach is the most one could expect without making
monumental advances in complexity theory. Thus, once again, security becomes a
relative notion.

Part I of this dissertation does not attempt to give a final explanation of the
meaning of cryptographic strength. Instead, part I addresses a focused dimension
of this question by exploring the thesis that there are important relationships among
algebraic and security properties of cryptosystems.

Throughout part I attention is restricted to finite, deterministic cryptosystems
that consist of an indexed set of permutations acting on a finite message space.

20 ' Alan T. Sherman, Thesis—Part I: October 14, 1986

Within this context, relationships are explored between algebraic properties of the
set of permutations and security properties of the cryptosystem.

Outline of Part I

Part I investigates relationships among algebraic and security properties of cryp-
tosystems, focusing on how algebraic properties can be detected and exploited in
the context of finite deterministic cryptosystems. The major theoretical contribu-
tions of part I are two statistical tests and their related known-plaintext attacks for
group ciphers. The major practical contributions are the application of one of these
tests and other algebraic tests to DES. With one exception, our experimental results
are consistent with the hypothesis that DES acts like a set of randomly chosen per-
mutations. But one experiment detected fixed points for the so-called “weak key”
transformations, thereby discovering a previously unpublished additional weakness
of the weak keys. '

Listed below are brief summaries of the six chapters that constitute part I.

o Chapter 2 illustrates the main ideas of part I through three examples. First,
the chapter explains how the cycling closure test can be carried out on DES.

- Second, the chapter explains how the meet-in-the-middle attack against group
ciphers could be applied against DES, if DES were a group. Third, the chapter
examines relationships among algebraic and security properties in the RSA
cryptosystem. '

o Chapter 8 presents an assortment ‘of background information helpful in un-

derstanding the rest of part I. This chapter describes basic properties of finite

~deterministic cryptosystems, reviews some previous work on DES, and explains
the notation and terminology used throughout part I.

o Chapter 4 presents a meet-in-the-middle test and a constant space cycling test
for for determining if a finite deterministic cryptosystem forms a group un-
der functional composition. The chapter also describes several other related
statistical tests for detecting algebraic structure in cryptosystems.

e Chapter 5 explains how each of the two main tests from the previous chapter
can be transformed into a known-plaintext attack against group ciphers.

o Chapter 6 describes experimental work in which we performed the cycling clo-
sure test and other algebraic tests on DES. The chapter explains our findings,
lists detailed experimental results, and describes special-purpose hardware used
in to carry out the tests.

Chapter 1: Introduction and Overview : - 21

e Chapter 7suggests two directions for further research. This chapter lists several
open questions about DES and states as a two-person game the problem of
determining whether or not a set of cryptographic transformations forms a
group. '

1.2 VLSI

Large Scale Integration (LSI) and Very Large Scale Integration (VLSI) refer respec-
tively to the high and very high densities of wires and active components that can be
placed on a silicon chip. Although these terms have no widely agreed-upon precise
meanings, today, when someone refers to a chip as “VLSI1,” the chip might have as
many as several hundred thousand transistors in a region about one square centime-
ter in area. For many circuits, increasing integration density decreases chip size,
_increases chip speed, and decreases chip cost. Thus, VLSI helps build smaller, faster,
and cheaper electronic devices. _

A chip is a slice of material that implements an electronic circuit, where an
electronic efreutt consists of active components (e.g. transistors) electrically connected
by wires. There are several different technologies for building chips. Among these
technologies is the popular metal-ozide-semiconductor (MOS} technology. In three-
layer MOS, a chip consists of three layers of electrically conducting material which are
separated by insulating matter. The conducting layers are made of metal, polysilicon,
and diffusion. The circuit is realized by etching paths in each of the three layers.
Paths in metal, polysilicon, or diffusion form wires; a transistor is created whenever
a polysilicon path crosses a diffusion path.® _

A custom chip—as opposed, for example, to a semicustom chip—is a chip whose
active components are not restricted to be laid out in any regular pattern. With cus-
tom VLS, it is especially convenient to build a chip by putting together a collection
of available parts. .

Part II of this dissertation addresses the problem of deciding where on a custom
chip the active components should be placed. Given the huge number of wires and

" transistors that can be fabricated on a single chip, there is a strong need to develop
_efficient algorithms for placing the active components. Although part II is presented
in terms of custom VLSI, the results also apply to most other layout technologies.

' The following layout model will be used throughout part II. Active components are
represented by modules, which are arbitrarily sized rectangles with communication
points {called pins) along the edges. Modules may be flipped and rotated, but must

be oriented with the edges of the chip. Modules are not permitted to overlap. Two
layers are available for routing, but wires are not allowed to cross modules.

5 Actually, this simple description of how a transistor is created is only an abstraction of a more
complicated process [339,341,342].

22 . ' Alan T. Sherman, Thesis—Part I: October 14, 1986

We will focus our attention on a layout methodology that separates the layout
process into separate placement and routing phases. Input to the placement phase
consists of a set of modules and set of nets which describe how the modules are to be
interconnected. Output describes a placement of the modules in a rectangular region
of the plane. The goal is to minimize estimated layout cost, while leaving enough
room in between the modules to route the wires. Usually, we will measure layout
cost by total chip area and wire length.

The major portion of part II deals with a set of ‘placement heuristics developed
for the MIT PJ System. These heuristics are based on a top-down recursive mincut
strategy® that combines geometric and graph-theoretic placement concerns.

Outline of Part I1

Part II deals primarily with the placement heuristics that were designed and im-
plemented by Alan Sherman for the Pj System. The major contributions are the
placement algorithms and the general framework in which these algorithms operate.
Most of part II is devoted to describing PT's placement algorithms. Along the way,
-part I identifies layout issues as seen through P and explains how PJ deals with these
issues. Several ideas for extending PI’s placement algorithms are presented. In addi-
tion, part II formulates several theoretical problems abstracted from and motivated
by PI. Part II concludes with an analysis of the P Project.
Listed below are brief summaries of the eight chapters that constitute part II:

o Chapter 8 gives a brief overview of the PI System. Pictures taken from a
computer terminal illustrate PI's performance on a small example.

¢ Chapter 9 describes the PI System in more deta.il, concentrating on its objec-
tives, layout model, and major design decisions. This chapter also defines the
notation and terminology used throughout part II.

e Chapter 10 summarizes PI’s routing and resizing algorithms. This chapter
is included primarily for the reader who would like to learn more about PI.
Although the rest of part II does not depend on chapter 10, the reader may find
this chapter helpful in better understanding how PI’s placement and routing
algorithms interact.

¢ Chapter 11 introduces PI’s placement algorithms. This chapter expia.ins the
framework in which PI’s placement algorithms operate and summarizes the
particular algorithms that PJ uses within this framework.

8 A mincut heuristic is a heuristic that involves partitioning a graph into two sets of vertices such
that the number of edges that have endpoints in both sets is made as small as possible.

Chapter 1: Introduction and Overview 23

e Chapter 12 explains each of PI's placement algorithms in detail. Specifically,

~ this section explains how PJ uses a top-down mincut heuristic to find an ap-

proximate placement of the modules, how P adjusts an approximate placement

- by orienting (flipping and rotating) the modules, and how PJ uses a bottom-up

“hardening” procedure to transform any approximate placement produced by
the mincut heuristic into an exact, legal placement.

o Chapter 13 describes several extensions to the P] System that were considered
for PI, but which were never implemented. These extensions include bottom-up
pairing and combinatorial search placement heuristics, 2 new crossing place-
ment algorithm, and ideas for additional channel routers. The chapter also

~ describes an extension to PJ developed and used by the General Electric Com-
pany.

e Chapter 1 formulates several theoretical placement problems motivated by and
abstracted from P]. Most of these problems remain as open research questions.

e Chapter 15 summarizes the major contributions of the P] Project and evaluates
how well P] met its original objectives. This chapter also discusses several other
miscellaneous topics relating to PI, including the history and implementation
of PI, and the current status of the P] Project.

1.3 Research Contributions

This section briefly summarizes the major research contributions of this dissertation.

The major results of part I deal with cryptosystems that are groups. Two at-
tacks against group ciphers are presented, and a novel cycling test is described for
determining if a cryptosystem is a group.

Part I also presents experimental work in which statistical algebraic tests were ap-
plied to the DES using a combination of software and special-purpose hardware. Ex-
perimental evidence shows, with overwhelming confidence, that DES is not a group.
Additional tests show that DES is free of certain other gross algebraic weaknesses.
But one experiment unexpectedly discovered fixed-points for the so-called “weak key”
transformations, thereby revealing an additional weakness of the weak keys previously
unknown in the open literature. '

The major contributions of part II deal with the design and implementation of
the PJ System, and especially with the P] System’s heuristics for placing modules on
a custom VLSI chip. Part II explains PI's placement algorithms, which were designed
~ and implemented by Alan Sherman. Part II also presents a thorough description and
analysis of the P] System, identifying layout issues as seen by P] and discussing how
P] deals with these issues. An example of PI’s step-by-step performance is shown.

24 Alan T. Sheﬁhﬁn, TheSiS—Pért I October 14, 1986

PI’s problem decomposition and p'la.cem_eﬂt framework provide an effective approach
for laying out custom VLSI chips. _

The PI System places modules in three steps. First, P] applies a top-down mincut
heuristic to compute an approximate placement of the modules. Second, PI adjusts
the placement by flipping and rotating the modules. Third, PT applies a bottom-up
procedure to transform the approximate placement into an exact placement with
space left for routing. These algorithms are built around a general framework that
can support a variety of placement heuristics. _

Part II also describes several extensions to the PJ System and states several prob-
lems abstracted from and motivated by Pr.

Portions of this dissertation present joint work with Ronald Rivest, Burton
Kaliski, and members of the P Project.

ot

Part I

Detecting and Exploiting Algebraic
- Weaknesses in Cryptosystems

g

Chapter 2

Relationships Between Algebraic
and Security Properties of |
Cryptosystems

Fundamental algebraic properties such as commutativity, associativity, multiplica- -
tivity, and closure play a significant role in the structure of mathematics [4]. They
also play an important role in cryptology. Although some work has been done on
algebraic properties and the security of cryptographic protocols [285,286], the rela-
tionship between algebraic properties and computational complexity security proper-
ties of cryptographic functions remains barely explored in the open literature. Part I
begins to explore this fascinating territory.

. Part I focuses primarily on the computational complexity security properties of
group ciphers—ciphers whose cryptographic functions form a group under functional
composition. Two known-plaintext attacks for exploiting group ciphers and two
novel statistical tests for detecting group ciphers are presented. My interest in group
ciphers was motivated largely by the following two reasons. First, the group is
one of the most fundamental algebraic structures, and hence group ciphers are a
natural context in which to investigate relationships among algebraic and security
properties. Second, I was intrigued by the question of whether or not the set of DES
transformations forms a group and by the fact that the common modulus variation
of the RSA cryptosystem forms a group under functional composition. The study
of group ciphers in part I continues a research direction initiated by Shannon, who
examined information theoretic security properties of group ciphers [150].

- Part I also describes experiments in which several statistical algebraic tests were
applied to DES. These tests confirmed popular belief that DES is free of certain gross
algebraic weaknesses. But one test discovered fixed points of the so-called “weak key”

transformations, thereby revealing a previously unpublished additional weakness of
the weak keys.

27

28 Alan T. Sherman, Thesis—Part I: October 15, 1986

Algebraic structure in cryptosystems can have two-sided effects. On the one hand,
algebraic structure can provide a framework that makes encryption and decryption
possible. It can also endow a cryptosystem with desirable capabilities or security
properties. On the other hand, algebraic structure can weaken a cryptosystem by
providing the cryptanalyst with something to exploit. Sometimes, special capabilities
of a cryptosystem due to algebraic structure come at a price of less efficient use of key
bits to reach certain security levels. While there are general relationships between
some algebraic and security properties of cryptosystems, how algebraic structure
affects a cryptosystem depends in part on the details of the particular system.

The rest of this chapter introduces the main ideas from part I through illustrat-
ing how algebraic and security properties interact in two particular cryptosystems.
Section 2.1 explains why it is important to know whether or not DES is a group
and summarizes how we applied the cycling closure test from chapter 4 to show,
with overwhelming confidence, that DES is not a group. Section 2.2 describes how
- the meet-in-the-middle attack from chapter 5 could be applied against DES, if DES
were a group. Section 2.3 briefly discusses relationships between algebraic and secu-
rity properties of the RSA cryptosystem. This section also explains how the attacks
against group ciphers from chapter 5 can be applied against the RSA cryptosystem,
even though these attacks turn out to be less efficient at breaking RSA than are
known factoring methods.

2.1 1Is the Data Encryption Standard a Group?

The Data Encryption Standard (DES) is a federal standard for the cryptographic pro-
- tection of computer data and is widely used by banks and other organizations to pro-
tect unclassified data. Although a few studies on DES have been openly published,!
to date, numerous fundamental questions about the standard remain unanswered in
the open literature. Part I addresses one such important question: “Is the set of DES
transformations closed under functional composition?”

DES defines an indexed set of permutations acting on the message M = {0,1}54.
There are M = 2% messages and K = 2% keys. Each key k represents a transforma-
tion T, with inverse T} '. Let K = {1,0}%¢ denote the set of keys.

It is important to know whether or not DES is closed since, if DES were closed, it
would have the following two weaknesses. First, both sequential multiple encryption
and Tuchman’s multiple encryption scheme—the two most popular proposals for
strengthening DES through using multiple encryption—would be equivalent to single
encryption.? Even worse, DES would be vulnerable to a known-plaintext attack that

!See bibliography for a list of selected technical works on DES. For an overview of DES, see (69),
[68], or {68]. , .
2To encrypt a message z using sequential multiple encryption is to compute T:T;(z), where the

Chapter 2: Algebraic and Security Properties of Cryptosystems 29

runs in 228 steps, on the average. Each weakness follows from the fact that the set of

cryptographic transformations of any closed cipher forms a group under functional
composition. Although most researchers believe DES is not closed, no one has proven
this conjecture in the open literature.

Chapter 4 describes two statistical tests for determining whether or not an in-
dexed set of permutations acting on a finite message forms a group under functional
composition. We will now summarize how we applied one of these tests—the cycling
closure test—to DES.

~ Let zo be any message and consider the set S;, recursively defined as follows: z,
is an element of S, and, for any key k and any message z € S,,, Ti(z) is also an
element of 5;,. Thus, S, is the set of messages that can be reached through multiply
encrypting zo zero or more times with arbitrary keys.

If DES acted like a set of randomly chosen permutations, then we would expect
5;, = M and thus |S,,] = M = 2%, However, if DES were closed, then |S,,}] < K =
25, since sequential multiple encryption would be equivalent to single encryption and
there are at most K distinct encryption transformations. The cycling closure test
computes a statistic based on the size of S,,.

The cycling closure test picks an initial message T, at random and then takes a
pseudo-random walk in S, , beginning at z,. For each step of the pseudo-random
walk, the previous ciphertext is encrypted under a key chosen by a pseudo-random
function of the previous ciphertext. The walk continues until a cycle is detected. }r
the “Birthday Paradox,” the walk is expected to cycle after a.pproxuna.tely |S,o|
steps.

More specifically, the test computes a sequence of messages zg, z2,.... For each
t > 0, the next message z;,, is computed by

iy = fp(ze) } . (2.1)
where the function f, : M — M is defined by

fo(2) = Tyz)(2) - | (2.2)
for all messages £ € M. The walk is guided by a deterministic, pseudo-random
function p : M — K that maps messages to keys. If p is “random,” then f, acts like
a random function on 8;,.

Since 8., is finite, the walk will eventually encounter the same message twice.
Thereafter, the walk will remain periodic because f, is deterministic. Let A be
the least integer such that z, = z; for some 0 < ¢ < A, and let u& be the least
positive integer such that z,4, = z). The walk is completely determined by the
leader zo,%1,...,25x-1 and the cycle z),Zr41,...,Ta+u. The integers A and u are

keys ¢ and 7 are chosen independently. Similarly, to encrypt a message z under Tuchman’s scheme is
to compute I}I‘J.‘"Tk(z), where the keys 1, 7, and k are independently chosen [197,68,307].

30 : . Alan T. Sherman, Tbeéis—Parf I: October 18, 1986

leader

—
i/ et * ™o o .
f}-,.bzg 3. X=X vu -
f;y. %2 A%\

L) xl ; : .x:t-n-l

X, |) cycle

.x1.+z

Figure 2.1: The cycling closure test takes a pseudo-random walk in the message space

Chapter 2: Algebraic and Security Properties of Cryptosystems 31

called respectively the leader length and cycle length of the sequence zo,z;,.... See
figure 2.1.

Results of the test are asymmetrical. Walks significantly longer than vK = 2
are strong evidence that DES is not a group. Walks significantly shorter than VM =
2% are strong evidence that DES has a structure different from that expected from
a set of randomly chosen permutations.

Using a combination of software and special-purpose hardware, we carried out
this cycling test on DES. To detect cycles and to compute cycle and leader lengths,
we used a variation of the Sedgewick-Szymanski cycle detection algorithm {97,98,99].
Our experiments detected cycles after approximately 2%3 gteps, giving overwhelming
evidence that DES is not a group (see chapter 6).

2.2 Meet-in-the-Middle Attack Against Group
Ciphers . -

All group ciphers are vulnerable to known-plaintext attacks that run in time O(VK),
where K is the size of the key space. Chapter 5 presents two such attacks. We will
now illustrate one of these attacks by explaining how it could be applied against DES,
if DES were a group. The attack we will describe is called the meet-in-the-middle
attack. :

As in the previous section, let T, denote DES encryption under key k. In-
put to the attack consists a short sequence of matched plaintext /ciphertext pairs
(p1,€1), (P2, €2),- - - » (1, 1) €ach derived from the same key k. With high probability,
the attack finds a representation of the encryption function as a product T} = T} T..
The cryptanalyst can use this representation of T} to encrypt and decrypt additional
messages. This attack does not find the key k.

~Let p = py and ¢ = ¢;. To find a pair of keys a,b such that T, = TiT,, the
cryptanalyst computes z; = T;,,(p) and y; = T,;l(c) foralll <4,5 < rfor 2r randomly
chosen keys a,,as,...,6, and by, bs,...,b,. The cryptanalyst searches for a “match”
z; = y; and then verifies that T} = T,T, using the additional plaintext/ciphertext
pairs. Matches can be found by sorting the triples (z;,a;, “A") and (y;,b;, “B"), for
1< 14,7 <r, on their first components. See figure 2.2. 7

_If the set of DES encryption transformations formed a group under functional
composition, then as b; varies over all possibie keys, T,;IT;‘ would range over all en-
cryption transformations. Consequently, by the “Birthday Paradox” (see section 3.3),
the expected number of keys that would have to be tried until a match is found is
approximately VK = 2%,

The meet-in-the-middle attack requires 2r encryptions, O(r} words of memory,
plus the time to generate the keys and to look for matches. By choosing r = VK
for some sufficiently large constant ¢, the chance of finding a match can be made as

34 : | " Alan T. Sherman, Thesis—Part I: October 15, 1986

" Dyaly) =y*modn S (2.4)
for all 7,y € Z,. By Euler’s generalization of Fermat’s little theorem, it can be
easily shown that Dy, (E.n(z)} = z for all messages z € Z,. The requirement that
the exponent e have a multiplicative inverse modulo ¢(r) ensures that encryption is
bijective. _ o : _

When RSA is used as a public-key cryptosystem, the public key is the pair (e, n);
the secret key is d. The primes p and ¢ must also be kept secret, since d can be quickly
computed from n, e, p, and ¢. Although proposed as a public-key cryptosystem,
RSA can also serve as a conventional cryptosystem. When used as a conventional
cryptosystem, the key consists of the triple (e, d, n). o

The security of RSA rests in part on the difficulty of factoring the modulus n:
given the factors p and ¢ of n, an enemy can quickly compute the secret key d.
Although several attacks against RSA have been shown equivalent to factoring n
[226,232,229,222,230], no one has proven that breaking RSA necessarily implies abil-
ity to factor n. Thus, breaking RSA is at most as difficult as factoring n.* The best
known techniques for factoring n run in time O(L(n)), where L(n) = eV'osnloslogn
{107,105,103). : '

The RSA scheme actually defines a uniform family of cryptosystems where each
n determines one cryptosystem in the family. The family is uniform in that each
cryptosystem in the family is “essentially the same,” except for the parameter n. By
choosing n appropriately, various levels of security can be achieved. The quantity
8 = log, n is sometimes referred to as the security parameter of the system.

Algebraic Properties of RSA

The RSA cryptosystem is rich with algebraic structure. To begin with, the message
subspace Z, forms a group under multiplication modulo n. Moreover, RSA has the
following six algebraic properties:

1. Multiplicativity. For every key (e,n), for all messages z,y, it is true that
E, o(z)E,s(y) modn = E, (zymodn). |

2. Complementation property. For every key (¢,n), for eﬁerjr message z, it is true
that E, o(n — z) =n — E, a(z).

3. Commutativity. For every modulus n, for every encryption exponents e;, €3, it
is true that E, nE.yn = EynEey n-

4Note, however, that breaking a related cryptosystem due to Williams [233] and Rabin [225] is
as hard as factoring the modulus. In William’s scheme, the encryption exponent e is always taken
to be 2, yielding a 4-to-1 encryption transformation. But William's scheme has some weaknesases,
including susceptibility to a chosen-ciphertext attack [143].

Chapter 2: Algebraic and Security Properties of Cryptosystems 35

4. Homogeneity. For every decryption key (d,n), there exists an encryption key
(e,n), such that Dy, = E, . ' _

5. Eristence of fized points. For every modulus n, there are at least nine “fixed
point” messages r such that, for every encryption exponent e, E,n(z) = z.
Among these messages are n —1,0,1,p, and ¢ [214].

6. Preservation of quadratic character. For every message z, for every key (e, n},
it is true that z is a quadratic residue module » if and only if E,n(z) is a
quadratic residue module n.

Most of these properties follow from the fact that that each RSA encryption function
is a group homomorphism of the multiplicative group modulo n.

Discussion

The algebraic structure of RSA give this cryptosystem several important functional
capabilities and security properties. _ :

For example, the commutativity and homogeneity properties imply that en-
cryption and decryption commute; that is, Dy, (E,n(z)) = E.a (Dan(z)) for all
‘keys ¢,d,n and every message x. Because encryption and decryption commute,
“Eon (Dan(z)) = z for all messages z € Z,, and hence RSA can be used as a dig-
ital signature scheme.

By the multiplicativity property, Dyn(y) = Dyn(yr®)r—' modn for any y,r € Z,.
Hence, to decrypt any given ciphertext y € Z,, it suffices to decrypt yr® for any
r € Zn. This fact gives RSA a uniform security property which says informally that,
if RSA is hard to break on some small fraction of the message space, then RSA is
hard to break almost everywhere. More specifically, for any 0 < ¢ < 1, if there
exists a polynomial time algorithm (polynomial in log,n) for computing e-th roots
modulo n for a fraction € of the messages in Z;, then there exists a probabilistic
polynomial time algorithm (polynomial in log,n and 1/¢) for computing e-th roots
for all messages in Z [270].

As shown by Chor and others [216,217,248], the multiplicativity property together
with the complementation property gives RSA a double-edged bt security property:
given any RSA ciphertext, computing the least significant bits of the plaintext is as
hard (i.e. polynomial-time equivalent) as computing the entire plaintext.

But the multiplicativity property also creates dangers in situations that permit
chosen-ciphertext attacks [269].

By preserving the quadratic character of messages, RSA encryption always leaks
at least one bit of information about the plaintext. Lipton [223] shows how this weak-

. mess can be used to cheat at a protocol suggested by Shamir, Rivest, and Adleman
for playing “mental poker” [292]. A cheater can mark the aces as quadratic residues.

36 | . Alan T. Sherman, Thesis—Part I: October 15, 1986

~ The common modulus RSA cryptosystem is a variation of the RSA cryptosystem
in which the same modulus n is used for every key. Only the encryption exponent e
varies.’ In the common modulus RSA cryptosystem, the set of encryption functions
- form a group under functional composition. As a result, this cryptosystem is vulner-
able to the known-plaintext attacks against group ciphers described in chapter 5.

Moreover, the RSA cryptosystem is also vulnerable to these known-plaintext at-
tacks, since the cryptanalyst can proceed as if he were attacking the common mod-
ulus RSA. Although the RSA cryptosystem is vulnerable to the meet-in-the-middle
and cycling attacks, these attacks are less efficient at breaking the RSA than .are
known factoring techniques. This fact is evidence that, provided the key space is
large enough to withstand an O(\/f) time attack, group ciphers are not necessarily
insecure. :

The rich algebraic structure of the RSA cryptosystem makes it possible to per-
form public-key cryptography and digital signatures. Yet the algebraic structure also
allows short-cut solutions over exhaustive search of the key space through permitting
an attack against group ciphers and through permitting attacks based on factoring.
In the sense that the RSA cryptosystem allows short-cut solutions over exhaustive
‘search of the key space, the RSA cryptosystem does not achieve the same level of
security that one would ideally like from a cryptosystem with the same number of
keys. At least in the case of the RSA cryptosystem, the special capabilities of public-
- key cryptography and digital signatures come at the cost of less efficient use of key
bits. :

5 As explained in {226], from any RSA key (e, d, n), it is easy to cofnpnt.e the factors of n. For the -

'RSA cryptosystem, this fact causes little trouble since every user has a different modulus. But for the
common modulus RSA cryptosystem, this fact is a very serious drawback since it implies that every
key holder can factor n. :

e ey e ST e

e e et ey Ao b

e ot £

‘Chapter 3
Preliminaries

_'This chapter presents background material helpful in understanding the rest of part I.
Section 3.1 introduces the notion of a finite, deterministic cryptosystem and reviews
some algebraic properties of this type of cryptosystem. This section also explains

'some concepts and terminology from permutation group theory used throughout
part I. Section 3.2 introduces the Data Encryption Standard (DES), which is a typical
example of a finite, deterministic cryptosystem. This section also reviews previous
work on DES relevant to the closure tests presented in chapter 4. Finally, Section 3.3
explains the so-called “Birthday Paradox,” which plays a crucml role in the closure
tests.

3.1 Finite, Deterministic CrthoSystéms

A finite, deterministic eryptosystem is a cryptosystem with a finite number of mes-
- sages and keys and whose encryption transformations are deterministic. This class
includes many known cryptosystems, including simple substitution, transposition,
the Enigma and Hagelin cryptographs [71|, DES, and the RSA cryptosystem when
used as a conventional cryptosystem. However, this class does not include stream
ciphers, probabilistic schemes [138] nor some esoteric systems considered by Brassard
[132,153]. We shall now review some basic concepts, definitions, and properties of
finite, deterministic cryptosystems.

3.1.1 Deﬁnitions

" A (finite, deterministic) eryptosystem is an ordered 4-tuple (K, M, C,T), where K, M,
and C are finite sets called the key space, message space, and ciphertext space, and

T:K x M — C is a transformation such that, for each &k € K, the mapping T} =
T(k,-) is invertible.

37

38 - : Alan T. Sherman, Thesis—Part I: October 15, 1986

The order of a cryptosystem is the number of distinct transformations; the degree
. of a cryptosystem is the size of the message space. A cryptosystem is endomorphic
if and only if the message space and ciphertext space are the same set.

Thus, for any cryptosystem (KsM,C,T), each key k € K represents a trans-
formation T, : M — €. In an endomorphic cryptosystem, each key represents a
permutation on M. A cryptosystem is faithful if and only if every key represents a
distinct transformation. ' _

For any cryptosystem IT = (K, M,C »T), let Tn = U{Ts : k € K} be the set of all
encryption transformations, and let G = {Tn) be the group generated by Tn under
functional composition. For any transformation T: € Tu, let T denote the inverse
of Ty. In addition, let K = |K| be the size of the key space; let M = | M| be the
degree of II; and let m = [Tn| be the order of IT. Whenever the meaning is clear, we
will omit the subscript II.

Let Il = (K, M,C,T) be any finite deterministic cryptosystem. II is closed if and
only if its set of encryption transformations is closed under functional composition,
- id.e. if and only if for all keys ¢, € K there exists a key k € K such that T, =T1
Since every finite cancellation semigroup is a group, I is closed if and only if Ty
forms a group under functional composition.

Shannon’s notion of a pure cipher generalizes the idea of closure to non-
endomorphic cryptosystems [150]. I is pure if and only if, for every keys 1,7,k € K,
there exists a key { € K such that TI T =T;.2

Thus, IT is pure if and only if for every Ty € Tn the set T; 1 Ty is closed. Moreover,
Ty T is closed for every Ty € Ty if and only if T3 Tn is closed Jor some T, € T.

Every closed cryptosystem is pure, but not every endomorphic pure cryptosystem is
closed.® :

3.1.2 Notation and Terminology

The following standard terminology involving permuta.tion'groups and strings is used
throughout part 1.

Terminology from Permutation Group Theory

Let M be any finite set (of messages), and let M = | M| be the cardinality of M. For -

any permutations g,k on M we denote the composition of g and h by gh = g[h({-)].

*Note that we are using the term closed cipher to refer to what Shannon called an tdempotent
cipher [150]. Shannon defined a closed cipher to be any cryptosystem with the property that each
cryptographic transformation is surjective.

2Shannon also required each transformation of a pure cipher to be equally likely.

3The restriction of simple substitution [65] on the standard alphabet where the letter ‘A’ is always
mapped to ‘B’ is an endomorphic system that is pure but not closed.

i B et e

i e

e s ey

Chapter 3: Preliminaries . ' 39

.For any permutations g1,8s,...,9n, let {g1,92,...,9,) denote the group generated by
“@1y§2y - - - » gn Under functional composition. Let I be the identity permutation on M.
There are M! distinct permutations on M. Under functional composition, these
- permutations form a group known as the symmetrie group on M.* Every permutation
can be expressed as a product of transpositions. The even permutations are the
permutations that can be expressed as an even number of transpositions. There are
‘exactly M!/2 even permutations on M, and, under functional composition, these
‘permutations form the alternating group on M. Let Ay and Sy be, respectively, the
alternating group and symmetric group on M.
- Let G be any subgroup of Sy, and let £ be any message in M. :
The order of G is the number of elements in G; the degree of G is the ca.rdma.hf.y
‘of M. For any g € Su, the order of g is the order of (g).
- The G-orbst of z is the set G-orbit(z) = {g(z) : ¢ € G}. For any permutation
g € Sx, we will write g-orbit(z) to denote the (g)-orbit of z. If f is any function (not

necessarily a permutation) and if z € Domain(f), we define the f-closure of z to be

‘the set f-closure(z) = {f*(z) : £ > 0}.

The G-stabslizer of z is the set H, = {g € G g(z) = z}, which forms a subgroup
of G. _ _

For any subset of permutations S C Sy and for subset of messages X C M, we
‘say S acts transitively on X if and only if, for every pair of messages Z,y¥ € X, there
exists some transformation g € S such that g(z) = y.

String Terminology

Let ¥ be any finite set of symbols. For any integer n, £” denotes the set of strings
over L of length exactly n. Similarly, Z* denotes the set of finite strings over T of
length O or more, and &t denotes the set of finite strings over T of length 1 or more.
For any string s € {0,1}*, let |s| denote the length of s.
- For any any string s € {0,1}", let ¥ denote the bitwise complement of s.
“For any two strings s;,82 € {0,1}* of the same length, let s, @ s; denote the
bitwise exclusive-or of s; and s;.

3.1.3 Algebraic Properties of Closed and Random Ciphers

" In this section, we review several important differences between closed cryptosystems
‘and cryptosystems that consist of random!ly chosen permutations.® These differences
* will form the basis of the statistical closure tests presented in chapter 4.°

4See [2], [8], or [9] for a review of basic concepts in permutation group theory.

5By “a set of randomly chosen permutations on M,” we mean a set of permutations each member
* of which is chosen independently, with uniform probability from §u.

~ ®This section draws heavily from basic results in permutation group theory and from Shannon’s
classic paper [150,56].

40 Alan T. Sherman, Thesis—Part I: October 15, 1986

Since every finite cancellation semigroup is a group (8], any endomorphic cryp-
tosystem is closed if and only if its set of encryption transformations forms a group
under functional composition. Thus, closed ciphers have a great deal of algebraic
structure. By contrast, one expects a set of randomly chosen permutations to have
-virtually no algebraic structure, as the following lemmas makes precise.

Properties of cryptosystems can be studied both by examining abstractly the set
of encryption transformations and by examining how the transformations act on the
message space. Lemma 3.1 captures one important difference between closed and
random ciphers by focusing on a property of the set of encryption transformations.
This lemma says that if a cryptosystem is closed, then for every transformation 7
there are many pairs T;,T; such that T, = T;T}; but, if a cryptosystem consists
of randomly chosen permutations, then for every transformation 7} it is unlikely
to find any pair T;,T; such that T = T;T;. This lemma provides the basis of the
meet-in-the-middle closure test.

Lemma 3.1 Let Il = (K, M, M,T) be any endomorphic cryptosystem of order m,
and let k € K be any key. If 1L is closed, then there are ezactly m pairs of keys
T;,T; € Tn such that T;T; = Ty. If T is selected at random from Sy, then the ezpected
number of pairs of transformations T;,T; € Ty such that T;T; = T, is m®/ M.
Proof. Part 1: Assume II is closed. For every transformation T; € Ty, there is
exactly one transformation 7; € Ty such that T;T; = Ti. Part 2: Assume Ty is
chosen at random. There are m? pairs T;,T; € Tn and each pair has a 1/ | S| chance
of corresponding to 7. Moreover, these probabilities are independent. [l

For unfaithful cryptosystems, it is important to distinguish between drawing a
transformation from the set of transformations and picking a representation of a
transformation from the keyspace. Mathematically, it is usually more convenient to
think about selecting a transformation from a set of transformations, but in practice,
one must often select a transformation by choosing a key. Let T be the set of
cryptographic transformations in any cryptosystem with keyspace K. If T}, is selected
from T at random, then the probability of picking any particular transformation in
T is exactly 1/m, where m = |T|. However, if a key k is selected at random from K,
then the probability that k represents any particular transformation in T is between
1/m and 1/K, where K = |K|. If the cryptosystem is unfaithful, then m < K.

The next lemma describes the structure imposed on the message space by any
closed cipher; specifically, lemma 3.2 says that the orbits of any closed cipher partition
the message space into transitive sets. This lemma provides the basis of the cycling
closure test.

Lemma 3.2 Let TT = (K, M, M,T) be any endomorphic cryptosystem of order m. If
Il is closed, then, for some 1 < r < m, the Tn-orbits of messages in M partition M
tnto r mutually disjoint sets M = B, U ---U B, such that, for each 1 < ¢t < r, the

Chapter 3: Preliminaries 41

Jollowing two statemnents hold:
1 Tnn acts transitively on B;. '
|Bi| divides m; in fact for any z € By, |Bi| = m/]H |, where H, is the
Tn-stab:hzcr of z. .
Proof. (Sketch) For each z € M, consider the left cosets of H, in T 8]. §

__Corollary 3.3 If DES is closed, then DES partitions its message space into at least
2% mutually disjoint transitive sets, each of size at most 25,
Proof. DES has degree 2%, but order at most 2%¢. |

The next lemma calculates the expected number of spurioué décipherments' of
.closed and random ciphers; this lemma is useful in the analysis of the tests.

Lemma 3.4 Let IT = (K,M,M,T) be any endomorphic cryptosystem of order m,
det p € M be any message, let k € K be any key, and let ¢ = Ti(p). If 11 is closed,
.then the number of transformations that map p to ¢ is m/[|B,| = |H,|, where B, is
the Tn-orbit of p, and H, is the Tn-stabilizer of p. If Tn 18 chosen at random, then
the expected number of transformations that map p to ¢ is m/M.

Proof. Part 1: (Sketch) By lemma 3.2 and the fact that, for any z,y € B,,
{Ti€ Tn:Ti(z) =y}| = |{T: € Tn: Ti(p) = ¢}|. Note that |H,| = |H.|. Part 2:
Bach transformation in Ty other than T; maps p to ¢ with probability 1/M. |}

3.2 The Data Encryption Standard

The Data Encryption Standard (DES) definesa particular endomorphic cryptosystem
with M = € = {0,1}** and K = {0,1}%. This section reviews some of the known
properties of DES, concentrating on properties relevant to the question “Is DES a
‘group?” and on previous cycling studies,

3.2, 1 Background

'On November 23, 1976, the United States National Bureau of Standards (NBS)
adopted DES as a federal standard for the cryptographic protection of computer data
-[59,157]. Designed by IBM, DES was based in part on IBM’s Lucifer cipher [59]. Both
DES and Lucifer consist of a cascade of rounds, each performing a transposition and a
nonlinear substitution. NBS selected DES from several competing designs, submitted
in response to a 1974 call for proposals for cryptographic algorithms. o
Figure 3.1 summarizes the structure of DES, as explained in its official definition.”
The main part of DES consists of a cascade of 16 rounds, each under the control of
a separate 48 bit round key, computed from the 56 bit key. The initial and final

"Figures 3.1 and 3.2 are taken from [157].

42 _ Alan T. Sherman, Thesis—Part I: October 15, 1986

permutations have no cryptographic significance; according to IBM’s Carl Meyer,
they are simply artifacts from the bonding pattern of the Lucifer chip. Cryptographic
strength is built up through the iteration of many rounds. This round structure also
supports fast and simple pipelined implementations of the algorithm.®

The security of DES rests crucially on its eight “S-boxes,” which are the only

nonlinear components of the algorithm (see figure 3.2). Although the S-boxes were.

thoroughly examined by IBM and NSA, the criteria used to select and validate the
S-boxes remain unpublished in the open literature. Several unusual structures have
been found in the S-boxes [180,165,196,162], but the full implications of these struc-
tures remain a mystery.

Controversy surrounds DES, its security, and the manner in which it was designed
and adopted. At the center of this controversy is the National Security Agency (Ns4),
established in 1952 by a classified presidential directive to gather communications
intelligence and to safeguard American communications [72,75]. After IBM submitted
its proposal, at the request of NBS, NSA evaluated the suitability of using the IBM
algorithm as a national standard. NSA participated in the final design of DES,
influencing the choice of the crucial “S-box” substitution tables and convincing IBM
to shorten the key length from 128 bits to 56 bits [199].

IBM concurred with NSA that the 56 bit key was adequate for the intended
applications of DES. But Diffie and Hellman argued that the 56 bit key was too short,.
They described a $20 million LSI machine that could break DES by exhaustively
searching the keyspace [173]. According to Diffie and Hellman [173], an IBM study—
subsequently disavowed by IBM—concluded that IBM could deljver such a machine
by 1981 at a selling price of $200 million. Although some researchers disagreed with
some of Diffie and and Hellman’s detailed analysis [190,198], the Diffie and Hellman
study showed convincingly that the 56 bit key gave DES a built-in obsolescence.
With the rapid advance of computer technology, DES could not remain adequate for
its intended applications very long.

In 1987, DES will come up for review by NBS. Already, NSA has informed NBS
that NSA will no longer support DES, and NBS has announced that after 1987,
it will no longer certify new DES products [82]. Instead, NSA will make available
implementations of classified algorithms. The implementations will come in tamper-
resistant boxes or chips, and the algorithms will not be revealed. These devices will
be developed by industry as part of a special NSA program. Instead of relying on

‘a single encryption algorithm, NSA will make available several different algorithms.
NSA will also provide secret keys for those who would like to use them. This transition
will likely cause much turmoil in the banking community.

Because DES has degree 2%, but order at most 2%, DES is intransitive. It is

8Like DES, the RSA cryptosystem also builds up cryptographic strength through a cascade of
primitive cryptographic operations. With RSA, each primitive operation is modular multiplication.

Chapter 3: Preliminaries ‘ : 43

[T iNPuT |

(INITIAL PERMUTATION)
i _ 4
PERMUTED
INPUT ‘o l'°
L
O— ‘
NS
Li=Rg Bate @ HRg, Ky}

K2

! B

| '-:"ll || e @y, K} |

(LL)Ljr e

ruowmlﬂ.-m@«_a.s. Ko [bems |
[

(INVERSE INITIAL PERM)
N ou:rm {

Figure 3.1: DES is a cascade of 16 rounds, each under the control of a separate 48 bit
round key derived from the 56 bit key.

44

Alan T. Sherman, Thesis—Part I: October 15, 1986

i n(;z i) j
{ 48 TS ' —I] K (48 ufsl {
7
5 $2 Sy Se Ss s) (8 Sp
L 28ms |

Figure 3.2: Computation of DES’s nonlinear f function

- Chapter 3: Preliminaries | , 45

unknown if DES is faithful, closed, or pure. It is also unknown whether or not any
DES transformation is the identity permutation.

3.2.2 Is DES a Group?—A Priori Beliefs

The question of whether or not DES is closed is a question about the order of the
.group generated by DES. Grossman and Coppersmith observed that Gpgs C An
[164], but no one has disproved the possibility that Gpgs = Tpgs.?

There are several reasons to suspect DES is not closed. First, Coppersmith and
-Grossman proved “DES-like” permutations generate the alternating group [164].1°
. Second, if even just two permutations are chosen at random from Sy, then there is an
overwhelming chance (greater than lme'm) that these permutations generate either
- A or Sy {86,89]. Third, no one has announced finding any three keys i, 7,k € K such
that Ty = T;T;. Finally, according to a 1977 unclassified summary of a report of the
Senate Select Committee on Intelligence, the National Security Agency certified that
-“the final DES algorithm was, to the best of their knowledge, free of any statistical
or mathematical weaknesses” [199].

On the other hand, DES is not a set of randomly chosen permutations, and
- Coppersmith and Grossman did not prove that DES generates Ay. Furthermore,
DES is known to have the following three regularities [59,68,165,180].

1. Complementation Property. For every key k and every message z, T5(Z) =
T,,(:z:). L .

2. Eristence of Weak Keys. There exist at .lea.st four distinct keys k such that
C TE=1.

- 3. Extstence of Semi-Weak Keys. There exist at least six distinct pairs of keys
. ky # ky such that T}, T}, = I.

The last two properties, however, apparently involve only a small fraction of the total
number of DES transformations. While many people may have a strong belief that
DES is not closed, there is a need for convincing objective evidence to answer this
question.

3.2.3 :Previou's:Cyclin'g Studies on DES

To the best of our knowledge, only three other cycling experiments on DES have
- been reported in the open literature. These experiments were performed by Gait;
- Davies and Parkin; and Hellman and Reyneri. Each of these experiments differs from

9To see that Gpgs C Am, note that each round of DES is an even permuta.txon
108¢e [176] for an extension of this result.

46 Alan T. Sherman, Thesis—Part I: October 15,1986

our cycling closure test, and none of these previous experiments determined if DES
‘generates a small group. :

The analysis of each of these previous experiments depends heavily on the fol-
lowing two facts [92,93] ([27], exercise 3.1.12]). Let zo € M be any message. For a
randomly selected function f on M, the expected size of f-closure(z,) is about /M.
(This follows from the Birthday Paradox.) But for a randomly selected permutation
g on M, the expected size of g-orbit(zo) is about M/2. (This is true because, for any
1 <! < M, the probability that the cycle containing zo has length exactly { is 1 /M,
independent of 1.) o _

Gait [175] investigated the statistical properties of pseudo-random key streams
produced by DES in output-feedback mode {158]. Provided the feedback width is
exactly 64 bits, each such key stream describes the orbit of a DES transformation
on some initial message. In a series of software experiments, Gait computed the key
stream produced by DES in output-feedback mode to at most 10® = 22° places. Gait
found no cycles for nonweak keys.!! Unfortunately, Gait did not state what feedback
width he used. Gait also proposed a new power-spectrum test for nonrandomness
and applied it to each of the pseudo-sequences he computed from non-weak keys.
Gait observed that each of these sequences was considered random by his test.

Provided a feedback width of 64 bits is used, the cycling study considered by Gait
can be viewed as a closure test. If DES were closed, then each of the orbits considered
by Gait would have at most K = 2% messages (see lemma 3.2). Hence, observing
" an orbit of length greater than 2% would be direct proof that DES is not closed.
Although we will not do so in this thesis, it is also possible to interpret Gait’s orbit
test as a statistical closure test. Viewed as a statistical closure test, the orbit test
can be strengthened by combining the test with tests for other algebraic properties
(see section 7.2). _

Davies and Parkin [167] {166] and Jueneman [184] studied mathematically the
cycle structure of the key stream produced in output-feedback mode. Each of these
studies concluded that, if DES is used in output-feedback mode with a feedback-
width of less than 64 bits, then the resulting key stream will cycle in about 22 steps,
on the average (the exact expected cycle length depends slightly on the feedback
width). If all 64 bits are fed back, then the expected cycle length is about 2%, The
point is that the state transition function in output-feedback mode is a permutation
if and only if all 64 bits are fed back. Although Davies and Parkin did not report
performing any experiments on the full DES algorithm, Davies and Parkin did run
a series of experiments on DES substitutes consisting of random permutations on
{0,1}%. Their experimental results agreed with their theoretical predictions.

In an attempt to better understand how effectively the Hellman cryptanalytic
time-space tradeoff {261] could be applied to DES, Hellman and Reyneri [183] exam-

11Since T2 = I for any weak key k, the key stream produced in output-feedback mode with feedback
width 64 bits cycles after 128 bits whenever a weak key is used.

Chapter 3: Preliminaries 47

ined the cycle structure of mappings induced by DES on the keyspace. Specifically,
they considered mappings F; : K — K defined by F.(k) = p(Ts(z)), wherep: M — K
is a projection'? and z € M is some fixed message. Their studies detected no sig-
nificant statistical irregularities. Whether or not DES is closed, the expected cycle
length of the Hellman/Reyneri experiment is about K = 2%,

Each of these previous cycling projects studied the behavior of the powers of
some indexed function (i.e. T}(zo) or Fj(ko) for i = 1,2,...) where the index of the
function was held fixed throughout the experiment: Gait and Davies and Parkin held
the key fixed; Hellman and Reyneri held the message fixed. By contrast, our cycling
test computes the sequence z; = T}, T}, , ... Ty, (o) for ¢ = 1,2,... where at each
step 1 the key k; is chosen as a pseudo-random function of the previous ciphertext
Ti-1-

3.3 The Birthday Paradox

This section briefly reviews the “Birthday Paradox” [11), which plays a dominant -
role in the analysis of the algebraic tests in chapter 4.

The Birthday Paradox involves the question, “If r people are selected at random,
what is the chance that no two people will have the same birthday?” Let p, be this
chance. If birthdays are independently and uniformly distributed between 1 and m,
then p, ~ 1 — ié), since there are (;) pairs of people and each pair has a 1/m
chance of having the same birthday. This approximate analysis, however, ignores the
possibility that more than two people might have the same birthday. The “paradox”
is that many students are surprised to learn that the probability p, is so low: with
only r = /m people, the odds are approximately .5 that at least two people will have
the same birthday.

More exactly,

ﬁ.— _ (m) _ m! g e~/ (am)
mr m(m—r)!

(3.1)

where (m), = m(m —1):--(m — r + 1). The approximation in equation 3.1, and
other similar approximations, can be obtained from Stirling’s formula [11,34]. For
any constant ¢ > 0, if r = ¢y/m and m is sufficiently large,

p, e /2, (3.2)

Thus, by choosing r = ¢\/m with ¢ sufficiently large, p, can be made as small as
. desired.

The meet-in-the-middle test uses a variation of the Birthday Paradox in which

two samples X and Y, each of size r, are drawn at random from a universe of m

12Hellman and Reyneri used the projection that removes each of the 8 parity bits.

48 Alan T. Sherman, Thesis—Part I: October 15, 1986

elements. If X and Y each are drawn without replacement, and if each element is
drawn independently with probability 1 /m, then the chance that X and Y do not
intersect is exactly (m)s,/ ((m),)?. If r = ¢4/m, this chance is approximately e~3*,

Chapter 4

Testing Cryptosystems for
Algebraic Structure

This chapter presents two statistical tests for determining if a cryptosystem is closed
under functional composition. The first test is a meet-in-the-middle algorithm that
- uses O(VK) time and space. The second test is a novel cycling algorithm that
uses O(vVK) time, but only a small constant amount of space. Each test is based
heavily on the Birthday Paradox (see section 3.3). The chapter concludes with brief
descriptions of several other related tests. Although our primary interest in these
tests was to test DES for closure, purity, and other extreme algebraic weaknesses,
the tests are general in nature.

4.1 Conducting and Interpreting the Algébraic
Tests

This section describes the nature of our tésts,' concentrating on the framework in
which the tests operate and on how to interpret the test results.

4.1.1 Testing Framework

Input to each test is a finite, deterministic eryptosystem IT = (K, M, C,T), with the
encryption transformation T presented as a “black box.” Given any key £ € K and
any message z € M, the box computes T;(z) and T *(z). No additional information
about T is provided. To ensure that messages and keys are easy to detect, generate,
and compare, we assume that M = {0,1}*, K = {0,1}", and C = {0,1}", for some
u,v,w also provided to the test,

We assume that the sets K, M, and C are so large that they cannot be exhaustively
searched; each test must proceed by examining a limited number of messages and

49

50 Alan T. Sherman, Thesis—Part I: October 15, 1986
keys.

4.1.2 Interpreting the Results

Each closure test computes a statistic, which can be used to calculate a measure of
our relative degree of belief in the following two competing hypotheses:

e Hg = “Tp is a group.”

e Hp = “Each transformation T, was chosen independently with uniform prob-
ability from the symmetric group on M.”

To compute this measure, we will apply the theory of the weight of evidence, as
explained by Good [14,12].

Let E be experimental evidence produced by one trial of one of the closure tests.
From this evidence we can compute the conditional probabilities P(E | Hs) and
P(E | Hg), as explained in the next two sections. Note, however, that neither closure
test enables us to compute P(E | Hg) or P(E | Hg), where Hg and Hg are the
complements of Hg and Hp, respectively. Thus, on the basis of experimental evidence,
we would be able to conclude only that IT is not closed or that IT has a structure
different from that expected from a set of randomly chosen permutations; we would
not be able to conclude that IT is closed. In the worst case, IT could be closed, except
for some isolated pair of keys a,b such that T, T, is not in T, even though there exists
some key k and some message z, such that 737,(z) = Ti(z) for all messages z € M,
T # xzp.

Initially, each person may have some (subjective) degrees of belief P(Hg) and
P(Hg) in hypotheses Hy and Hp respectively. From these initial degrees of belief,
each person can compute O(Hg/Hg) = P(Hg)/P(Hpg) as his or her initial odds
in favor of Hg over Hp. After seeing any experimental evidence E, however, each
rational person should update his or her own odds in favor of Hg over Hp.

Given any evidence E, a Bayesian would update his or her odds in favor of Hg
over Hy as follows:

P(E | Hg)

O(H¢/Hg | E) « P(E | Hg)

O(HG/HR). (4.1)

where O(Hg /Hg | E) is the odds in favor of Hg as opposed to Hg given E.
We encourage the reader to update his or her own odds in favor of Hg over Hr
in light of the evidence presented in chapter 6.

Chapter 4: Testing Cryptosystems for Algebraic Structure 51

4.2 Meet-in-the-Middle Closure Test

The meet-in-the-middle closure test (MCT) works as follows: given any endomorphic
cryptosystem IT = (K, M, M,T), pick any key k € K and search for keys a,b € K
such that T, = T, T,. If II is closed, then such a pair of keys a,b can be efficiently
found, with high probability. If Tn is selected at random, then it is unlikely to find
any such pair. :

To search for a pair of keys a,0 € K such that T, = T,T,, we use a standard “meet-
in-the-middle” attack similar to that described in [307], for example. Specifically,
" choose 2r keys a;,az,...,a, and by, b;,...,b, at random and look for a pair of keys
a;,b; for some 1 < 7,5 < r such that T}, = Ty,Ts,. To find such a match, represent
the cryptographic transformations by their images or preimages of some particular

message. Specifically, pick any message p € M, calculate ¢ = Ti(p), and compute
- z; = Ty;(p) and y; = Ty '(c), for 1 < ¢ < r. Then, look for matches z; = y; by sorting
the triples (z;,a;, “A”) and (y;,b;, “B”) for 1 < 4,7 < r on their first components.
Screen out false matches by testing if Tk(ps) = Ty, Ta,(ps), for all 1 < h < I, for
a small number of additional messages p;,p3,...,;t € M. (A false match is a pair
of keys a',b' € K such that T;(p) = TyTa(p) even though T # TyT,.) Figure 4.1
summarizes this process

Proposition 4.1 summarizes the main properties of MCT. Informa.lly, proposi-
tion 4.1 says that MCT is likely to find a match if IT is closed, but MCT is unlikely
to find a match if I1 is chosen at random These facts follow from lemma 3.1 and the
Blrthda.y Paradox.

Proposition 4.1 If I1 s closed, then MCT ﬁnda a match with probability at least
1 — e-3%/K, If Tn ts chosen at random, then we expect MCT to find a match unth
probability at most K*/M!.
Proof. If Il is closed, then foreach1 < 5 <, T, 1, € Tn. In this case, the situation
is a variation of the Birthday paradox in which we are drawing two samples X and
- Y, each of size r, from an urn containing m elements, where m is the order of II.
The first sample consists of the transformations T,,...,T,,; the second consists of
the transformations fl",,'llTk, cei ,T,,':IT;,. If IT is faithful, each element is drawn with
probability exactly 1/K; otherwise, each element is drawn with probability at least
1/K. Thus, the worst case is when II is faithful. We are interested in the probability
that the samples overlap.

If T is chosen at random, then by lemma 3.1, for any T € T, we expect T to
contain a pair Ty, Ty € T such that Ty = T, T, with probability at most K?/M!. |

Thus, by choosing r = ¢4/m with ¢ sufficiently large, we can make the probability
g = 1 — e3¢ of finding a match if TI is closed as large as desired.

The analysis in proposition 4.1 assumes that each sequence of keys ay,...,a,
and b;,...,b. was drawn without replacement. If these sequences are drawn with

52 '_ 3 -Alan T. Sherman, Thesis—Part I: October 15, 1986

input: An endomorphic crjfpfosystem I = (K, M, M,T) and
integer control parameters r,!. '

begin

1. Pick k € K and py,... +Pt € M at random. For ¢ =1 to !, compute ¢; = .T,,(p.-).
Let p=p; and ¢ = ¢;. '

3. Fori = 1 to r, select a;,b; € K at random and compute z; = T,,(p) and
w= T;"'l(c).

3. Sort the triples (z;,a;, “A”) and (yi, b, “B”) for 1 < i < r on their first compo-
nents.

4. For each “match” z; = y; wiﬁh 1<14,5 <r,if T} = T),T,,, then return(“Match
found”). To test if T, = T,, T, statistically verify that ¢, = Ti,Ta,(pa), for all
1<h<l.

5. return(“No match fbund”) :

end

Figure 4.1: Meet-in-the-middle closure test (MCT)

Chapter 4: Testing Cryptosystems for Algebraic Structure 53

replacement, then the expected number of samples required to obtain r distinct

keys is K log ((K + .5)/(K — r + .5)). This situation is a variation of the “collector’s
problem” [11]. '

To carry out MCT efficiently, it is important that the expected number of false

matches be small. As shown by lemma 3.4, if IT is closed, then at most (K —1)/|By|..

keys other than k map p to ¢, where B, is the Tg-orbit of p. If Ty is chosen at
random, then we expect at most (m — 1) /M keys other than & to map p to ¢. Thus,
provided K is not too much larger than M, the expected number of false matches is
small. : _ ‘

-~ MCT requires O{r) steps and O(r) words of memory. The two most time con-
suming operations are generating and sorting the lists z;, z,, ..., z, and Yis¥2se+nyUre
The required number of encryptions is 2r plus the number of additional evaluations
used to screen out false matches. If sorting is performed in main memory using radix
sort, then sorting will take O(r) machine operations; otherwise, O(rlogr) external
memory operations would be needed. The main difficulty with carrying out this test
on DES is the high space requirement.

Given the high space requirement of MCT, in practice it may be helpful to use
variations of this test that involve time-space tradeoffs. For example, the test could
be repeated several times with small values of r. Alternately, the test could build a
small hash table for the z;’s and then lookup each y; in the table without saving the
v’s. If encryption is relatively fast in comparison to the other required operations,
then it might be advantageous to save only those z!s that fall into some subset of
the message space. Paralle! variations of MCT are also possible.

4.3 Cycling Closure Test

Given any endomorphic cryptosystem II = (K, M, M,T), the cycling closure test
(CCT) takes a pseudo-random walk in M! for some small I. The walk continues for
a specified number of steps or until a cycle is encountered. Long walks are strong
evidence that IT is not closed; short walks are strong evidence that IT has a structure
different from that expected from a set of randomly chosen permutations. _

Specifically, CCT picks an initial vector of messages %, € M! at random and
computes the leader length and cycle length of a sequence %, %;,.... For each ¢ >0,
the next element in this sequence is computed by

Zip1 = fo(:) - (4.2)
where the function f, : M — M! is defined by

fo(2) = Ty5)(2) | (4.3)

62

Alan T. Sherman, Thesis—Part I: October 15, 19586

T, |
B gl o I:: -
dz\k '_lbz ,
* h
.\/./,(_—.\.\l.b;
[] P =
\ i
\"*-n-éao 4.._.
-

Figure 5.1: Cycling known-plaintext attack

Chapter 6
-Expéﬁmental WOrk on DES

- Using a combination of software and special-purpose hardware, we applied the cycling
c¢losure test and other algebraic tests to DES. Organized in four sections, this chapter
describes our experimental work. Section 6.1 summarizes our results. Section 6.2
explains two structural findings. Section 6.3 describes our special-purpose hardware,
Section 6.4 gives detailed descriptions of our results. This experimental work was
carried out jointly with Burton Kaliski and Ronald Rivest.

6.1 Summary of Experimental Results

On April 4, 1985, we completed our first trial of the cycling closure test. This
single experiment gives strong evidence that DES is not closed. During May through
August 1985, we performed additional experiments, including two more closure tests,
one extended message space closure test, two purity tests, and two orbit tests. Results
from Seven of these experiments were consistent with the hypothesis that DES acts
like a set of randomly chosen permutations. In particular, these experiments gathered
overwhelming evidence that DES is neither closed not pure. But one orbit experiment
involving the composition of two weak keys unexpectedly encountered a small cycle,
which was the result of hitting fixed points for each of the weak keys.

Table 6.1 summarizes our experimental findings. For each experiment, the table
lists the approximate leader length and cycle length encountered. The sums of these
lengths form the values of the statistic w computed by the tests. The table also

lists the conditional probabilities pg, pr, Pg, and Py of the experimental evidence
under the hypotheses Hg and Hy, respectively. The numbers Pe and pg are based on
probability density calculations and indicate the chance of encountering a cycle after
exactly r steps, where r is the observed value of w. The numbers Py and Pp are based
on probability distribution calculations and indicate the chance of not encountering
“a cycle within r steps. '

: For experiments 1, 2, 3, 5, and 6, ps and pr were computed from equations 4.7

63

64 | Alan T. Sherman, Thesis—Part I: October 15, 1986

Experiment [Leader| | |Cycle] rg PR Pg Py

No.
1 | Closure py 240 2% €107 [1077 | <107 | = 0.17
2" | Closure 20 | =28 (<10 {10710 <107 s 0.09 i
3~ | Closure 2T w208 <107 %1000 [<107 [~0.69
4 | Ext. closure (no cycle in 2°* steps) <1007 | w1-10"18
5 | Purity ~2F [250 [<107 [10770 [<10~%1 [057
6 | Purity N0 [m2Y <107 | ~1000 [<1079 | ~043
[7 | Weak key orbit | 0 A E s 10700 | & ~s 1077
[8 | Orbit (no cycle in 2% steps) * re1—10"°

* Depends on hypothesized group structure.

Table 6.1: Summary of DES experiments, May—-August, 1985. - The numbers pg,
pr, Pe and Pg are the conditional probabilities of the experimental evidence under
- the hypotheses “DES is closed (pure)” and “Each DES transformation was drawn
at random from the symmetric group on M” respectively. The numbers pg and pg
indicate the chance of encountering a cycle after exactly r steps, where r is the sum of
the observed leader and cycle lengths. The numbers Py and Pg indicate the chance
of not encountering a cycle within r steps.

and 4.6 respectively. For these same experiments, as well as for experiment 4, Pz and
Pg were computed from equations 4.4 and 4.5 respectively. For experiments 7 and 8,
the values of pg and Pr were computed as explained in section 4.4.3. As explained
in section 4.3, for simplicity, we coarsely bound pg from above by FPg.

In the first cycling closure experiment, we found a cycle of length exactly u =
7,985,051,916 with a leader of length A = 34,293, 580. This experiment ran for about
two and a half days. Let E denote the evidence from our experiment. Since pu + A =
23 = 2¢/M = 32vVK, it follows from equation 4.8 that P(E | Hg)/P(E | Hg) <
(e“"’z’/ 2fe=2/ 2) - (284/2%%) < €7B10+%2 = ¢~4%8, QOn the basis of this experiment alone,
each reader should decrease his or her odds in favor of Hg over Hg by a factor of
about e~488, Results of the other closure and purity experiments can be interpreted
in a similar fashion. :

The second closure experiment produced even stronger evidence that DES is not
closed. Moreover, the pseudo-random walks from the first two experiments drained
into the same cycles. See section 6.2.1. . _

Using 128-bit messages, the extended closure test did not cycle after 23 steps,
showing that the group generated by DES probably has at least 2°° elements. This
experiment ran for 10 days.

In experiment 7, we computed the orbit of the composition of the two weak
keys that consist respectively of all zeros and all ones. This experiment produced a

Chapter 6: Experimental Work on DES 65

short cycle of approximately 238 steps, which would be unusual (the probability of
encountering a cycle of length at most 2% is less than 10~°) if the tested permutation
were chosen at random from $y. See sections 6.2.2.

In experiment 8, we computed the orbit of a randomly chosen transformation for
two weeks. No cycle cycle was detected after 2%¢ steps. This experiment provided no
evidence of any algebraic weakness. _

In addition, we ran one reduced message space test for which we observed no
algebraic weaknesses.

As one test of correctness, we ran a software implementation of the cycling closure
- test for 30,000 steps. The software and hardware implementations agreed on all
~values. As a second test of correctness, we repeated each experiment and obtained

identical results. We invite the interested reader to verify our results using the
detailed experimental data found in section 6.4.

6.2 - Two Structural Findings

Although most of our experimental results are consistent with the hypothesis that
DES acts like a set of randomly chosen permutations, three experiments did yield
interesting regularities. One regularity is a result of the well-known complementation
property; the other involves a newly discovered property of the weak keys. We will
now explain these structural findings.

6.2.1 Complementation and Drainage Properties

In the first two experiments, we performed two independent trials of the cycling
closure test. Each of these experiments used the “identity” next key function—the
function p: M — K that removes each of the eight parity bits. These two experiments
produced two interesting findings. First, each of the pseudo-random walks drained
into the same cycle. Second, each point on the cycle was the bitwise complement

of the corresponding point exactly halfway around the cycle. Figure 6.1 illustrates
these findings. _

" The first finding is explained by the fact that, for the graph of a randomly chosen
" function, most points on the graph will probably drain into the same cycle. See [183]
for one analysis of this phenomenon. ‘

The second finding is a consequence of DES’s complementation property* and the
. fact that the identity next key function also has a complementation property: for all
messages z, p(Z) = p(z). The cycling closure test computes a pseudo-random walk
- Zoy Z1,. .., Where iy = Tpn{z), for i > 1. If z; = Z; for any ¢ > j, then it would

For every key k and every message z, Ti(z) = T(7) [69]. -

66 : _ Alan T. Sherman, Thesis—Part I: October 15, 1986

 Figure 6.1: Results of experiments 1 ‘and 2. Starting at different initial messages,

both pseudo-random walks entered the same cycle. Every message on the cycle is
the bitwise complement of the corresponding message halfway around the cycle.

follow that
241 = Ty(en(®) = Tozp(®5) = Ty(%3) = Teps) =Tivx . (6.1)

Therefore, by induction, Z;4a = Zj4a for all A > 0. This situation arises whenever
some z; = ; before any z; = z; with ¢ > j, which will happen for about half of all
initial messages.

6.2.2 TFixed Points of the Weak Keys

In experiment 7, we computed the orbit of a message under the composition of the
two weak keys that consist reapectively of all zeros and all ones. Let these two keys
be denoted by wo and w; respectively. Although each weak key transformation is
self-inverse, we did not expect the composition Ty, Ty, to produce short orbits. Much
to our surprise, we detected a cycle of length less than 2%°. We presented this finding
at the Crypto 85 conference and sought a gimple explanation.

After some thought, Don Coppersmith suggested that we had encountered fixed
points of the weak keys, i.c., messages Z,y for which T, (z) = = and Ty, (y) = v.
Figure 6.2 illustrates the effect of the fixed points on experiment 7 and explains
why a cycle resulted. Experiment 7 computes the t-orbit of an initial message zg,
where ¢ = Ty, Tuo- Let zi = ¥(zo), for all { 2 1. In figure 6.2, filled circles denote
the messages Zo,Z1,... in the t-orbit of zo. Unfilled circles denote intermediate

S—" 7

Chapter 6: Experimental Work on DES _ 67

messages ¥ = Ty, (z:), for all i > 0. After encountering a fixed point for Tw, on the
j-th step (7 =~ 2%?), the walk began to retrace its steps “out of phase” in the sense
that z;4; = y;; for all > 0. Continuing in this fashion, the walk passed over the
initial message z, in a “hidden crossing” ¥2; = Zo, unnoticed during the experiment
since the intermediate values y; were not examined. After approximately 23? steps
past the hidden crossing, the walk encountered a fixed point for T,,,. Again, the walk
retraced its steps, but this time in phase, finally returning to the initial message x,.
As we will show, for each weak key, a fixed point results whenever the L and R
registers of DES agree after eight rounds.? Assuming that the distribution of values
taken on by the 32-bit L and R registers is random after eight rounds, the L and R
registers will agree after eight rounds with probability 1 /232, Hence, since there are
2% messages, we expect there to be approximately 284 . 2-3% = 237 fixed points for
each weak key.
'To understand why a fixed point results for each weak key whenever the L and
- R registers agree after eight rounds, it is helpful to describe DES as a product of
permutations

Tg = P_lﬂ'(ﬂ'hg“) e (ﬂh;l.)P,. (6.2)
where k is the 56-bit key, P is the initial permutation, and ki,..., k16 are the sixteen
48-bit round keys derived from k. If k is weak, then k; = k3 = --- = kjs. For all
1 < ¢ < 16, the i-th round consists of the permutation why, where m, by, : M — M.

It is especially convenient to define 7 and h,, in terms of their effects on the L and
R registers. For any r,s € {0,1}%?, 7 is the “swap” function

’- --w(r‘,s)=(;,s) : | - (63)

and h,, is the function

hi,(r,8) = (r ® fr,(8),8), - - (6.4)
where f is DES’s nonlinear function defined in figure 3.2. Note that, for all round
keys k;, both 7 and h,, are self inverse.

Let = be any message and let k be any weak key. If, during the computation of

Ti(z), the L and R registers agree after eight rounds, then the effect of rounds eight
through nine on the computation of T}(z) is

- (Th;,)(ﬂ'hk.) = (h)w(whi,) = whi s, :- whe by, = 7. (6.5)

| By similar argument, it then follows that the effect of rounds seven through ten is
also ». By induction, it follows that the effect of rounds one through sixteen is 7.
Hence

- %See figure 3.1 for an explanation of the L and R registers.

68 | | - Alan T. Sherman, Thesis—Part I: October 15, 1986

S o)

s
Jx
¥

OB O S _Be < oo B S

1 Y% M1 M ¥ W, W, oW W,

W,
. -1
¢ TN coe N0 o o o e g
: t ' ' i Xo s : , : H 1
) 1 I L] [}] 4 1 1 H "]
W, 1 : ! H ! ! ; 1 1 [I
1 . : [] 1] 1 3 1 1 T M w
N R R 1 P A I ! 0
1) [] T ¥] 1 i t '™ 1 1
: : ! : i ' ' i ! ' H
. 1 . 1 i N 1
o, o

A

&
X
&

‘Figure 6.2: ‘Experiment 7 discovered fixed points of the wezk keys. Let w; and wy
‘denote respectively the weak keys that consist of all 1’s and all 0’s. Filled circles
denote the messages z; on the T, T\,-orbit of an initial message zo. Unfilled circles
denote intermediate values T,,(z;). Dotted lines link identical messages.

L(s) = (P r@P) =z (68)

Note that fixed points arise not only when the round keys are equal, but also when
they are “palindromic” in the sense that ks_; = kasi for all 0 < s < 8.

After the conference, we found the fixed points and thus confirmed Coppersmith’s
hypothesis (see section 6.4). To the best of our knowledge, these fixed points are
the first published in the open literature. These fixed points further illustrate the
deficiencies of the weak keys.

Coppersmith also suggested that the algebraic structure detected in experiment 7
can be used to prove strong lower bounds on the size of the group generated by DES.
Experiment 7 computed the length, {, of the $-orbit of zo, where ¢ = T,, Ty, and
zo is the initial message. Since { divides the order of 9, it follows that { divides the
order of the group generated by DES. Therefore, if experiment 7 were repeated r
times with different initial messages, and if these experiments yielded orbit lengths
I, 13,...,0,, then lem{ly,s,...,I,) would be a lower bound on the order of the group
generated by DES. We have not yet extended our results in this direction.

Motivated by our findings, Moore and Simmons are carrying out additional ex-
periments to investigate the cycle structure of the weak and semi-weak keys [192].

Chapter 6: Experimental Work on DES 69

6.3 Cycling Hardware

We carried out each experiment on an IBM Personal Coinputer equipped with special-
purpose hardware. Our hardware can compute a sequence of 23 DES encryptions
per day, where at each step the previous ciphertext is encrypted under a key that
depends on the previous ciphertext. This hardware was designed and built by Burton
Kaliski, with some help from Leon Roisenberg [187].

Cur goal was to implement the cycling closure test in the simplest way that
would enable us to carry out each trial of the experiment within a few days. For each
experiment, we needed to compute about 232 encryptions, changing the key at each
step. For this application, software implementations of DES are too slow.® Moreover,
commercially available DES boards are not suited for our purposes: to compute and
load a new key for each encryption would require interaction by the host computer,
introducing tremendous overhead. Therefore, we built our own hardware.

Our special-purpose hardware is a custom wire-wrap board for an IBM personal
computer.* Our board contains a microprogrammed 7.1 MHz 32 bit finite-state
controller and a single 3.6 MHz AMD AmZ8068 DES chip {319]. Data paths 8 bits
‘wide connect the finite state controller, the DES chip, a 16-byte buffer, a PROM
computing the next-key function, an 8 bit counter, and the PC Bus interface to the
host computer. To increase the board’s flexibility, the controller’s microprogram is
stored in RAM accessible to the host computer. Figure 6.3 shows a simplified block
diagram of our special-purpose hardware.

Each algebraic test is programmed in microcode for the board’s ﬁmte—sta.te con-
troller. The next-key function is computed in a byte-by-byte fashion using a PROM,
which can be easily replaced to impiement different next-key functions. A read-write
counter indicates the number of consecutive messages to compute. By periodically
reading the board’s counter, the host computer detects completion of the board’s
activity. Our board also supports all approved modes of operation for DES.

We perform cycle detection in two passes: data acquisition and analysis. Dur-
ing data acquisition, the host computer stores every 22°th message on a floppy disk.
During analysis, these messages are loaded into main memory, and up to 2?° consec-
utive messages are computed and compared to those already present. In effect, we
perform the Sedgewick-Szymanski algorithm [99] with a fixed estimate of the cycle
length. We use an open-addressing, double-hashing scheme for stores and lookups
[28]. All data acquisition and analysis routines were written in the C programming

3Software implementations of the DES for the IBM PC run at about 200-300 encryptions/second.
According to Davio, by using a space-intensive implementation of DES, it is poseible to perform about
2.5K encryptions/second on the VAX 11/780 {170]. Thus, it would take the IBM PC about 10 to 16
days to compute 22 DES encryptions; a VAX 11/780 would require about a day and a half. Running
the test for 232 steps would take at least 16 times longer.
- 4We chose to use an IBM PC because an IBM PC was available to us, and because it is easy to
attach special-purpose hardware to an IBM PC [321].

70 ; Alan T. Sherman, Thesis—Part I: October 15, 1986

K Finite-State :
DES Controller |e—
(RAM)
 Dats Out
l Instruction
_ Register
Next Key
Function
(PROM)

|

Buffer
(RAM)

Countér |

Figure 6.3: Block diagram of special-purpose hardware

language by John Hinsdale, Burton Kaliski, and Ronald Rivest [97]. -

Using cipher-block chaining in direct control mode [319], the AmZ8068 chip is
capable of performing approximately 200K encryptions/second. But for simplicity,
we run our experiments using electronic-codebook mode. We clock our control loop at
14Cns. and the inner encryption loop at 280ns. Including all overhead for computing
and loading a new key for each encryption, our board performs approximately 43K
encryptions/second, or about 2% per day. This enables us to carry out each trial of
the experiment within a few days.

6.4 Detailed Descriptions of Experiments

This section presents detailed descriptions of the eight cycling experiments we carried
out during April to August 1985. The section begins with an explanation of the next-

Chapter 6: Experimental Work on DES 7

key functions used in our experiments and of our
parameters. The rest of the
our experiments.

: methods for selecting experimental
section consists of nine tables that thoroughly document

6.4.1 Notation

In chapter 3, we defined the key space of DES to be the set X = {0,1}%. Most DES
implementations, however, nominally treat each key as a string of 64 bits, where
every eighth key bit is a parity bit which is ignored. In this section, we too shall
specify keys and messages as 64-bit strings, described in hexadecimal notation. To
do this, it is convenient to introduce the DES function T: K x M — M that operates
on the nominal key space K = {0,1}%,

6.4.2 . Next-Key Functions

" The cycling closure test depends on a function p: M — K to compute the next key
from the current message. We will now describe the two particular nezt key functions
that we used during our experiments. We will define each next key function in terms
of its related function p: M — K.

Each next key function operated in a byte-by-byte fashion using a byte substi-
tution table (1 byte = 8 bits). For any 0 < ¢ < 7 and any z € M, let z(*) denote
the #*R byte of z. For each 0 < § < 7, we computed p(z)¥ = S{z{), for some byte
substitution table $:{0,1}® — {0,1}%.

In experiments 1 and 2, we chose S to be the identity function. In the other
cycling closure experiments, we used the byte substitution table given by table 2.5
This table was designed so that each entry has odd parity and such that each entry
appears exactly twice. The table was generated using the random number generator
in the C library on our IBM PC. '

For the experiments that used the extended message space M2, we computed
f:(z)(") = S(z(*)) using the substitution table given in table 2.

6.4.3 Selection of Experimental Parameters

We chose initial messages and keys in a variety of ad hoc ways. Some we selected in an
obviously deterministic manner (e.g., zo =0123456789ABCDEF). Others are related
to our social security numbers or other personal data. The rest we generated using
DES and MACSYMA.

5The substitution table is used as follows. To substitute any byte B, consider the representation
of B as two hexadecimal digits. Select the table entry whose row is given by the first digit and whose
column is given by the second digit.

72 " Alan T. Sherman, Thesis—Part I: October 15, 1986

' 6.4.4 Detailed Experimental Results

‘The following nine tables give thorough descriptions and ruults of our cychng exper-

iments. The first table defines the pseudo-random next key function used in several -

of the experiments. The remaining eight tables—one for each experiment—list all
relevant experimental parameters together with important checkpoints encountered
during the experiments.

A e 1

Chapter 6: Experimenta] Work on DES , 73

C 1121383 6lel7]8]9 AIB|c]opD E|F
00 || 3E | 46 | BE 26 | AE [F8 | 22 AE [CE | 67 | Ee 98 |07 [65D | o2 ¢
10 | FE [68 | EF | ¢D FT 178 | 2F [91 8F | 2F | OE | DO | o7 BO | 73 | 51
20 || 20 | 6E | 78 B3 /86 oD 18 0131 |EF | D3| 8F D8 | 40 | 24 Fg
30 /o1 |c7]cy 10 | F7 [31 [Az 62 | OE | BO | DA | DD 34 |86 | 19 [Do
40 11 61 [A8 | 3D BOOE |79 [c2 [BC 52104 {37 [FD 6E | 86 | FB | BA I
50 I DF [c8 [eD | 13 43 |1C | OB | 44 | 89 83 | E3 | 20 [4F A7 | BAT| 3B
60 || 80 | DO | 87 EA | 7F [A8 Cc8 43 (79]6D] 1A | 4C A7 [CB |88 23
70 || 5B [02 | c2 4C | 68 [38 | FE CE| B9 |1C | 15 A4 1262012 15
80)lC1] o8 | 7F 4A 164 (67 [97 [32 26 | F2 | E5 | o1 D6 | E9 [eB | Fa
90 || 4F | 80 [67 | DF F1 | BF | B3| B6 | 38 E6 | 7A | EC | A1 | BB 92 | 20
A0 || 10 fDC |97 46 194 | CB | 40 | 6B 10 |46 [3B | F2 | £6 FD | B8 | BC
BO 40 (oD | 1F AD | 62 | BF | 62 23 161 40| E0 | oD 08 | CD | E3 [¢4
Co |68 | 1iF | oE | Ep FB 17¢ |13 | 75 [aa 89 | 04 [5D | 6E [DC 54 | Db
DO |EA|F1 oD | Fa 94 176 | D3 | 70 | 8C 64 | AB | 2¢ [DB 0208 7a
EO | 3D { 6B | 25 8A | A1 | 38 | 8C | EC 70 | OB | A4 | 45 | 64 61 | AB | 7¢
| Fo Il c1 [ap [32 C4 |E0 | A2 |88 83 16 |08 [DA | 32 73 37 | OB | BE

Table 6.2: :By'f;é suBStitution table for pseudo-random next key function.

Tiyy = Tz.- (z")
Note

Experiment 1
J Z;

Table 6.3: Closure ex
7,985,051,016

0

0123456789ABCDEF

34,203,588

BOFDED3BDODDO18C

end of leader

34,293,589

AE5530A0E971BEES

start of cycle

2,030,556 568

12B87D3706106D30

quarter cycle

61AACFEF168E4417

half cycle

Hj,ozs,slg,su
il 6,023,082,526

ED4082C869EFO2CF

three-quarters cycle

8,019,345 504

AO32CEOD3F4368EFE

end«afqyck{

8,019,345 505

AEGB30A0EO7 1B5ES

restart of cycle

periment ﬁrith
2%; leader length 34,29

identity next key function.
3,580 ~ 225,

Cycle length

74 | ~ Alan T. Sherman, Thesis——Pari I: October IS, 1986

: ‘P‘.‘.xperiment 2 _ _4 zi41 = Tx, (i)

$ I _ Note

0 [121602850B020664 |
1,389,523,413 4BBBSCOFS6CD28B5A end of leader
1,389,523,414 AFFGOED7663421BF | start of cycle
5,152,082,299 AEGB30A0EO71B6ES | experiment 1 intersection
179,374,575,329 | FBOA1308E02D1473 end of cycle
9,374,575,330 AFFGOEO7663421BF | restart of cycle 1

Table 6.4: Closure experiment wifh identity next key function. Cycle length
7,085,051,016 = 2%°; leader length 1,389,523,414 ~ 230,

|| Experiment 3 Tir1 = Tp(zy) (%)
% T Note
0 | 6036222082803104
2,138,241,978 SB80BEFABFOOOAGEO | end of leader
5.138,241,979 | CODBBET160CCF272 | start of cycle
3,706,679,992 | 433BT4E2CB18DDFD | end of cycle
3,706,679,993 CODBBE7169CCF272 | restart of cycle

Table 6.5: Closure experiment with p'seudo-ra.ndom next key function. Cycle length
1,568,438,014 =~ 2%°F; leader length 2,138,241,979 % 231, :

Experiment 4 " Zie1 = Doz (%), 2i € M?
' L Note
0 | ACOB7F303AC4DOBB G3E15COCTA398042
4,294,967,296 | 2C173860EAF8804B 767469BB10B26D8A | 2°¢ iterations
8,580,084,592 | 4340368449700D3B BEFCO2FB8848BCOAF | 2°° iterations
12,884,901,888 BED1202F5D0OB268 C30ABSOFF3B03D08 3 . 2%¢ jterations
17,179,869,184 | 4A224C85BBA48DER 00CTDOCA64C4B240 | 2°¢ iterations

Table 6.6: Extended closure experiment with pseudo-random next key function. No
cycle detected in 2% steps.

Chapter 6: Experimental Work on DES 75

Experiment 5

i X
0 0123456789ABCDEF
3,233,340,362 | OEC46F7167BDa749
3,233 »340,363 EFE7R71 12233pDas
4,531 1129,424 COQDFA4780384QBE
4,531 1,129,425 EFE7B711 2233DD88

Tiyl = T{;ﬁg&-) ()
ole

end of leader
start of cycle
end of cycle
restart of cycle

Experiment 6

Tiv1 = T¢ lf'a(z.-) (2:)

g

Note

0

1215028608020664

1,366,287,307

E43DGEF9361DDB4A

end of leader

1,366,287,308

76C6C23C21EABODA

start of cycle

5,584,675,814

FDBE1ECDF38BF3ES

end of cycle

5,585,675 815

75C6C23C21EASODA

restart of cycle

Experiment 7

Tiyl = Tl,_,l (TO.O(“!))

Z

Note

o

0123456785ABCDEF

start of cycle

2,227,161,045

664B672D3DBC73AB

0...0 fixed point

4,454,323 800

203FD4F2C13DD94F

“hidden crossing”

3CCSBOBADEFD3040

1...1 fixed point

| 5,890,012 565
7,325,701,239

0123466789ABCDEF

restart of cycle

Table 6.9: Orbit exp
7,325,701,239 ~ 238

eriment usin
; leader length 0.

& composition of weak keys.

y . Cycle length
. Key k = 4D3FDOF EDSA4FAQB.

Cycle length

76

Alan T. Sherman;'Thesi's—QPart I: October 15, 1986

Experiment 8

Zigr =1 (=)

2

Note

0

41184DCAB17324C8

|[17,179,869,184

BOSC3A87CDEF8267

254 jterations

{[34,359,738,368

832500BCOF57DFBA

950 jterations

ED4BOGABBF6516FD

3. 254 jterations

51,530,607,552
68,719,476,736

2084263510AEAD34

9%% jterations

Table 6.10: Orbit experiment.’

i = 116EOBB27SAEC431.

No cycle detected in 2% gteps.

Key

IV

Chapte'r' 7
'.'Open' Problems

. This chapter outlines two directions for further research inspired by part I. Section 7.1
describes several open questions about the algebraic structure of DES. Section 7.2
states formally the problem of testing cryptosystems for algebraic structure and raises
questions about the complexity of this problem.

7.1 Open Questions about DES

Although our experiments give strong statistical evidence that DES is not éldsed,
numerous questions remain unanswered. This section lists several open questions
‘about the algebraic structure of DES. '

® Does DES generate Ay? What is the order of the group genera.téd by DES?
What is the group generated by DES? For how many keys ¢, 7, k is it true that
T, =T;1y?

Is DES faithful? What is the order of DES?

What subsets of DES transformations generate small groups? (Note that each
weak key represents a transformation that generates the cyclic group of order 2.)

Is DES homogeneous in the sense that for every k € K it is true that T;le
Tpes? For how many k € K is it true that T, € Togs?

is I€ Tpgs?

Our results show that the compoesition of every pair of weak keys will likely
“have a short orbit for every message. It would also be interesting to know
if other special pairs of DES transformations have similar properties. For
example, it would be interesting to explore semi-weak keys, light keys (keys
*with a low density of ones), heavy keys (keys with a high density of ones),

77

78 ' Alan T. Sherman, T_hesis—Part I: October 15, 1986

‘and pairs of related keys (e.g. keys that differ in exactly one bit and keys that are
complements of each other). , e

" Knowing whether or not I € Tpgg is interesting—not because this property would
necessarily be a weakness in DES—but because this question would answer several
_other questions about DES. By the complementation property, for any key k, T, = I
implies Ty=1. Hence, if I € Tpgs, then DES is not faithful. In particular, if DES is
closed, then DES is not faithful. Conversely, if I € Tpes, then DES is not closed.

Each of the known-plaintext attacks finds a representation of the secret transfor-

mation T as a product of two or more transformations. In practice, it would suffice
to find an approximate representation of 7. To this end, we could say that two
permutations T,T; € Tpes are g-approzimately equal on X C M if and only if, for
all z € X, Ti{z) and T2(z) always agree on at least g bits.

e For each 1 < ¢ < 64, for how many keys 3,7,k is it true that T} is g-
approzimately equal to T;T; on M ?

e What other notions of “approximately equal” transformations would be useful
in finding approximate representations?

Since the closure tests do not depend on the detailed definition of DES, it is
natural to ask:

e What can be proven from the detaﬂe& definition of DES about the order of the
group generated by DES?

e Are there more powerful statistical closure tests than the two tests presented
in this paper that are based on the detailed definition of DES?

Our research also raises questions involving the design of cry‘ptosystéms.

e Is it possible to build a secure, practical cryptosystem for which it can be
proven that the cryptosystem generates either Ay or Su? (See [164) for one
suggestion.}

¢ Is it possible to hide a trapdoor in a cryptosystem by concealing a secret set
of generators for a small group? (Note that it does not work simply to have
a large subset of the transformations generate a small group, since the enemy
could guess a small number of transformations in the subset and apply the
cycling closure test to the guessed transformations.)

We presented two known-plaintext attacks against closed ciphers, but other at-
tacks may also exist.

Chapter 7: Open Problems , 79

o What attacks are possible against closed ciphers? How can krowledge of the
_specific group help?

Finally, it would be interesting to apply the closure tests to variations of DES
that exaggerate certain types of possible weaknesses in the standard.

o What is the order of “crippled” DES transformations formed by reducing the
~ number of rounds or by replacing one or more of the S-boxes with linear map-
‘pings?

7.2 - Complexity of Dete“cting Algebraic Properties

The cycling closure test runs sufficiently fast that we were able to apply it to DES
using an IBM PC equipped with a custom board. But is the cycling test the most
efficient algorithm for determining if an indexed set of permutations forms a group
under functional composition? This section takes a modest step toward answering
this question by formulating the problem of testing an indexed set of permutations for
closure and by discussing some of the issues involved w1th determining the complexity
of this problem.

7.2.1 Group Detection Game (GDG)

The problem of determining if an indexed set of permutations forms a group under
functional composition can be stated in terms of a two-person game, which we shall
call the Group Detection Game (GDG). Let Alice and Bob be the two players in this
game. To start the game, Bob selects a group G. Then, by means of a “black box,”
Bob gives Alice either G or a set of randomly chosen set of permutations. Alice must
decide if the black box computes the group. Bob selects the group to make Alice’s
task as hard as possible.

Three parameters u, v, m control the game. The parameters u, v specify a
message space M = {0,1}* and a key space K = {0,1}"; the parameter m < 2*
specifies the order of the group. Let M = 2% and K = 2°. At the beginning of the
game, both players know u and v, but only Bob knows m. _

The game consists of three moves, the last two of which may be repeated several
times. First, Bob selects a particular permutation group G acting on M of order m.
Second, Bob gives Alice either a “random presentation of G” or a random set of m
permutations acting on M. Bob's gift to Alice takes the form of a “black box” oracle,
and Bob decides what to give Alice at random. Third, after experimenting with the
‘box, Alice outputs “Group,” if she believes Bob gave her G; otherwise, Alice outputs
“Random.”

80 Alan T. Sherman, Thesis—Part I: October 15, 1986

. .The black boz oracle computes an indexed set T = {T}}iex of permutations on
M. Given any key k € K and any message z € M, the box computes Ti(z) and
T;*(z). Initially Alice has no other information about the box; the only way Alice
can learn more about the box is through asking it to compute 7;(z) and 77 (z) for
specific k’s and z’s.

Let G = {g1,...,9m} be the group chosen by Bob. We will now explain what
is meant by a random presentation of G. Whenever Bob gives Alice a random pre-
sentation of G, the black box computes the function T : K x M — M defined by
T'(k,z) = gx(x)(2), for all k € K and all z € M, where 7 : K — {1,...,m} is a ran-
domly chosen function unknown to Alice. If steps 2 and 3 of the game are repeated,
then Bob chooses the function 7 independently for each repetition of step 2.

Many variations of this game are possible. For example, Bob might give Alice
some “side information” about G, such as m or a range in which m lies. Alternately,
Bob might be required to pick G of some special form (e.g. an alternating group).

.. Let ps denote Alice’s success rate—the chance, on any repetition of steps 2 and 3,
that Alice correctly guesses whether Bob gave her a presentation of G. By guessing
randomly, Alice can achieve a success rate of py = 1/2. By applying the cycling
closure test and using O(\/I_{) black box queries, Alice can achieve a success rate
approaching 1.

Motivated by the DES example, we are interested in the situation in which M
and K are so large that both O(M) and O(K) are “intractable” running times, yet
such that O(vVM) and O(VK) are “tractable.” We also assume that M > K for
some small integer /. ,

The major open problem of this section can now be stated as follows: given any
0 < € < 1/2, how many black box queries must Alice make in order to achieve a
success rate of at least 1/2 + €?

7.2.2 Discussion

We conclude this section with a brief discussion of some of the issues that arise in the
group detection game. These issues include certain crucial elements of the model,
Bob’s choice of group, and what side information, if any, Bob gives Alice. We leave
as an open problem a complete analysis of how these issues affect Alice’s optimal
strategy.

To make Alice’s task difficult, it is important for Bob to choose a group that
“looks random.” Unless the group looks random, Alice can detect the group by
identifying structural properties. For example, Alice can easily detect any abelian
group by testing for commutativity. It would be interesting to know what other
algebraic properties are useful and possible for Alice to detect. Babai conjectures
that, for small I/, Alice can easily test for solvability of length ! and nilpotence of
class ! and hence advises Bob against choosing a group with these structures. But

Chapter 7: Open Problems . o ‘_ 81

what group should Bob pick? Perhaps an alternating group would complicate Alice’s
task the most. S | . _
~ In essence, Alice’s task is to distinguish structure from lack of structure. One tool
- at her disposal—perhaps her only tool—is to look for “identities” among the indexed
permutations. For example, every commutative group satisfies the identity af = fa,
for all group elements @ and B. Alice can look both for identities that hold for all
-of the group elements as well as for identities that hold only for some fraction of the
group elements, or even for some fraction of the group elements on some subset of
the message space. Bob should choose a group for which it is very time consuming
to find any nontrivial identities.

Any side information given to Alice that reveals algebraic properties of the group
might help Alice discover useful identities. In particular, the order of the group
reveals much information about the group.

One nuisance for Alice is that the group might be represented unfaithfully (i.e.
two different keys might represent the same permutation). This possibility compli-
cates some of the algebraic tests Alice might wish to perform.

The orbit test, which searches for short orbits of particular messages on particular
permutations, can be viewed as a test that looks for identities. The strength of this
test depends on Bob’s choice of group. It would be interesting to analyze the orbit

- test further, beginning with its strength on alternating groups.

In analyzing the orbit test, it is useful to know the distribution of the order of
elements in various types of groups. Erdds and Turan [90] and Bovey [87] studied this
problem for the symmetric group. For any n, let S, denote the symmetric groupon n
letters. Moreover, for any g € Sp, let £,(g) = log, order(g) be the natural logarithm
of the order of g in S,. Erdds and Turan proved, that for large n, £, has a normal
distribution with mean (log, n)?/2 and standard deviation (log, n)*/?/+/3. Thus, for
any technology bound B, for the expected order of an element drawn at random from

S, to be at most B, it must be true that n < eV?1°& B,

One important aspect of our model concerns how much time is required to com-

pute compositions of groups elements. In our model, for any message z, for any
group element g, for any integer n, it requires n black box queries to compute g*(z).
In light of the orbit test, different assumptions about the complexity of computing
compositions can significantly affect the analysis of the group detection problem.

One strategy for Alice is to apply the cycling closure test. There are some reasons
to suspect that the O(\/f) time required for this test is approximately the best
Alice can do. The intuition goes as follows. Unless Alice discovers any nontrivial
identity, Alice cannot do better than random guessing. Moreover, since Alice is
given a random presentation of the group, the Birthday paradox implies that it is
extremely unlikely for Alice to discover a nontrivial identity unless she examines at
least VK permutations.

Another promising strategy for Alice is to perform a case analysis based on m,

82 o Alan T. Sherman, Thesis—Part I: October 15, 1986

the order of the group. Even if Alice does not know m, she can investigate various
hypotheses about m. For example, if m is prime, then the group must be cyclic. If
m is odd, then the group must be solvable. If m is the product of exactly I prime
factors (not necessarily distinct), then the group is solvable of length at most {. If
m = 2% for some k, then the group is nilpotent of class k. Other conditions imply
that short orbits are easy to find. And so on. For each hypothesis, Alice can perform
-an algebraic test. Whether or not such an approach would be more effective than
the cycling closure test, we leave as an open problem.

’.Chapt-er 8
The PI Project

Layout efficiency affects the cost and performance of VLSI chips. Despite the com-
‘plexity and importance of finding efficient layouts, this task is usually carried out in
-part by humans following ad hoc techniques. The MIT Pp System offers an algorith-
‘mic approach for automating the layout process.

The second part of this dissertation deals with the problem of placing modules

“on’a VLSI chip, focusing on the placement algorithms used in the PI System. PI’s
placement algorithms are built around a recursive mincut strategy that is sensitive

_to geometric and graph-theoretic concerns. Supported by a data structure known
as the placement tree, these algorithms are implemented in a general framework in
which approximate and partial placements can be represented and manipulated.
 During his involvement with the P] Project, Alan Sherman designed and imple-
mented the placement algorithms and participated in the design of many other parts
of the PI System. o

The Pr (Placement and Interconnect) Project explored algorithmic approaches
for laying out VLSI chips. Work on the P] Project centered around the design and
implementation of the Pf System, one of the first fully automatic systems for laying

-out custom VLSI chips. A characteristic feature of the PI System is its problem
decomposition, which divides the layout process into separate placement and routing
phases each of which are further divided into subproblems and solved by specialized

component algorithms. .

The PI Project was carried out at the MIT Laboratory for Computer Science
under the leadership of Professor Ronald L. Rivest. Initial motivation for the project
grew out of Rivest’s experiences implementing the RSA cryptosystem on a chip [227].
Recognizing the need for better layout tools, Rivest, Adleman, and Shamir wrote
‘several programs to help them lay down the wires on their first RSA chip. Following
the completion of this RSA nMOS chip, work on the PI Project began in early 1981
and continued through 1983. During this time, the PI Project identified important

‘layout problems, designed heuristics for solving these problems, and produced an

85

86) | Alan T. Sherman, Thesis—Part II: October 14, 1986

initial implementation of the PI System. Over the course of the project, a total
of approximately twenty undergraduate and graduate students contributed to the
design and development of PJ.1

This chapter introduces part II through giving an ovei'view of the PI System,
including an example of how PT lays out a small chip.

8.1 Overview of the P1 System

This section gives a brief overview of the P] System, concentrating on its input [output
behavior and on its overall organization. _

Input to PJ describes a circuit to be be laid out. The input consists of a set of
arbitrarily shaped rectangular modules and a set of nets that specify how the modules
are to be interconnected. Output from PJ gives a complete, detailed layout of the
circuit. The output specifies an exact, nonoverlapping placement of the modules in a,
rectangular region, together with a detailed plan of where each wire interconnecting
the modules should be laid. Subject to the Mead-Conway style design rules for single
metal layer CMOS or nMOS designs [341], PI attempts to minimize total chip area
and the amount of wire used for routing.

PI partitions the layout process into a series of subproblems and solves each

subproblem using a specialized component algorithm. After checking its input, P -

lays out the specified circuit in four major steps: module placement, power-ground
routing, signal routing, and compaction. Each of these steps is further decomposed
- into additional subproblems. For example, signal routing is accomplished by chan-
nel definition, global routing, crossing placement, and switch-box channel routing.
Figure 8.1 summarizes this process.

After module placement, two problems can arise both of which are solved by P1’s
resizer. First, if the placement does not leave enough routing space, then there might
not be any legal way to complete the layout. Second, even if some legal layout exists,
the routers might not be clever enough to find a routing. Whenever routing fails, the
resizer is called to expand congested areas of the chip. Then routing is reattempted.
The resizer also performs the final compaction step, which attempts to squeeze out
any unnecessary remaining space. Thus, the resizer plays a crucial role in the overall
structure of PJ. _

Most of PI’s algorithms are heuristic in nature. The decision to seek heuristic
solutions arose from the fact that most problems encountered by PI are NP-complete.
Some of PI’s algorithms perform optimally in certain special cases, and some of the
algorithms are provably good approximation algorithms. But most of PP’s algorithms

13ee section 15.2.2 for a description and acknowledgment of the contributions made by members
of the PT Project.

- Chapter 8: The PI Project

‘5.
6.

. Input problem and check input

Place modules

."Route power and ground wires

(a) Lay power and ground rings
'(b) Route ground tree*

{(c) Grow power forest*

(d) Stretch power and ground wires to meet current requirements
. Route signal wires

- {a) Define channels |

- (b) Route signal nets globally*

(c) Determine crossing placements
(d) Route channels* '

Compact layout

Output description of chip

87

" *Note: If routing fails at any of these steps, the resizer is called to ezpand the layout,
and routing is reattempted.

Figure 8.1: Outline of P] System

o g e s AR e 1

88 Alan T. Sherman, Thesis—Part II; Oéfol:;ef 1'4, 1986

come with no formal proof of performance. Nevertheless, PP’s algorithms are based
on sound principles and yield good results in practice.

All parts of the PJ System have been implemented, except for the resizer. Al-
though it was riever a goal of the PI Project to produce a production-quality im-
plementation of the P System, the initial implementation of the PI System served

a useful role in assessing the feasibility of PI’s approach and in assuring that every
detail had been accounted for.

8.2 How PI Lays Out a Ch‘ip: An EXample |

This section illustrates Pr’s step-by-step performance on a small example. Created
by PI's random example maker, the example involves 10 logic modules, 10 pads, and
7 signal nets. PJ laid out this chip in March 1984, ' -

Pictures in this section are photocopies of color prints made from 35mm color
slides taken of the screen of a Symbolics 3600 Lisp Machine. Modules are displayed
as black rectangular regions. However, if two or more modules overlap, then the
following exclusive-or display rule is used: regions with an even number of overlapping
modules are displayed in white, and regions with an odd number of overlapping
modules are displayed in black.

P] first estimates chip size and then places the pads around the chip’s periphery.
In this example, to minimize chip area, PT placed the pads on only two (opposite)
edges of the chip (see figure 8.2). PI arranges the pads using a heuristic that brings
together pads that are strongly connected through the circuit. After pad placement,
PI temporarily places all of the logic modules on top of each other at the origin of
the logic boz, the central rectangular region allocated for placing the logic modules
(see figure 8.2).

Following pad placement, P builds an approximate placement using a top-down
recursive mincut heuristic. Figures 8.3-8.5 illustrate this process. At each step, P
partitions the modules from the current region into two subsets, each approximately
with the same total module area. A graph partitioning heuristic is used to bring
together modules that are highly connected to each other. Corresponding to the
partitioning of the modules, PJ also slices the current rectangle into two rectangles.
The modules associated with each of the newly created rectangles are displayed at the
origin of their associated rectangle. PT tries both horizontal and vertical partitions,
and selects the one it deems best as measured by a score function. PI takes into
consideration both the number of nets that must cross the partition, the balance of
module areas on each side of the partition, and the aspect ratios of the resulting
rectangles.

Continuing in a breadth-first fashion, the mincut process builds a placement hier-
archy. This hierarchy specifies a recursive partitioning of the logic modules together

B

Chapter 8: The PI Project - 89

with a recursive slicing of the logic box. The mincut process terminates when each
module is associated with a unique leaf rectangle in the recursive slicing (see fig-
-ure 8.6). After the mincut phase, the resulting placement is still approximate—the
‘modules have not yet been flipped or rotated, and the modules might even overlap
.since they might not fit into their associated rectangles.

To transform the approximate placement produced by mincut into an exact, legal
placement, PI undertakes a recursive bottom-up process called hardening. During
this process, P] successively “glues” modules and “super modules” together working

‘its way up the placement hierarchy.? At the leaf level, each module is flipped and
rotated to minimize chip area and estimated wire length. As each pair of modules
is glued together, PI leaves space for routing and aligns the modules to facilitate
routing. After a pair of modules is glued together, PI creates a minimum bounding
box around the pair. This newly created box then becomes a “super module.” In
the hardening process, supermodules are treated like modules, except that they are
neither flipped nor rotated.

Figures 8.7-8.9 show three successive steps in the hardening process. In figure 8.7,
PI has just finished gluing the second pair of modules together. Specificaily, in
figure 8.7 modules A and B have been glued together and modules C' and D have
been glued together. In figure 8.8, PI has glued the super module consisting of
modules C and D with module E. In figure 8.9, PI has glued the super module
consisting of modules A and B with the super module consisting of C, I}, and E.
These pictures can be confusing to interpret since PJ redisplays the newly created
boxes on top of the approximate placement produced by mincut.

Figure 8.10 shows the exact placement produced by the hardening process. Fig-
ure 8.11 shows the same placement without the placement hierarchy. This picture
marks the end of PI’s placement phase.

After placing the modules, PI routes the power and ground nets in three steps.
First, PI lays a ground ring around the outside of the pads and P] grows a ground
tree inside the chip. To keep the ground tree concentrated in the center of the chip,
PI uses a novel heuristic based on Hamiltonian circuits (see figure 8.13). Second, PI
lays power wires between the pads and the logic modules and P] grows a power forest
to supply power to the logic modules (see figure 8.14). During power-ground routing,
PI enlists the help of the channel routing routines. For example, before laying the
ground tree, P divides the routing area into rectangular channels (see figure 8.12).
Not shown in this example is the final step .of power-ground routing in which PI
calls the resizer to stretch the power and ground wires to meet their current carrying
requirements. :

Figure 8.15-8.17 show how P routes the signal nets. To begin, PJ redefines the
channels after power-ground routing (see figure 8.15). Regions under the metal power

2The reader may find it helpful to think about the TEX text formatting system in which the “glue”
between boxea can be set.

90 Alan T. Sherman, Thesis—Part II: October 14, 1986

‘and ground wires are treated as special covered channels i

n which highly restrictive
routing rules apply. : '

Using a Steiner tree heuristic, PI routes each signal net in a coarse, global fashion
(see figure 8.16). Then, P enters a novel stage known as crossing placement: for each
channel edge, PI determines the exact layer and position at which each net crosses
the edge. During crossing placement, PI attempts to minimize globally the number
of times different nets must cross each other. The crossing-placement stage is not
shown graphically.

Next, P] independently routes each of the fixed-sized switch-box channels.® For
each channel, PT applies up to three different channel routers, one after the other,
before succeeding or giving up. PI’s channel routers consist of a pattern router, a
greedy left-to-right slice router, and a Lee router based on a shortest path algorithm.
Figure 8.17 shows the detailed routing of all nets together with the channel definitions.
Small dark squares indicate contact cuts, where wires on different layers connect. In
this example, all but two tiny channels between the upper pads and the power wire
routed successfully. . '

At this point, P calls the resizer to expand the two channels that failed to route

-successfully. After all channels are successfully routed, PI calls the resizer one last

time to compact the layout. Including display time, PI took about five minutes to
lay out this example. '

3A switch-boz channel is a rectangular channel that may have wires entefing or leaving any or all
sides of the channel.

}
f
|
!

Chapter 8: The PI Project

91

92

Alan T. Sherman, Thesis——Parf II: October "1'4, 1986

Figure 8.3: Building the apprbximafe‘piacement: Mincut step A

P R

Chapter 8: The PI Project

93

94

Alan T. Sherman, Thesis—Part II: October 14, 1986

Figure 8.5: Building the approximate placement: Mincut stép C -

e L NPEUPP R e i

Chapter 8: The PI Project

- Figure 8.6:"Approximate'pla.dement after mnincut

95

96

Alan T. Sherman, Thesis—Part II: October 14, 1986

Figure 8.7: Determining exact placement: Hardering step A

Chapter 8: The PI Project

Figure 8.8: Determining exact placement: Hardening step B

97

98

Alan T. Sherman, Thesis—Part II: October 14, 1986

Figure 8.9: Determining exact placement: 'Har&éning step C

Chapter 8: The PI Project

Figure 8.10: Exact plaéérﬁent with placement hierarchy

99

100

- Alan T. Sherman, Thesis—Part II: October 14, 1986

Figure 8.11: Module placement

Chapter 8: The PI Project ' 101

Figure 8.12: Channel definition before powér-ground routing -

i
i
:
t
P

- 102

Alan T. Sherman, Thesis—Part II: October 14, 1986

. Figure 8.13: Routing of ground tree

" Chapter 8: The PI Project 103

- Figure 8.14: Routing of power forest

104

Alan T. Sherman, Thesis—Part II: October 14, 1986

Figure 8.15: Channel definition after power-ground routing

Chapter 8 The PI Project ‘ 105

' Figure 8.16: Global routing of signal nets

106

Alan T. Sherman, Thesis—Part II: October 14, 1986

Figure 8.17: Layout after channel routing of signal nets -

Chapter 9
.“:P'r'el'iminaries e

This chapter presents additional background about the P] System' helpfal in un.
* derstanding PI’s placement algorithms. The chapter also explains the notation and .
terminology used throughout part II of this dissertation.

9.1 The P System
This section describes the P1 Sjrstem in ‘more detail, fdtiiéihg""oﬁ its objectivéé; in-

put/output specifications, modes of operation, layout model, major design decisions,
and layout representation. : : :

' 9.1.1 . Objectives
The major goal of the PI System was to design and implement an automatic method
for laying out custom VLSI chips. PI was not supposed to be an intelligent layout -
editor, but rather an automatic layout system, -which, with a minimum of human
interaction, would quickly produce high-quality results. It was intended that PI
might eventually be used for such applications as laying out a chip that was designed
by a student as a course project. Such a chip might consist of, say, a few dozen
modules and a few hundred nets. P] was to work quickly enough to lay out such
a chip in at most a few hours, and the results were to be good enough to send for
- fabrication. PI was intended to be a machine and technology independent system,
robust against slight modifications to the underlying layout model. | E
«-- Although the goals of the project included implementing a complete system, em-
phasis was to be on design rather than on implementation. Thus, the overriding
objective was to study how one might realistically go about building an automatic
layout system, rather than to construct a production-quality software system. The
purpose in constructing a prototype system was primarily to give the algorithm de-
signers practical feedback on their algorithms and to ensure that they had considered

107

108 Alan T. Sherman, Thesis—Part II: October 14, 1986

all important issues. _ A ' L
Finally, as part of the PI Project, the P] System was to provide a context in which
general issues in VLSI layout could be studied. '

9.1.2 Input/ Output Specifications

Input to PJ consists of a set of modules arid a set of nets that specify how the modules

are to interconnected. PJ accepts input expressed in the DPL language [341] or in
P7’s own simple input language. _ . o | .
Modules are arbitrarily sized rectangles. Each module is designated as either a pad

or a logic module.! Each module has a number that indicates its power requirement,
and each pad has a preferred orientation. The power and ground pads are identified
appropriately. In addition, each module may have connection points, called pins,
which are represented as line segments on specific layers of the module’s border.
. Desired interconnections among modules are specified through nets. Each net
is a set of terminals, and each terminal is a set of pins on some module electrically
connected within the module. (Multi-terminal nets are allowed. Moreover, a terminal
may have multiple pins, and a module may have multiple terminals on the same net.)
Each net is labeled as either a power net, a ground net, or a signal net.

_ Except for the power and ground pads, each module must have at most one power
terminal and at most one ground terminal. The user can optionally specify in what
- order some or all of the pads should be placed along the periphery of the chip.

Output from PI describes a complete, exact, legal layout of the input circuit. PJ .

can express its output in the standard CIF format [341] or in PI's internal represen-
tation as a set of rectangular chip features and their locations. ' .
In addition to its formal input, P also depends on several technology parameters

and on several control parameters and switches that guide some of the component
algorithms. ~ -~ : ' o

9.1.3 Modes of Operation _ S .
Although PJ is intended to be used primarily for both placement and routing, it is
possible to use PJ to carry out a subsequence of its layout process. For example, P
can be used to perform module placement, power-ground routing, signal routing, or
compaction only. o

The ease with which PJ can perform an isolated segment of the layout process
results largely from PI’s problem decomposition. For example, while the placement
phase takes routing considerations into account, the routing phase does not depend on

any information computed during the placement phase other than the exact positions
of the modules.

1 P] also supports logo modu!es. which can be used to put labels, logos, or blank space on the chip.

_ _.Chap'ter 9: Preliminaries e . 109

Since PI was not designed for interactive use, it is not possible to have PI c&iﬁblete
a placement or routing only a portion of which is supplied by the user. Many of these
interactive features, though, could be added to PI without too much difficulty.

9.1.4 Léybut Modei |

_PI lays out chips designed in the Mead/Conway style for nMOS and CMOS tech-
nologies [341]. This section describes PT’s layout model in detail. Constraints of
PI’s layout model result both from the physical model for chip fabrication and from
working assumptions made within PJ.

. The entire layout must fit within a rectangular region called the chip. Modules
.may be flipped and rotated, but must be aligned with the edges of the chip. All pads
must be placed on the chip’s periphery. Modules may not overlap. Chip features
(e.g. modules, wires, vias, pins) are not required to fall on any particular grid.

P] assumes that two layers (metal and polysilicon) are available for routing. Metal
is the preferred routing layer, and all power and ground wires must be routed entirely
in metal. In some restricted cases (e.g. routing to modules pins in the diffusion layer)
* PI also allows wires to be laid in the diffusion layer. All wires must satisfy a minimum

~width rule, and power and ground wires must be wide enough to meet their current-
carrying requirements. L : '

Interconnections between modules are made through pins (see section 9.1.2). A

routing must electrically connect all terminale on the same net. To connect any two
terminals, it suffices to connect any pin on one of the terminals to any pin on the
other terminal. : L : :

. Wire segments consist of rectangles, each of which must be placed parallel to
the edges of the chip. Whenever two wire segments touch on the same layer they
are electrically connected. Wires on different layers can be electrically connected by
means of a contact cut (also called a via). o

... :Each module is treated as an atomic unit. The dimensions and pin locations
of any module may not be modified, and routing is not allowed over any module.
However, routing through a module is allowed in the following restricted sense: any
two pins on the same terminal are assumed to be electrically connected within their
module (by minimum-width wires). Thus, routing through a module is allowed only
via fixed, prespecified connection points.

Any two electrically unconnected features must be separated. The required min-
imum separation depends on the type of features, on what layers the features lie, -
and on the technology parameters. Electrically unconnected wires on different layers
need not be separated, provided they overlap only for short distances as determined
by the technology parameters.

110 Alan T Sherman, Thesis—Part II: October 14, 1986

9.1.5 Major Design Decisions

This section briefly describes the major decisions that were made in the design of the
P] System. -

The first major decision, which was more of a problem choice than a design
decision, was to build an automatic layout system that would work with a minimum
of human interaction. We took as a model an optimizing batch compiler for a high-
level programming language. This decision was a natural consequence of our goal to
explore how to automate completely the layout phase of VLSI design.

The second major decision was to model the modules as arbitrarily shaped rect-
angles and to require all chip features to be placed parallel to an edge of the chip. We
thought that these working assumptions simplified our task without distorting the
essence of the layout problem. Moreover, in practice most modules are rectangular
and any nonrectangular module can be represented by a bounding rectangle.

The third major decision was to decompose the layout process as a sequence of
subproblems, to be chosen as independent of each other as possible without neglect-
ing important layout considerations. Since the layout problem is NP-complete, we
did not attempt to find an optimal layout algorithm. Instead, our strategy was to
develop a heuristic layout algorithm by choosing a problem decomposition and by
fine-tuning the solutions to each of the subproblems.. We reasoned that a sound
problem decomposition would help organize the system, control the complexity of
the layout process, and focus attention on important restricted layout problems.

- The fourth major decision was our particular choice of problem decomposition.
Specifically, we decided to separate the placement and routing phases and to decom-
pose the routing problem into independent, fixed-sized switch-box channel routing
problems. Fixed-sized channels were needed to keep the channel routing problems
independent of each other. ' :

Our fourth major decision went hand-in-hand with two other other important
decisions: to work with absolute coordinates rather than symbolic coordinates, and
to rely on a resizer to expand congested areas of the chip. We reasoned that absolute
coordinates were needed to create independent channel routing problems. We also

“believed that working with absolute coordinates would help the placement algorithms
maintain a more accurate view of what the final placement would look like, thereby
achieving better results. The resizer was needed to guarantee that P| would always
find a layout.

Finally we made two other decisions, which, at the time, we considered of rel-
atively minor importance. To maintain flexibility, we decided not to require chip
features to lie on a global grid. We also decided to represent the layout as lists of
rectangular chip features. To conserve space, we decided that wire rectangles would
not contain pointers to their neighboring chip features.

Chapter 9: Preliminaries _ 111

9.1.6 Layout Representatio'n

This section briefly describes how PI represents layouts. PJ’s !ayout representa.tmn
affects the time and space complexity of the layout a.lgonthms as well as the ease of
implementing them.

During the different phases of the la.yout process, PI represents the layout in
different ways. The placement algorithms use a data structure called the placement
tree; the slice and Lee routers use irregular channel grids; and the resizer uses a
constraint graph. But the primary layout representation is a simple data structure
known as the pi-problem, consisting of lists of rectangular chip features.

- The pi-problem represents a layout as a set of rectangular objects organized in a
network of lists. The pi-problem consists mainly of a pad list, a logic module list, a net

list, a channel list, and a list of channel edges. Each module has a terminal list, and -

each terminal therein contains a list of pins. Each net has a terminal list together
with a list of wire segments. The pi-problem also has numerous other specialized
fields used by various component algorithms.

Within the pi-problem, each rectangle is represented by its lower-left and upper-
right corner points, expressed in a global coordinate system. All objects except
wire segments have names. Moreover, modules, channels, and channel edges contain
pointers to their neighboring modules, channels, and channel edges, if any. Each wire
rectangle has a layer assignment, but no pointer to any adjacent chip feature. Each
via is denoted only by a wire rectangle with a special layer assignment.

9.2 Definitions and Notations
This section deﬁnes terms and ﬁOtatioﬁS used throughout part II of this dissertation.

Circuit Graph Terms

The following straight-forward deﬁmtlons provide a convenlent vocabulary for rea-
soning about PI's modules and nets as a graph. -

- Let the eircust graph denote the multi-hypergraph that describes PI’s input. The
nodes of this graph are the modules; the hyperedges are the nets. The circuit graph
is a hypergraph because nets may have more than two terminals. The circuit graph
is a multi-hypergraph because different nets may connect the same set of modules.
Although it is convenient to view PI’s input as a multi-hypergraph, this analogy is
slightly imperfect since any module may have two distinct terminals on the same net.

. For any module M, let terminal-list(M) denote the list of terminals on M. Simi-
larly, for any net N, let terminal-list(N) be the list of terminals on N. Whenever N
has a terminal on M, we say that N touches M.

112 Alan T. Sherman, Thesis—Part II: October 14, 1986

For any terminal ¢, let module(t) and net(t) denote respectively the module and
net associated with ¢. _

- Let N be any net and let M be any module. The length of N is the the number
of terminals on N; the degree of M is the number of terminals on M. Should it be
necessary to distinguish between the number of terminals on N and the number of
modules on N, we will use the following more specific terminology. The expression
t-length(N), read “terminal length of N,” denotes the number of terminals on N .
and the expression m-length(N), read “module length of N y7 denotes the number of
modules on N. Similarly, the expression t-degree(M) denotes the number of terminals
on M, and the expression n-degree(M) denotes the number of nets on M.

For any module M, let area(M)} be the area of M, i.e. the area of the rectangle
defining M. More generally, for any set of modules M, let module-area(M) be the
sum of the areas of the modules in M.

Layout Terms

Design rules for chip fabrication include numerous minimum-separation .and
minimum-width requirements. Let min-wire-width and min-usre-sep denote respec-
tively the minimum wire width and minimum wire separation imposed by the design
rules.? Finally, let min-track-width be the sum of min-wire-width and min-wire-sep.

The following terms refer to special situations that arise in wire routing. A bend
is a (ninety degree) turn in a wire on the same layer. A via (or contact cut) is where a
wire changes layers, and a ecrossover occurs when two perpendicular wires cross over
each other separate layers.

Three important measures of a layout are chip area, wire length, and wire area.
Chip area, or simply area, is the area of the smallest rectangle that contains the
entire layout. Wire length is a linear measure of the amount of wire in the layout,
and wire area is a two-dimensional measure of the amount of wire in the layout.

Geometric Terms

The following geometric terms are helpful to describe PP’s placement algorithms.
- - The aspect ratio of a rectangle is the ratio of the length of the rectangle’s shortest
side to the length of its longest side.

A bounding boz of an object (or objects) is a rectangle that contains the object (or
objects). The minimum bounding boz of an object (or objects) is the smallest area
bounding box of the object {or objects). We shall sometimes refer to the minimum
bounding box of an object (or objects) as the eztent of the object (or objects).

2For simplicity, we will ignore the fact that PI’s layout model allows separate minimuom widths and
separations for each layer. The reader may interpret the design rule terms defined in this section as
the maximum minimum-widths and minimum-separations taken over all layers.

Chapter 9: Preliminaries 113

A partition of a rectangle is a division of the rectangle into nonoverlapping regions
that cover the rectangle. A slicing of a rectangle is a special type of partition,
recursively defined as follows. A slicing is either a rectangle, or it is a partition of a
rectangle into precisely two slicings. Thus, any slicing can be formed by recursively
cutting a rectangle into two rectangular regions.

An orthogonal transformation is either a flip (a reflection) or a rotation. A rigid
transformation is the ¢composition of an orthogonal transformation with a translation.
The orientation of @ module is an orthogonal transformation around the center of
the module. ‘ 5 _ o -

- Unless otherwise specified, distances in the P System are measured by the so-
called Manhattan metrie. If P; and P, are points in the plane with Cartesian coordi-
nates (3, 1) and (z3,y;) respectively, then the Manhattan distance between P, and
P, is given by _ _ ,

| dist(Py, P;) = |z3 — 21| + |y2 — 1] - - (9.1)
where |z3 — z,| denotes the absolute value of T2—Zy. . :

- Distances between pins and terminals are defined as follows. The distance be-
tween any two pins is the Manhattan distance between the pin centers. The distance
between any two terminals is the minimum distance between any pair of pins from
the two terminals. o _ ' '

Chapter 10

The P1 System’s Post-Placement
Algorithms

To understand how P1’s placement algorithms interact with the rest of the P1 System,
it is important to know more about PI's routing and resizing algorithms. After
placing the pads and logic modules, PI lays the wires in separate power-ground
routing and signal routing phases. During routing, PI attempts to minimize wire
length, number of bends, and number of crossovers. Module positions remain fixed
throughout routing. However, if routing fails, then P calls the resizer to expand the
chip and routing is reattempted. This chapter gives a brief overview of Pr’s routing
and resizing algorithms.

10.1 Power-Ground Routing

Because the requirements for power-ground routing are much more restrictive than
those for signal routing, PI routes the power and ground wires before routing the
signal wires. To route the power and ground wires, P] first supplies power and ground
to the pads and then to the logic modules. If P is unable to route all of the power
and ground wires, then the resizer is called to enlarge the chip and power-ground
routing is reattempted.

P lays the power and ground wires using a special-purpose routing strategy specif-
ically designed to handle the special requirements of power-ground routing [446).
These requirements differ from those for signal routing in three important respects.
First, since each module requires power and ground, power and ground wires must
span the entire chip. Second, all power and ground wires must be laid entirely in
metal. This second requirement is especially confining in the one-metal-layer model
used by PJ, for it implies that power and ground wires must not cross each other.
Third, power and ground wires must be wide enough to meet their current require-
ments. Subject to these requirements, P attempts to find a power-ground routing

114

Chapter 10: The PI System’s Post-Placement Algorithms 115

that minimizes the amount of wire used.. - . . Lo : -

. PI supplies power and ground to the pads through two broken rings. PJ lays a
ground ring between the pads and the edges of the chip, and a power ring between
the pads and the logic modules. To enable ground to be brought into the chip’s
center, P] leaves a gap in the power ring. - S

After supplying power and ground to the pads, PT is faced with the problem
of supplying power and ground to the logic modules, where the logic modules are
surrounded by a power ring. P proceeds in two steps. First, PT grows a ground tree
to provide the modules with ground. P gives the modules ground before Power since
the power ring makes power routing more flexible than ground routing. Second, Py
. extends power wires from the power ring to the logic modules. Each of these two

steps is carried out with the help of the signal routing routines. '
. Since each module has at most one power terminal and at most one ground

terminal, when power and ground wires are routed in the same layer, it is always
topologically possible to route the power and ground nets as interdigitated trees.
It can happen, however, that one of the trees will wrap around the other, thereby
forcing the inner tree to take a circuitous route., While this problem seems to be less
severe when a power ring surrounds the logic modules, it can nevertheless happen.
To help prevent the ground tree from interfering with the power routing, PT has
a novel heuristic that keeps the ground tree within a central region of the chip. P
defines this central region by a short “traveling salesman tour” (Hamiltonian circuit)
of the logic modules, calculated by Lin’s “3-swap” approximation algorithm [364].
Since this region separates a power and ground pin on each module, it is always
topologically feasible to route the power and ground wires with this heuristic. ,
Although the Hamiltonian circuit heuristic has been implemented, P] does not
normally use this heuristic. Instead, P] routes the ground tree with the signal routing
-algorithms, adapted for this purpose. The primary reason for excluding this heuristic
is that it is rather time consuming—Lin’s approximation algorithm runs in time
O(m?), where m is the number of modules. o _ :
Finally, PI computes the current requirements for each segment of the power-
ground wires and then uses the resizer to stretch the wires to their desired widths.

10.2 Signal Routing

PJ routes the signal wires in four steps: channel definition, global routing, crossing
placement, and channel routing. Channel definition partitions the chip into rect-
~angular regions, thereby establishing a structure in which the routing problem can
be decomposed into local routing subproblems. Global routing—also referred to as
coarse or loose routing—determines the coarse path of the wires through channels
(and thus around modules). PI’s novel crossing placernent step fixes all intercon-

116 Alan T. Sherman, Thesis—Part II: October 14, 1986

" nections between channels, thereby decoupling the remaining routing task into in-
~ dependent fixed-sized switch-box channel routing problems. Finally, channel routing

performs detailed local routing within each channel. If either the global routing or
" channel routing routines are unable able to complete a routing, then PJ calls the
resizer to expand the chip and signal routing is reattempted.

10.2.1 Channel Definition

During channel definition, P partitions the regions of the chip not occupied by
modules into nonoverlapping rectangular channels. Each channel is a switch-boz in
the sense that it has fixed height and fixed width and may have pins touching any
or all sides of the channel. PJ defines large, “natural-looking” channels by using a
heuristic that attempts to minimize the sum of the lengths of the channel edges. As
shown by Lingas, Pinter, Rivest, and Shamir, minimizing the sum of the lengths of
channel edges is NP-complete [465]. : .

P identifies two exceptional channel types for special treatment—narrow channels
and ecovered channels. Narrow channels are channels that are so small that wires
cannot change direction within them; covered channels are the regions under power
and ground wires. No crossovers are possible within covered channels.

10.2.2 Global Routihg'

During global routing, Pl determines the set of channels through which each net
will travel. PJ routes the nets one by one, ordering them by increasing extent and
decreasing number of pins. For each net, PI applies a minimum-cost Steiner tree
heuristic [443,449,347,349]. N |

PJ casts the global routing problem as a graph problem involving an undirected
channel graph. The vertices of the channel graph are the module pins of the current
net and the channel-edge midpoints. Two vertices are joined by an edge if and only
if they lie on the same channel. For each net, P] attempts to find a minimum-cost
Steiner tree in the channel graph that spans all terminals on the net. Cost is taken
to be Manhattan distance, with penalties for traveling around turns, across covered
channels, and through congested areas. _

For a two-pin net, P uses Dijkstra’s shortest-path algorithm [18]. For a multi-
pin net, P] uses a more complicated Steiner-tree heuristic in which the net is routed
in a series of iterations. During each iteration, simultaneous searches expand from
each vertex along the partial routing of the net in the channel graph. Each iteration
terminates when any search meets a pin not yet connected. Only the successful search
path is added to the partial routing. _

Output from the global channel router is represented by two data structures—
crossings and strands. A crossing represents a net crossing a channel edge, and a

et ey,

Chapter 10: The PI System’s Post-Placement Algorithms - 117

strand represents a piece of a net that traverses a particular channel. Each edge
has a list of crossings, and each channel has a list of strands. It is possible, though
unlikely, for a channel to have more than one strand for the same net.

10.2.3 Crossing Placement

After global routing, only a coarse routing of the wires has been determined: for
each net, PI knows only through what channels the net will pass. Crossing place-
ment splits the detailed routing problem into independent switch-box channel routing
subproblems by determining the exact positions and layers where nets cross edges
that separate channels. This novel step attempts to minimize globally the required
wire length and the number of forced crossovers, thus separating global aspects of
detailed routing from local concerns.

- Without a crossing placement step, the way in which nets cross channel edges
would be left up to the channel routers. This would imply that the channel-routing
subproblems would depend on each other, and that the order in which channels are
~ routed would be important. Moreover, to route any local channel wisely, the channel

router would have to keep global considerations in mind. '

Currently, PI uses an iterative relaxation heuristic. Section 13.2 describes a new
crossing placement algorithm that was never implemented [448). _ _

The iterative relaxation heuristic proceeds edge by edge. Initially each crossing
is temporarily placed at the center of its edge. For each edge, the position of each
crossing on the edge is adjusted. To adjust the position of a crossing on its edge, P]
computes a weighted average of the old crossing position and the projections of the
other crossings on the same strand onto the edge. The effect of this procedure is to
shorten strands and to align crossings on the same strand. Except for crossings that -
are module pins or that are aligned directly across from module pins, PI positions
all crossings on a global grid. After PI determines the positions of all crossings, a
straight-forward layer assignment step completes the crossing placement, heuristic.

10.2.4 Channel Routing

After crossing placement, Pf solves the resulting independent, switch-box channel-
routing problems. PJ applies an array of different channel routers in turn, from fastest
to slowest, until one succeeds. If all three channel routers fail, then PJ calls the resizer
to expand the chip and routing is reattempted. PJ uses three routers: a simple and
fast pattern router called the quick router, a left-to-right scanning router called the
slice router, and “Lee-style” shortest-path router [427] called the Lee router, -

- Each channel is a fixed-sized rectangle with strands extending to and from any
combination of sides.! Strands enter and leave the channel at fixed positions that cor-

1A strand represents a connected piece of a net within a channel. A channel might have two

118 ~ Alan T. Sherman, Thesis—Part II: October 14, 1986

respond to pins and crossings. PJ finds a detailed routing of each strand, attempting
~ to use a minimum amount of wire, jogs, and crossings. All routing must be contained
within the channel and the channel routers must take care not to create deaign rule
violations by running wires too close to objects in neighboring regions.

¢ The quick router has a small library of single-strand routing patterns. For each
. strand, the router simply checks if the net can be routed by any of the patterns.
‘Each strand is routed completely independently of the other strands, possibly
creating design rule violations. As a final step, if each strand is routed, a design

- rule checker determines if the complete channel routing is legal.

e PT's slice router adapts the “gréedy-router” methodology described by Rivest
and Fiduccia [450] to the switch-box context [444]. The slice router first iden-
tifies either the horizontal or vertical dimension of the channel as the primary
dimension. Starting at one side of the primary dimension, the router proceeds
slice-by-slice (i.e. column-by-column or row-by-row) until it reaches the op-
posite side. Each slice is routed before proceeding to the next slice, and the
routing is guided by a collection of greedy heuristics.

o Pr's Lee router sets up a grid and then routes the strands within the grid one

~strand at 2 time. The Lee router routes each strand in essentially the same
way in which the global router routes each net. The cost function used to guide
the search for a good routing of each strand depends on several adjustable
parameters which control a variety of heuristics. .

10.3 Resizing

The resizer is a program that expands or shrinks a layout while preserving certain
invariants, such as not changing the size of modules. PI uses its resizer for a variety
of purposes, including widening the power and ground wires to meet their current
requirements, enlarging congested regions of the chip that could not be routed, and
compacting the layout. The resizer plays a crucial role in guaranteeing that PT will
always find a layout. - .

The resizer is flexible in the amount of wiring that it preserves: it can be instructed

to eliminate all, none, or some of the wiring. For example, when used to expand the .

_ chip, the resizer might be instructed to leave all power and ground wires, but no
signal wires. _

Except for a special uniform dilation mode in which the resizer expands all free

areas of the chip by a constant factor in length, channel structure can change as a

different strands corresponding to the same net.

S W,

e e =

[PR Y

B

PR S R

ot e i A 2 s

B

[N

Cha.p-ter 10: The PI System’s Post-Placement Algorithms - 119

result of resizing. Consequently, the entire signal routing phase, including channel
definition, is usually recomputed whenever any channel fails to route successfully.

When called as a result of routing failures, the resizer can accept detailed reports
from the routers about the routing failures. For example, the global router can
identify overstuffed channel edges.

PI’s resizer is bi-directional in the sense that it operates in successive horizontal
and vertical passes. During each pass, a constraint graph is constructed and solved.
Fach node of the constraint graph denotes a side of some chip feature, such as a
module, a wire rectangle, or the chip. Each edge represents a constraint between two
features and is specified by an inequality of the form z; < z3 + ¢, where z; and z; are
the coordinates of the features and ¢ is a rational number. Recognized in part through
a scanning process, constraints can result from design rules, current requirements,
layout topology, routing considerations, and feature sizes. P solves the constraint
graph using Gaussian elimination. In carrying out Gaussian elimination, P] uses a
- standard heuristic in which the nodes to be eliminated are ordered by decreasing
product of in- and out-degree.

. 'The resizer alone does not guarantee that PI w111 eventually find a layout Pr's
- convergence property also depend on how channel definition, global routing, crossing
placement, and channel routing perform. To guarantee that P will eventuaily find a
layout, the following conditions must be true. Of course, each component algorithm
must eventually terminate and produce legal output. More interestingly, channel
definition must not produce too small channels. Global routing must eventually suc-
‘ceed on some expansion of the placement, and global routing must not unnecessarily
use excessive amounts of wire (say, by maliciously winding wires around modules).
Crossing placement must not crowd crossings into channel corners. The resizer must
. expand the layout sufficiently, a.nd detailed routing must eventua.lly succeed on some
expansion of the layout. '

| ;Chapter 11 |

| The PI 'Sy'Stem’s Plaé'ei'nént
Algorithms | N

This chapter giVes a high level déécription of the P] System’s placement a.lgdrithms,
concentrating on the broad structure of the algorithms, PI’s placement problem, and
- the framework in which the algorithms operate. '

11.1 Overview of Pr’s Placement Algorithms

PI places the modules in three major steps. First, P] estimates the size and shape
of the chip. Second, PI places the pads around the periphery of the chip. Third,
PI places the logic modules in the central region of the chip known as the logie boz.
These steps are called estimation of chip size and shape, pad placement, and logic
placement respectively. : ' L -

The emphasis of PI's placement algorithms is on the logic placement step, which is
further decomposed into the problems of computing a placement hierarchy, orienting
the modules, and leaving space for routing. PT builds the placement hierarchy us-
ing a top-down recursive mincut process that recursively partitions the circuit graph
while simultaneously slicing the logic box into rectangular regions. The placement
hierarchy is a type of approximate placement in which the approximate location of
each module is known. To trarsform the placement hierarchy into an exact place-
ment, P] first determines how each module should be flipped and rotated. Then, P1
successively glues modules and supermodules together in a postorder traversal of the
placement hierarchy. Known as hardening, this final bottom-up process leaves space
for routing and aligns the modules to facilitate routing. ,

Throughout the placement process, P] represents the layout using a data structure
called the placement tree. This data structure maintains a variety of graph-theoretic

and geometric information about the layout in a way that can be easily manipulated.
The placement process can be viewed as a set of operations that successively refine

120

e vt o

e s e

Chapter 11: The PI System’s Placement Algorithms - 121

1. -_Iﬁitialiée p'l'a'.éém'e‘nt tree
| 2.. Estimate size é.nd shape of logicl box
o 3 Place pa..d around chip’s periphery
" 4. Place logic modules

_{a) Find an approximate placement of the logic modules by computing a com-
plete breadth-first mincut decomposition of the placement tree

(b) Orient each module

(¢) Calculate an exact pla.cement of the logic modules by successwely gluing
the modules and super modules together in a postorder traversal of the
placement tree

5. Adjust pads

6. Flatten plé.cement tree
Figure 11.1: Outline of PI’s placement process

an initial placement tree through a series of a.pproxunate placements into an exact
final placement.

Figure 11.1 summarizes P's placement process. For completeness -this ﬁgure
includes three minor placement steps not yet described. The first additional step is
the initial step, which constructs an initial placement tree. The two other additional
. steps follow logic placement. In the penultimate step of the placement process, P]
adjusts the locations of the pads to accommodate any change in the estimated logic
box size that may have occurred during hardening. In the last step of the placement
process, PT “flattens” the placement tree by expressing the location of each module
in a common coordinate system. This last step is necessary because the placement
tree uses a hierarchy of different coordinate systems.

11.2 Pr’s Placement Problem

During its placement phase, the P] System determines a nonoverlapping placement of
the modules in a rectangular region. PI attempts to leave enocugh room for routing,
while minimizing the amount of resources required to route the placement. Thus,

. PY’s placement problem is an optimization problem with routing constraints. PI’s
‘approach to placement differs from that of symbolic layout systems, such as. the

122 - Alan T. Sherman, Thesis—Part II: October 14, 1986

Phoenix system {397], both in that PT attempts to leave enough room for routing and
that PT computes an absolute position for each module that will remain fixed during
routing. _ .- . :

Input to PI’s placement problem is a set of arbitrarily sized rectangular modules
and a set of nets which describe how the modules are to be interconnected. Modules
may be flipped and rotated, but must be placed parallel to the edges of the chip.
. Pads must be placed around the chip’s periphery.

The main resource that P’s placement algorithms attempt to minimize is total
estimated layout area, which includes space left for routing. PJ also attempts to
minimize estimated wire area, but when unavoidable tradeoffs between chip area
and wire area arise, PJ gives preference to minimizing chip area. At least to some
degree, through PI’s concern of layout area and wire area and through PI’s treatment
of module alignments, PI’s placement algorithms also implicitly attempt to avoid
forcing unnecessary bends and crossovers.

The amount of space left between modules is determined primarily by routing
area estimates. While these estimates work well in practice, they are not guaranteed
to leave enough space for routing. Thus, it is possible for PI to produce unroutable
~ placements. If this happens, the condition is detected during routing, at which time
PP’s resizer is invoked to expand the layout. :

11.3 The 'Plécémeﬁt"’.[‘ree. |

The placement tree is a data structure that represents the placement of the modules
throughout PI’s placement phase. By maintaining hierarchical and geometrical lay-
out information, the placement tree can represent several types of approximate and
partial placements. This data structure supports a set of operations, called refine-
ments, which PJ uses to transform an initial approximate placement into a finished
placement.

The placement tree is a tree, each subtree of which represents an approximate
placement of some of the modules. Each node of the placement tree is an object called
a pi-boz. The root pi-box corresponds to the chip, and each leaf pi-box corresponds
to a module. For each module, there is precisely one associated pi-box. Each node
points to its parent and children. Initially, the placement tree consists only of the
root pi-box and its children, the module boxes.

To place the modules, P] applies a sequence of refinements to the placement tree.
These refinements modify the structure of the placement tree as well as the state
associated with the pi-boxes. The rest of this section explains the placement tree in
greater detail and discusses the various types of approximate placements that it can
represent.

- Chapter 11: The PI System’s Placement Algorithms 123

- Placement Tree Terminology

It is convenient to have names for certain special pi-boxes. The ckip boz is the root of

- the placement tree; the logic boz is the pi-box that is associated with the placement
of all logic modules; and a module boz is a pi-box that is associated with a module.

A unary pi-boz is any pi-box that has exactly one child. A binary pi-boz is any
pi-box that has exactly two children. Any pi-box that is not a leaf of the placement
tree is called an internal pi-bozx.

" The descendant modules of a pi-boz are the modules correspondmg to the lea.ves of
the placement subtree rooted at the pi-box. For any pi-box P, the placement subtree
rooted at P represents an approximate placement of P’s descenda.nt modules. This
approximate placement is called the partial placement represented by P, or simply
P’s partial placement. The placement represented by P is partial in the sense that it
might involve only a subset of all modules to be laid out. _

The placement subtree rooted at the logic box is called the logie trcc

~ We say that a net touches a pi-boz if and only if the net touches some descendant
. module of the pi-box. "

-Pi-Bouc Properties

In addition to its parent and children, each pi-box has five other important
properties—transform, extent, virtual pin list, module area, and status. These prop-
- erties constitute the state of the pi-box and give information about the approximate
"placement represented by the pi-box. As used by PI, the virtual pin list and module
area fields are included for efficiency and convenience only and do not add any ad-
ditional information to the placement tree f.ha.t could not be computed from other
fields. N ‘ _
-+ To support geometric operations on the placement tree, eich pi-box has its own
coordinate system. The transform of a pi-box describes how the pi-box’s coordinate
“gystem relates to its parent’s coordinate system. Each transform must be a rigid
: 'transforma.tlon (s.e. a translation followed by flip or rotation}.

" The extent of a pi-box is a rectangular region intended as a bounding box for
the placement of the pi-box’s descendant modules. Each extent is represented by
lower-left and upper-right corner points, which are specified in the coordinate system
-of the pi-box.

For each pi-box, for each net touchmg the pl—box there is an associated subnet that
consists of all terminals on the pi-box’s descendant modules.! For each such subnet,
the pi-box maintains a virtual pin (vpin), which specifies the minimum bounding
box containing all pins on the subnet. Vpins are useful for keeping track of the
approximate regions in which subnets will be routed. Each vpin consists of a net-

1A subnet of a net is a subset of terminals on the net.

124 | Alan T. Sherman, Thesis—Part IT: October 14, 1986

- and a bounding box. The bounding box of each vpin is represented by lower-left and
upper-right corner points, which are specified in the coordinate system of the pi-box.
The wvirtual pin list (vpin list) of a pi-box is a list of all vpins associated with the
pi-box. o :

The module area of a pi-box is the sum of the areas of the pi-box’s descendant
modules, . _ _

The status of a pi-box describes the pi-box’s stage of refinement. As explained
in the next subsection, for the refinements used by PI1, a pi-box can be either free,
planned, or hardened.

Typeé of Approiimate Placementé

During the placement process, the placement tree undergoes various stages of re-
finement. These stages of refinement correspond to different types of approximate
placements which can be described in terms of the state of the pi-boxes. _

A pi-box is oriented if its transform has been fixed. For example, an oriented
module box represents a module whose orientation is known. A pi-box is sized if it
has an extent. Sized pi-boxes correspond to approximate placements whose bounding
area is known or estimated. In addition, a pi-box can be either free, planned, or
hardened. A planned pi-boz has a “floorplan” which specifies where in the pi-box’s

-extent the children will lie. A planned binary pi-box arises naturally after each
mincut step and represents an approximate placement consisting of two parts; each
“part is to be laid out in 2 rectangle and the rectangles are to be placed next to each
other. A hardened pi-boz represents an exact legal placement. A free pi-boz is neither
planned nor hardened. :

A variety of types of partial placements is illustrated in figure 11.3, which shows
an approximate placement and its representation as a placement tree. In this figure,
the exact placements of modules A4, B, and C have been determined. Although their
exact locations are not yet known, modules D, E,F, and G will be placed somewhere
beneath modules B and C, and module & will be placed to the right of modules
D,E, and F. It has not yet been determined how module @ will be flipped and
rotated. The reader may find it helpful to refer to figure 11.2, which summarizes the
conventions used to draw all placement tree diagrams in part II. :

A planned pi-box is a sized binary pi-box whose extent is partitioned into two
regions, with each region corresponding to exactly one child. Thus, a planned pi-box
has a “floorplan” which specifies where in the pi-box’s extent the children will lie.
Children of planned pi-boxes must be sized. Moreover, each child’s extent must have
the same dimensions as the corresponding region of the floorplan, and each child
must be translated to lie in its “room” of the floorplan. Planned pi-boxes, however,
do not necessarily represent legal placements since a grandchild of a planned pi-box
might not fit into the pi-box’s extent.

Gt S . St e A e g R e

b e s 7 A e T8 205

Chapter 11: The PI System’s Placement Algorithms 125

. niodule box sized box = hardened box freebox

module box oriented in parentbox

1
: R plannedbox S 'halﬂene'd box
T 1
g 0 Ll i

S

Figure 11.2: Conventions for drawing placement trees.. In all figures of part II,
pi-boxes are denoted by dots or rectangles. A dot represents an unsized pi-box; a
rectangle represents a sized pi-box. A darkened square stands for a module box.
Rectangles drawn with solid lines denote hardened pi-boxes, and rectangles drawn
with dashed lines denote free or planned pi-boxes. For each planned or hardened
pi-box, the positions of the children are drawn within the square that represents the
pi-box. A hatch mark on the parent edge of any pi-box indicates the pi-box has been
oriented.

126 Alan T. Sherman, Thesis—Part II: October 14, 1986

Although the partition of a planned pi-box is represented through the transforms
of the children, the pi-box also contains a field that identifies the partition ori entation.
A horizontal partition results when the extent is partitioned by a line parallel to the
z-axis of the chip; a vertical partition results when the extent is partitioned by a line
parallel to the y-axis.

A hardened pi-box is a sized pi-box that satisfies the following three properties:
The children must be hardened; the children’s extents must lie within their parent’s
extent; and the children’s extents must not overlap. The children’s extents, however,
are not required to partition their parent’s extent. :

A placement subtree is planned if and only if every node of the subtree is planned.
The subtree is hardened if and only if its root pi-box is hardened.

11.4 How PT Refines the Placemenf i‘ree

A refinement is an operation on the placement tree that attempts to improve or to
make more specific the approximate placement represented by the placement tree.
Refinements work by modifying the structure of the placement tree and by modifying
the properties of the pi-boxes. PI places modules by successively refining an initial
placement tree until reaching a finished placement. This section summarizes Prs
refinement process by describing the initial placement tree, the refinements used by
'PI, and the effects these refinements have on the placement tree.

11.4.1 The Initial Placement Tree

The initial placement tree consists of a chip box whose children are module boxes. For
each module, there is exactly one module box. Each pi-box transform is the identity
transformation (Typically, this means that all modules will initially overlap with
their lower left corners at the origin). The chip box is free and unsized. Each module
box is sized and hardened to the exact dimensions of the corresponding module (see
figure 11.4).

11.4.2 The Refinement .Prdcess

‘This section summarizes PI's placement process in terms of its effect on the placement
tree. ,

 After constructing the initial placement tree, PI estimates chip size and places
the pads around the chip’s periphery. PJ separates the pads from the logic modules
and adds a logic box to the placement tree. The logic modules become children of
the logic box, which is a child of the chip box. To estimate chip size, PJ sizes the
logic box. During pad placement, PJ distributes the pads along the edges of the chip.

127

Chapter 11: The PI System’s Placement Algorithms

011 Jusmade|d Suipuodsa1iod g3l pue Juewee(d ojewpcoadde uy :g'171 eandig

5 434
A

X0q ejnpow

x_on._a

uoiBe. siy ui peded eq 0}
pejusuo Je4 jou s 4 pue ‘3 ‘g sejnpow
D enpow _

7

)

128 - Alan T. Sherman, Thésis-—-Part II: October 14, 1986

Figure”lIA: Initial placement tree

For each side of the chip that receives one or more pads, PJ creates a corresponding
side boz to contain the pads assigned to that side. Each pad box is oriented within
its parent side box. Finally, P] hardens and orients each side box within the chip
box. Figure 11.5 illustrates the effect of chip size estimation and pad placement on
the placement tree. o) : o :

After laying down the pads, P places the logic modules in the following three
steps. First, P] computes an approximate placement by recursively applying a min-
- cut refinement to the logic tree. This mincut process refines the logic tree into a
' planned, binary tree (see figure 11.6). Second, PJ orients the module boxes. Third,
P determines an exact placement by recursively hardening the logic tree in postorder.
- This hardening process PI adjusts the translation and extent of each internal pi-box
in the logic tree. '

After placing the logic modules, P adjusts the pads to accommodate any change
in the extent of the logic box that may have occurred during logic placement. To
adjust the pads, P] translates the side boxes appropriately. Finally, PI hardens
the chip box and computes the coordinates of each module in the chip’s coordinate
system.

11.4.3 Pr’s Mincut, Orientation, and Hardening Refine-
ments

PI’s placement algorithms are built around the following three operations on the
placement tree: top-down mincut partitioning, module orientation, and bottom-up
hardening. Input to each of these refinements consists of a pair (P, T), where T is
the placement tree and P is a pi-box in 7. Given any such pair (P, T), each of PI's
refinements operates on P’s partial placement; the placement tree T provides the

Chapter 11: The PI System’s Placement Algorithms 129

right side box

~ togic module box

Figure 11.5: Placement tree after pad placement

130

Alan T. Sherman, Thesis—Part II: October 14, 1986

logic box

Figure 11.6: Complete mincut decomposition of the logic tree

- e e e o e mn .

S e 5 et e

Chapter 11: The PI System’s Placement Algorithms : 131

context in which PI performs local operations on P. This section explains how the
mincut, orientation, and hardening refinements affect the placement tree.

Top-Down Mincut -

The mincut refinément is a top-down heuristic that refines an approximate placement
by partitioning the set of modules in the approximate placement into two subsets
and by allocating a tentative region within the approximate placement where each
of the subsets of modules will be placed. In partitioning the set of the modules, P
brings together modules that are highly interconnected, taking into consideration the
context in which the partition is performed. '

Input to the mincut refinement is a pair (P, T) such that P is a free and sized
pi-box with at least two children. Although the children of P need not be module
boxes, they must be sized. The mincut refinement first partitions the children of P
into two subsets £ and B. Next, P] creates two new pi-boxes A and B, which become
the new children of P. The pi-boxes in A become the children of 4, and the pi-
boxes in B become the children of B. During this refinement, P[also determines
a floorplan for P. The floorplan is a partition of P’s extent into two rectangular
“rooms” corresponding to A and B respectively. PI sizes and translates A and B to
lie exactly in their respective rooms of the floorplan. Finally, PI sets the partition
orientation field of P and declares P planned. At the end of the mincut step, A
and B are free, sized, and oriented (see figure 11.7).

Mbdule Orientation

The module orientation refinement improves an approximate placethent by flipping
and rotating a single module. This heuristic attempts to orient a module to reduce
estimated chip area and wire length. S _

Input to the orientation refinement is a pair (P, T) such that P is a sized unary
box whose only child is hardened. This refinement modifies the transform of P’s child
and declares P hardened; the structure of T remains unchanged (see figure 11.8).

Bottom—Ui) Hardenihg

The hardening refinement is a bottom-up heuristic that determines exactly how two
modules (or hardened pi-boxes) should be placed relative to each other. This refine-
ment allocates space for routing between the modules {or pi-boxes) and aligns the
modules to facilitate routing.

Given a planned binary pi-box P whose children are hardened, the hardening
refinement makes P’s approximate partial placement exact. The hardener determines
how P’s children should be offset and separated from each other, while preserving the
orientation of P’s children and the orientation of P’s floorplan. After translating P’s

132

Alan T. Sherman, Thesis—Part II: October 14, 1986

-

S
- [T

| In this and other placeﬁient ﬁgure;, an arrow idc;:tiﬁu‘ the pi-boz being refined.

Note

Figure 11.7: Mincut refinement

Figure 11.8: Orientation refinement

Chapter 11: The PI System’s Placement Algorithms 133

[N / 1\

S g

o Figure 11.9: Hardening refinement

Z
}

children appropriately, the hardener expands or shrinks the extent of P to fit tightly
around the children. Finally, PI declares P hardened. After hardening, P’s children
still lie within P’s extent, but the children no longer necessarily form a partition.
‘Unlike mincut, hardening guarantees to produce a legal partial placement and does
not modify the structure of T (see figure 11.9).

Chapter 12 -~

Detailed .DescriptiOns of Pr’s
"Placement Algorithms

~ To place the modules, PJ estimates the size and shape of the chip,'place's the pads,
. computes a mincut placement hierarchy, orients the modules, and finds an exact
placement of the placement hierarchy. This chapter describes these steps in detail.

See section 9.2 and chapter 11 for explanations of notation and terminology used
throughout this chapter. :

12.1 Estimating Chip Size and Shape

- To begin the placement process, PI estimates the size and shape of the logic box.
Except for certain unusual cases, P] makes the initial logic box a square. PT estimates
logic box area taking logic module area and estimated routing area into consideration.

PI’s initial estimate of logic box size and shape affects all subsequent placement
steps. The more accurate the estimated logic box size and shape are, the more
realistic the approximate placements computed during the placement process will
be. For example, if estimated chip size grossly underestimates actual chip size, then
the mincut refinement tends to produce approximate placements in which many
modules overlap. Since the relative positions of pins in overlapping modules can
~change significantly as a result of hardening, the mincut and orientation steps that
depend on such information will perform less well. On the other hand, if estimated
chip size grossly overestimates chip size, then the mincut and orientation steps tend
to pay less attention to geometric considerations.

12.1.1 How PJ Estimates Logic Box Shape

PI chooses the shape of the logic box to be a rectangle of area A, where A is the
estimated area of the logic box. To ensure that the longest module can fit into the

134

Chapter 12: Detailed Descriptions of PI's Placement Algorithms 135

logic box, PI takes one side of ‘this rectangle to be the maximum of VA and Luyae,
where L., is the length of the longest logic module. Thus, PI chooses the logic box
to be a square, unless a square of area A will not contain the longest module.

The choice of a square logic box was based on the following two considerations.
First, for any fixed area, a square is the rectangle with the shortest perimeter. -Second,
for any fixed area, a square is the rectangle that minimizes the maximum distance
between any two interior points. These two facts suggest that a square logic box
helps reduce wire length.

If there are more pads than will fit around the logic box, PI simply expands
the logic box to accommodate the pads. Currently, PT detects and handles this
_exceptional case during pad placement. A more careful initial estimation of logic box
shape would also take pads into consideration.

12.1.2 ._ How P Estiniates Logic Box Area

PJ estimates layout area as the sum of three components: module area, local routing
area around modules, and global routing area of nets. Specially, given a set of modules
M connected by n nets, P] computes the sum

est-layout-area{M) = ¢, - area(M) + ¢, - est-local-routing-area(M)

4 g - est-global-routing-area(M) (12.1)

where ¢y, €3, ¢c3 are constants,

est-local-routing-area(M) = min-track-width 3_ perimeter(M) - n-degree(M) (12.2)
MeM

and

" est-global-routing-area(M) = min-track-width - ny/area(M) (12.3)

The constants ¢y, ¢s, ¢s can be adjusted to reflect the type of chip being made (say,
¢, = 1.3, ¢z = ¢g = .5). Of course, these equations are intended only to yield rough
estimates.

12.2 Pad Placement

After estimating the size and shape of the logic box, PI places the pads around the
edge of the chip using a special-purpose routine. This section describes Pr’s pad
placement heuristic in detail and discusses the major issues that were considered in
‘the design of this heuristic.

136 | Alan T. Sherman, Thesis—Part IT: October 14, 1986

input: module-list
oulpui: ordered-pad-list

1. Initialize all module scores to 0. Initialize ordered-pad-list to the empty list.
- Let m be the length of module-list.

2. Repeat until module-list is empty:

(a) Let M be any module on module-list of highest score. Delete M from
module-list. If M is a pad, then push M onto ordered-pad-list.

(b) Update module scores for all modules on the module-list that touch M.
Specifically, for each terminal T} on M, for each terminal 73 on N =
net(Ty), increment the module score for module(T;) by A, where A =
m — t-length(N). ‘

Figure 12.1: Pad-ordering heuristic

‘In placing the pads, PJ is sensitive to special engineering concerns and to the
interconnectivity of the pads with the rest of the modules. Pad placement affects
logic module placement, since P1’s algorithms for placing logic modules are sensitive
to the context in which the logic modules are placed.

12.2.1 How PT Places Pad Modules

PI places the pads in two steps. First, Pf orders the pads. Second, PI distributes the
pads around one or more sides of the chip without altering the pad ordering,.

The main idea of the pad-ordering heuristic is to group pads that are highly
interconnected. The measure of connectivity is based on the entire circuit graph,
and not just on the circuit subgraph whose nodes are pads. Also, the measure of
connectivity weights small nets more strongly than large nets. Figure 12.1 gives the
details of PI’s pad ordering heuristic. The heuristic makes use of a module-score
field for each module, and the heuristic actually computes an ordering on all of the
modules. As with the algorithm for estimating chip size, the goal of this heuristic is
more important than its details.

When PJ distributes the pads around the edge of the estimated logic box, PT uses
the fewest number of sides, thereby attempting to minimize chip area. If PJ uses only
two sides for pads, then PJ places the pads on opposite sides of the chip. For each
side used, PI creates a side box to contain all pads for that side. Within each side
box, each pad is oriented according to its preferred orientation, as specified in P’s
input. In the exceptional case that there are too many pads to fit around the logic

_Chapter 12: Detailed Descriptions of PI's Placement Algorithms 137

‘box, PI uniformly expands the logic box to make room for the pads. -

 Immediately after placing the logic modules, PI adjusts the pla.cement of the sxde
boxes. Neither the pad ordering nor the distribution of pads among the boxes is al-
tered. Although not formally part of the pad placement routine, this final adjustment
is needed to accommodate any change in the shape or size of the logic box that may

have occurred during logic placement and to leave space for the power and ground
wires.

12.2.2 - Pad Placement Issues, as Se‘en by PI -

‘During the ‘design of the pad placement heuristic, the P] team focused on two ma-
" jor issues—~the special concerns involving pads and the relationship between pad
placement and logic module placement.

As with logic module placement, pad pla.cement can affect chip area and wire
length. But more so than with logic module placement, pad placement is greatly
‘affected by numerous engineering concerns, including bonding requirements, power
consumption, and thermal expansion. Pads often have greater power requirements
than logic modules, and pads usually touch only a small number of nets. Since pads
are the communication points of the chip, pad placement influences how the chip can
be combined with other chips to form larger systems. These special considerations
led the PJ team to treat pad placement separately from logic module placement.

PI requires all pads to be placed along the chip’s periphery. The main reason
behind this decision was to conform to requirements imposed by some bonding com-
_panies. Also, putting pads on the edge of the chip makes power-ground routing to
pads especially convenient. In addition, this decision leaves a “geometrically clean”
problem of placing the logic modules in an unobstructed rectangular region.

An alternate strategy used by some chip designers is to put all pads in the center
of the chip. The main purpose of this strategy is to reduce stress on the bonding
‘wires due to thermal expansion of the chip. During the normal operation of a chip,
‘the chip will expand and contract as it heats and cools. If all parts of the chip expand
uniformly, movement is minimized at the chip’s center.

The PJ team decided to place the pads before placing the logic modules. We
‘believed this decision is more flexible than placing the logic modules first, since it
allows natural orderings of the pads to be preserved more easily. (When chips are
designed to fit together with other chips, it is sometimes convenient to order the pads
to simplify routing between chips. Such pad orderings might not be apparent from
any single chip. To accommodate this situation, an option exists in PI for the user
to specify some or all of the pad ordering.) Also, placing pads before placing logic
‘modules leaves open the possibility of modifying pad placement after logic placement.
: During its deliberations on pad placement, the P team briefly discussed what type
of algorithm might be effective for placing pads, if pad placement were performed after

138 Alan T. Sherman, Thesis—Part II: October 14, 1986

logic placement. One promising idea was to use an iterative-improvement heuristic

that would attempt to minimize the center of gravity of the nets, with terminals .

close to pads weighted more heavily than terminals far away from pads. Since P

- places the pads before placing the logic modules, this heuristic was never developed
in detail.

_12.3 Top-Down Mincut Partitioning

The cornerstone of PP’s placement algorithms is a top-down recursive mincut process
that determines an approximate placement of the logic modules. This mincut process
successively refines the initial logic tree into a binary tree whose leaves are the module
boxes. The resulting placement hierarchy describes a recursive slicing of the logic
box, ‘each leaf rectangle of which corresponds to a distinct logic module. At each
step, P] divides a rectangle in the slicing and correspondingly partitions the set of
modules to be placed in that rectangle. By attempting to minimize the number of
nets that have terminals in both divisions of the rectangle, PT reduces wirelength,
facilitates routing, and simplifies the remaining mincut steps.

This section describes PI’s mincut process in detail, focusing on how P partitions
a set of modules and on how PJ partitions a rectangle.

12.3.1 Summary of Mincut Process

At the beginning of the mincut process, the logic tree consists of the root logic box
together with its children, the module boxes. P] has already estimated the size of
the logic box. During the mincut process, PJ refines the logic tree in a breadth-first
fashion. With each step, PI determines in greater and greater detail approximately
how the logic modules should be placed.

During each step of the mincut process, P] operates on a sized node of the logic
tree. The node represents an approximate placement of two or more modules intended
to be placed within the node’s rectangular extent. These modules are the node’s
children. PJ partitions the node’s children into two subsets, each with approximately
the same total module area. Py also partitions the node’s extent into two rectangles,
one corresponding to each subset of modules. Each new rectansle is intended to
contain the placement of its corresponding modules. By making the subsets roughly
balanced in module area, P| reduces the complexity of the remaining mincut steps
and uses chip area more efficiently.

In partitioning the modules, PT attempts to minimize the number of nets that
touch both subsets. PI partitions the modules using the Fiduccia-Mattheyses imple-
mentation of the Kernighan-Lin graph partitioning heuristic, modified to take context
into consideration. PJ tries both vertical and horizontal partitions and chooses the
partition it deems best as measured by a score function.

JRUp

Chapter'12: Detailed Descriptions of PI's Placement Algorithms . 139

Because PT's graph partitioning heuristic is sensitive to the context in which the
partition is made, horizontal and vertical partitions can yield different results. For
the same reason, breadth-first and depth-first traversals of the logic tree can produce
different placement hierarchies. By refining the logic tree in breadth-first order, PI
makes rough decisions affecting large areas of the chip before making detailed local
decisions.

At the end of each step, PI modifies the logic tree. PI creates two new nodes, one
corresponding to each subset of modules. The modules in each subset become the
children of their corresponding new node, and the new nodes become the children of
the original node. At this point, PI declares the original node to be planned.

12.3.2 Partitioning the Modules

Input to each recursive step of the mincut process is a pair (P, T}, where P is a free
and sized pi-box in the placement tree T. The children of P are module boxes and
there are at least two children. This section explains how PI partitions the children
of P into two subsets. _ -

Let M be the set of P’s children. PI partitions M into two nonempty subsets
AUB = M such that A and B have approximately equal module areas and such that
the number of nets touching modules in both A and B is as small as possible. Any
net with terminals in both subsets is said to be eut by the partition. For any partition
AU B = M, let cost{A, B) denote the number of nets that cut by the partition.
The Kernighan-Lin Heuristic
P] partitions the modules using a variation of a graph partitioning heuristic described
by B. W. Kernighan and S. Lin [391,33]. This iterative-improvement algorithm begins
with an initial partition which it then improves through a sequence of passes. PI
carries out passes until the partition cost no longer decreases, up to a maximum
number of passes (P arbitrarily sets this maximum at 10).

Each pass consists of a sequence of moves, where a move reassigns a module from
one side of the partition to the other. PI moves each module at most once during each
pass. Following the Fiduccia-Mattheyses scheme, two successive moves can reassign
modules from the same side. Thus, PI's notion of a move differs slightly from that
described by Kernighan and Lin. To ensure that the partition is sufficiently balanced,
each move must satisfy an area-balance criterion. Moves continue until all modules
have been moved or until no module can be moved without violating the area balance
criterion.’

. P applies a greedy strategy to select the next module to move. Let the gain of a
module be the decrease in partition cost that would result if the module were moved.
Among all unmoved modules, P selects the module of greatest gain, even if that

140 : A.Ian T. Sherman, Thesis—Part II: October 14, 1986

gain is negative. Moving modules with negative gains enables the heuristic search to
proceed beyond locally optimal partitions. At the end of the pass, PJ restores the
best partition encountered during the pass.

The Fiduccia-Mattheyses Implementation of the Kernighan-Lin Heuristic

P] follows an implementation of the Kernighan-Lin heuristic due to Chuck Fiduccia
and Robert Mattheyses [388]. This implementation uses a simple data structure to
achieve a worst-case running time per pass that is linear in the number of terminals
in M.

The following questions arise in the implementation of the Kernighan-Lin heuris-
tic. What is the initial partition? How is the next module selected? How are the
module gains updated after each move? What area-balance criterion is used? How
is the best partition of the pass restored?

P] creates an initial partition as follows. As suggested by Fiduccia and Matthey-
ses, P] begins with all modules on one side of the partition and successively moves
modules from that side until the area-balance criterion js satisfied. At each step,
P] moves a module of maximum gain. Although better results could probably be
obtained by repeating the Kernighan-Lin heuristic on several different randomly se-
lected initial partitions [360], for simplicity, the initial implementation of PT follows
the simple deterministic scheme described above, ‘

To select the next module efficiently, PJ stores the modules in an array indexed
by gain. Each element of the array is a2 doubly linked list of module boxes with the
same gain. To locate each module within the data structure quickly, each module box
points to the module’s location within the appropriate linked list. PI uses a separate
array for each side of the partition, thus providing flexibility to support a range of
strategies for selecting the next module to be moved, _

PI considers a partition balanced if and only if the sums of the module areas for
each side differ by at most twice the area of the largest module. This area-balance
criterion ensures that all modules can be moved within each pass.

To reconstruct the best partition found during the pass, PI simply records the
sequence of moves made during the pass. .

External Connections

In computing partition costs, P considers not only how nets touch modules within
M but also how nets touching M connect with modules not in M. This extension
of the Kernighan-Lin heuristic makes P1 sensitive to the context in which parti-
tions are made. A similar heuristic was independently developed by Dunlop and
Kernighan [387].

An ezternal connection of the pi-box P is a pin that is not on any descendant

I

Chapter 12: Detailed Descriptions of PI's Placement Algorithms 141

module of P, but that belongs to a net touching P.! At the beginning of PI’s mincut -
refinement of P, P determines for each net N touching P whether P has any external
connections on N that lie outside of P’s extent. To locate these external connections
in the approximate placement of the logic modules, PI recomputes the vpins of the
logic box excluding all pins on children of P. External connections known to lie
outside of PI’s extent contribute to partition costs. -

Without loss of generality, assume that PI is working on a horizontal partition;
that is, PT will place one subset of modules above the other across a line parallel to
the z-axis of the chip. Further assume that A is the subset of modules to be placed
above this line and B is the subset to be placed below the line. For each net N
touching P, if there is at least one external connection on N north of P’s extent,
then P] computes partition costs as if there were an additional child of P touching N
permanently located in A. Similarly, if there is at least one external connection south
of P’s extent, then PI proceeds as if there were an additional child of P touching N
permanently located in B. . '

If there are external connections on N both north and south of P, then the effects
of these external connections cancel. However, if there are external connections only
north of P, then while PJ partitions P’s children, P] gives preference to place modules
that touch N in the upper subset A (see figure 12.2).

12.3.3 Drawing the Floorplan

As part of each mincut step, PI partitions the extent of the current node into two
rectangles, one corresponding to each subset of modules computed during module
partitioning. Each rectangle is intended to contain the placement of its correspond-
ing subset of modules. The floorplan, which is determined by either a vertical or
" horizontal division of the node’s extent, influences remaining mincut steps as well as
the module orientation and hardening phases. :

Let P be the current node being refined. During the mincut refinement of P,
P] partitions P’s children and divides P’s extent twice—once using a horizontal
partition and once using a vertical partition. Among the two competing partitions,
PI chooses the one it deems best as measured by a score function.

Slicing the Current Rectangle

© P divides P’s extent so that the ratio of the resulting rectangle areas is equal to the
ratio of the areas of the corresponding subsets of modules. The intent of this simple
method is to allocate the available layout area in proportion to the relative needs of
the two subsets of modules. This method, however, does not take routing area into
consideration.

 Recall that @ net touches o pi-boz if the net has a terminal on a descendant module of the pi-box.

142 o Alan T. Sbermé.n, Tﬁ'e;sis—Part Ir: Oétober 14, 1986

N

external connection

\

T s omr b e s A Ao

‘l
L
— i
— A
|
ST S W ;
Bonmuna,
—

Figure 12.2: Pa.rtitidnihg modules in the context of an approximate placement

Chapter 12: Detailed Descriptions of PI’s Placement Algorithms 143

Determining Partition Orientation

Let A and B be the subsets of modules computed by the mincut heiristic, and
let R4 and Rp denote the rectangles in the floorplan that correspond to A and B

- respectively. PI computes partition score as a linear combination of three normalized
terms.

partitionls;:ore(ﬂ ,B,R4,Rp, T) =gy net.s-lé‘t'z.t-term-(.ﬂ ,8,T)
. _ + ¢2 - area-balance-term(4, 8) (12.4)
-+ ¢s - aspect-ratio-term(R,, Rp)

where ¢y, ¢,, and ¢g are constants and T is the placement tree (PIusese; =1, c; =.3,
and €3 = .3). :

The nets cut term measures how well the mincut heuristic reduced partition cost.
PI computes this term as 1— (k—k)/(n—k), where n is the number of nets touching 4
or B, k is the partition cost (considering external connections), and k is the number
of nets necessarily cut by external connections. We say that a net is necessarily cut
by an external connection if and only if the net has an external connection on both
sides of the current partition. o _ _ -

The area balance term measures how well the subsets A4 and B are balanced
in total module area. ‘PI computes this term as Cmin/Cmaz, Where Qpin =
'min{arm(ﬂ),aréfa(B)} and g = max{area(A), area(B)}. . o '

~ The aspect ratio term measures the shapes of the rectangles R, and Rp, penalizing
long, skinny shapes. PJ computes this term as .5(aspect-ratio(R) + aspect-ratio(Rp)).

12.4 Module Orientation

“After computing a recursive mincut decomposition of the placement tree, PT deter--
mines the orientation of each module; that is, PI determines how each logic module -
should be flipped and rotated around its center. Module orientations affect how much
wire is required for routing and how well modules fit together. PI’s orientation step
acts as a local, fine-tuning of the coarse approximate placement produced by mincut.
This section explains how P] orients the logic modules. .

The goal of PI’s orientation step is to determine an orientation of the modules
that minimizes layout cost. PI’s heuristic approach is to orient each module, one
_ after the other, separately minimizing estimated layout cost for each module.

144 - Alan T. Sherman, Thesis—Part II: October 14, 1986

oh

P L L LT

_ Figure 12.3: Module orientation in the context of a placement tree

- 12.4.1 Orientation After Mincut

After P] computes a complete mincut decomposition of the logic tree, each module
box is the child of a unary box. At this point, only the module boxes are hardened.

PJ orients each module, one after the other, in a postorder traversal of the place-
ment tree. To preserve the orientations of internal pi-boxes produced during the
mincut phase, P[orients only module boxes (and not supermodules) during its ori-
entation step. , o S 7

To orient a module box, PI carries out the following steps. First, PI translates
the module box so that its center coincides with its parent’s center. Then, P tries all
eight possible orthogonal transforms. For each transform, PJ applies the transform
to the module box and computes a cost function that estimates wire length and
wasted area. Finally, P selects the transform that minimizes the cost function (see
figure 12.3).

Currently, PI orients each module only once. Since the orientation of any one
module can affect the orientation of any other module, better results might be ob-
tained by repeating the orientation process several times. Orienting the modules in
a randomly chosen order might also yield better results.

Chapter 12: Detailed Descriptions of PI's Placement Algorithms 145

12.4.2 Pr’s Orientation Cost Function

* Input to PI’s orientation refinement is a pair (P, T'), where P is a sized unary pi-box
whose only child is hardened, and T is the placement tree. Let A be child of P.
To orient A, PI minimizes the following orientation cost function, which is a linear
combination of estimated wire-area and wasted area terms. The wire area term
includes a contribution for each net that touches A. Specifically, e

oriér:ztata'on-éost(A', P, T) = c; - est-wire-area(A, T)+e: wasted—arca(A,P) '(12.5)

where

est-wire-area(A, T) = min-track-width > est-wire-length(to, net(t,))
g ' tocterminal-list{4)

. | (12.6)
and ¢; and ¢; are constants (PT uses ¢; = ¢; = .5), and wdsted—drea(A,P)

is the area of A’s extent that protrudes outside of P’s extent. The quantity
est-wire-length(to, net(ty)) measures the wire length associated with the net that
touches terminal ¢,. | .

Let N = net(tp). PI computes est-wire-length(to, N) as a weighted sum of the
distances between o and the other terminals on N. Terminals close to tp are weighted
more heavily than terminals far away from ¢;. The intent of this weighting is to align
the pins of A on N with nearby pins on N. P computes :

est-wire-length(ty, N) = DY weighty,(t) - dist(to,t) - (12.1)
teterminal-list(¥) S
where weight,,(t) is the weight of terminal ¢. . L T
 Letr = t-length(N) and let (Fort1y. .. by = t5) be the terminals of N , listed
in decreasing distance from ¢;. PJ uses a normalized geometric weighting scheme in
which weight, (ty) = 0 and weight,, (%) = 2° /(251 — 1),forall0<i<r—1.

To compute the orientation score efficiently, PI must cope with a few more details.
The first problem is that P] must express the pin positions in a common coordinate
system. At the beginning of the orientation process, Pr computes the center of
each pin in the chip box’s coordinate system. For each candidate orientation, only
the locations of the pins on A are recomputed. The second problem is to compute
cst-w:'rc-lcngth(to,N). For each terminal ¢, on A, P] sorts the terminals on N by
decreasing distance from to and then computes the weight for each terminal.?

2For long nets, PT can optionally compute the wire-length term considering only the k closest
terminals on ¥ to ty, for some moderate & (say, k& = 10).

146 " Alan T. Sherman, Thesis—Part II: October 14, 1986

12.5 Bottom-Up Hardening

After finishing its mincut and orientation steps, PI transforms the approximate,
planned placement into an exact legal placement. Known as hardening, this trans-
formation aligns pins and leaves space for routing.

PI hardens the approximate placement in a postorder traversal of the logic tree.
To harden any planned pi-box, PI determines how the children of the pi-bex are
to be placed next to each other. PJ solves this problem of placing two pi-boxes
next to each other as an optimization problem with routing constraints. During the
hardening process, PI preserves the orientations of modules and pi-boxes produced
by the orientation and mincut refinements.

We now explain in detail how P hardens any planned pi-box. Section 12.5.1
summarizes PT’s hardening process. Section 12.5.2 explains how PI computes the
displacements between the two children of a planned binary box. Section 12.5.3 gives
the details of Pr's hardening calculation for the special case in which the children
are modules, and section 12.5.4 describes the general case in which the children are
hardened pi-boxes.

12.5.1 Summary of Hardening Process

Input to the hardener is a planned binary pi-box P whose children, A and B, are
hardened pi-boxes. The hardener determines exactly how A and B should be placed
relative to each other.

PI specifies the relative placement of P’s children in terms of an offset and sepa-
ration. Without loss of generality, assume that P’s orientation is horizontal and that
A is to be placed above B in P. Thus, the hardening problem is to place A and B
across a horizontal line. The offset is the horizontal distance between the left edges
of (the extents of) A and B, where positive offsets move B to the right of A. The
separation is the vertical distance between A and B (see figure 12.4).

~ After computing an offset and separation, PI translates A and B appropriately
and modifies P’s extent to fit tightly around A and B. At this point, P is declared
hardened. '

In addition to producing a legal placement, the hardener also leaves space for
routing. Subject to routing constraints, the hardener attempts to minimize both the
area of the smallest box bounding A and B and the estimated wire area required to
route nets between A and B. But as illustrated in figure 12.5, hardening involves
inherent tradeoffs between minimizing area and minimizing wire length. PI resolves
these tradeoffs by minimizing bounding area, where bounding area includes space
left for routing.

RS

Chapter 12: Detailed Descriptions of PI's Placement Algorithms 147

separation

T

b e

offset

- Figure 12.4: Hardening computes an offset and separation between two pi-boxes

bccereouceccacraneennuaan

S I

F'ig.urze 12.5: Ha.fdening involves tradeoffs between area and wire length

148 | Alan T. Sherman, Thesis—Part If: October 14, 1986

12.5.2 How Pj Corhputes Separation and Offset

PI computes the separation and offset between two pi-boxes by expressing separation
as a function of offset. Then, PI finds the offset that minimizes the bounding area of
the two pi-boxes. The separation, which is based on wire length estimates, attempts
to leave enough room for routing between the pi-boxes. Thus, PJ casts the hardening
problem as an optimization problem with one degree of freedom—offset.

PI computes separation by estimating the required number of horizontal routing
tracks needed between the two pi-boxes. For any offset z, PJ computes

separation(z) = min-track-width - required-tracks(z) ' (12.8)

where required-tracks(z) is PI’s estimate of the required number of horizontal routing
tracks. This quantity depends on PI's estimate of the required amount of horizontal
wiring. More specifically, for any offset z,

¢ - hor-wire-length(z)

max{za,Z8}
where £, and zg are the horizontal dimensions of A and B respectively. In equa-
tion 12.9, hor-wire-length(z) estimates the horizontal wire length required for routing
between A and B all nets that touch both pi-boxes. The terms ¢ and eztra-tracks are
constants (PI uses ¢ = 1.6 and eztra-tracks = 5). The eztra-tracks term adds space
for additional nets that may be routed between the pi-boxes.

For any offset z, provided hor-wire-length(z) is known, bounding area can now be
computed as

required-tracks(z) = + extra-tracks (12.9)

bounding-area(z) = channel-width(z) - [ya + Separatioh(z) + ya| (12.10)

where y4 and yp denote the heights of A and B respectively, and channel-width(z)
is the horizontal distance between the outer edges of A and B.

Let 2 be the offset that minimizes bounding area. From equations 12.8-12.10, it
follows that, if hor-wire-length() is convex, then so is bounding-area(-). Fortunately,
hor-wire-length() is a convex function. Hence £ can be found by binary search.

For one special case, there is a short-cut method for computing . The special case
is when % lies within the range of offsets for which channel-width(-) does not depend
on offset. This situation happens, for example, when B is much shorter than A. For
this special case, the same offset minimizes bounding-area(-) and hor-wire-length(-).
Since the offset that minimizes hor-wire-length(-) can be found by a short-cut method,
so can Z. : _

The next two sections describe how PI computes hor-wire-length(:) and Z.

3 An alternate approach might compute extra-tracks as a function of the input circuit graph or as
a function of the height of P in the placement tree.

N s

Chapter 12: Detailed Descriptions of PI's Placement Algorithms 149

- Figufe .12.6: Special case of hardening: Placing two modules across a channel
12.5.3 Placing Two Modules Aérdss a Channel

This section completes the description of PT’s hardening process for the special case
in which the pi-box, P, to be hardened is the father of two module boxes 4 and
B. Throughout this chapter, we will continue to assume that Py is placing A above
B across a horizontal line. As explained in the previous section, P] computes the
separation between A and B as a function of the estimated amount of horizontal
wiring needed to route between the modules. This estimate depends on the distance
B is offset from A. It remains to be explained how P] estimates horizontal wire
length and how PJ finds the offset, %, that minimizes bounding area. This section
explains how PJ calculates these values in the special case in which all pins lie along
the channel separating the modules and each net touching A and B has exactly two
pins (see figure 12.6). The next section explains the general case. -

. Let Nyi,...,N, be the n nets that touch both A and B. Also, let g4,...,a,
and by,...,b, be the horizontal coordinates of the centers of the pins on 4 and B
respectively, expressed in P’s coordinate system. For each 1 < i < n, net N; contains
the pins with coordinates ¢; and b;. -

~ For any offset z, P estimates required horizontal wire length as the sum of the
required horizontal wire length for each net. For each 1 < ¢ < n, the required
horizontal wire length for net N is |z; — z|, where z; = a; — b; is the offset that
aligns the pins of net ;. Thus, for any offset z, for this special case of hardening,
the required horizontal wire length is

150 " Alan T. Sherman, Thesis—Part II: October 14, 1986

n
hor-wire-length(z) = D _ |z; — z| (12.11)
=1

Let z* be the offset that minimizes hor-wire-length(:), and let =z7 300
median{z},...,z,}. Equation 12.11 defines a convex function that takes on its min-
imum value at Z%,, 4., Lo see this fact, consider any offset Z # T} gian- BY mOVINg
z toward z°,,4an, total horizontal wire length decreases. Total horizontal wire length
decreases because horizontal wire length for each net increases or decreases by the
same amount, and because horizontal wire length for a majority of the nets decreases.
Because 7,44, cal be computed in O(n) steps, so can z*, even though computing
hor-wire-length(+) also requires O(n) steps. This observation was made by C. S.
Chow, and, independently, by Dolev, Karplus, and Siegel [421].

Let zz and zp be the offsets that align respectively the left edges and right edges
of A and B. In addition, let &;, = min{z},..., 25} and Z;,. = max{z},.. ., Zn}-

If z; < z*,, and z},,, < Zg, then channel-width(z) = channel-width(zy) for all
offsets z such that z; < = < zg. Hence, in this case, % = z'. But in general,
might be none of z3,23, ..., %5, ZL: ZR: However, since hor-wire-length(-) is a convex
function, so is bounding-area(-). Therefore, & can always be found by binary search
in the interval [Zmins Zmaz]s Where Tmin = min{zr, Thin} 204 Zmaz = min{ZR, Thas}-

PI calculates offset as follows. If 2z < Thin a0d Th,: < TR, then PI computes
2 = z* using the O(n) time short-cut method which finds z° 5., Otherwise, PI
computes % by golden-section search [28] in the interval [Z:mins Tmaz]. PI uses golden-
 gection search rathet than binary search to reduce the number of times bounding
area has to calculated, since each bounding area calculation requires O(n) steps.
Actually, to enhance pin alignments and to increase speed, PI restricts its search to
the “critical offsets” z},%3,...,%n;ZL, TR, €VEN though % might not be any of these
points. '

12.5.4 Placing Two Hardened Pi-Boxes Across a Channel
This section completes the explanation of the general case of hardening in which the
pi-box to be planned, P, is the parent of two arbitrary hardened pi-boxes A and
B. For this case, nets may have multiple terminals, and pins may appear anywhere
within the extents of the two pi-boxes. PT uses a natural generalization of its technique
for placing two module boxes across a channel. In this general case, PI works with
extents of nets (i.e. vpins) rather than with pins. _ '

Assume A and B are arbitrary hardened pi-boxes. Instead of dealing with the
horizontal coordinates of the pin centers of pins on two-pin nets, P now deals with
the projections of vpins onto the horizontal line separating A and B. For each net
N; touching A and B, PI computes an interval [a;,a}] that is the horizontal extent of
the vpin for net N; in A. Similarly, PI computes intervals [b;, b}] for the vpins in B.

et et e T

.& Chapter 12: Detailed Descriptions of PI’s Placement Algorithms 151

2
. " :
2 . 4 1
a =
A
(]
----------- ;ﬁ-ﬁ-éi'---o----o;-o----------o----o------
b, b, b, b;
.
1

Aron

Figure 12.7: General case of hardening: Placing two pi-boxes across a' channel

P expresses each of these intervals in P’s coordinate system (see figure 12.7). Thus,
instead of treating pins as points, PI now treats vpins as intervals. _

For each net N; touching A and B, P| computes a range of offsets R; = {u;,v;]
for which the vpin intervals [ai, a}] and [b;, b}] overlap. Instead of there being a single
‘optimal offset for each net, there is now a range of optimal offsets for each net. Using
‘these optimal offset ranges, for any offset z, P] estimates required horizontal wire
length as : ' :

n .
hor-wire-length(z) = 3" dist(z, R,) - (12.12)
i=1
where dist(z, R;) is the distance between z and the nearest point in R;.

Let tmin = min{uy,us,...,u,} and let vp,, = max{uy,ts,...,u,}. Also, let
Zmin = Min{tmin, 21} aNd Zpmge = max{Vmaz, Tr}. _ :

As in the special case of hardening, hor-wire-length(-) is still a convex function
of offset. Hence, bounding area is a convex function of offset, and offset, 2, that
minimizes bounding area can be found by binary search. Moreover, if Tt < Umin and
Umaz < Zp, then % is the offset that minimizes hor-wire-length(-), which is the median
of the endpoints u,,u,,...,u,, V1,250, Vn.

152 - Alan T. Sherman, Thesis—Part II: October 14, 1986

If 7z < uly;, and vme: < T, then PI computes £ = z* using an O(n) time short-
cut method which computes the median of the endpoints uy,us,...,%n,v1,02,...,Vn.
Otherwise, PI computes £ by golden-section search in the interval [Zmin, Zmaz]. As
before, PI uses Fibonacci search to reduce the number of times bounding area has to
be calculated. Although % is not necessarily one of zp,zg, u1,%2,...,Un,V1,V2,.. ., ¥n,
PJ restricts its search to these critical points.

e o R 8

R

Chaptér 13 | -
 Extensions to the P[System

During its deliberations, the P] team considered several layout algorithms that were
never incorporated into the P] System. The first three sections of this chapter briefly
~ discuss some of these extensions and alternate approaches. Section 13.1 describes
two additional placement strategies that can be incorporated into PI’s placement
framework. Section 13.2 describes a new crossing placement algorithm. Section 13.3
summarizes four ideas for a new switch-box channel router. The chapter concludes
- with a description of an extended version of PI developed at the General Electric

Research and Development Center. . :

13.1 Additional Placement Algorithms

~'One early design of PI's placement algorithms envisioned that the process of refining
the placement tree would include two additional moves known as bottom-up pairing .
and combinatorial search. Bottom-up pasring identifies two hardened pi-boxes that
“fit together well” and places them next to each other. Combinatorial search finds an
exact placement for a small number of modules by exhaustively searching a subspace
of all possible placements. Each of these additional refinements can be conveniently
implemented within PI’s placement framework. ' :
- Although bottom-up pairing does not enlarge the set of placements possible un-
" der PI's current refinements, this additional heuristic would help P] find better place-
ments. Unlike bottom-up pairing, combinatorial search expands the set of placements
-possible under PI’s current refinements because combinatorial search is not restricted
to placements based on slicings. o '
For a variety of reasons, bottom-up pairing and combinatorial search were never
implemented. Most importantly, the current refinements were implemented first and
-seemed to work well. Since mincut tends to pair modules that are highly intercon-
‘nected, and since bottom-up pairing does not expand the set of possible placements,
the PI team doubted that bottom-up pairing would make a significant improvement.

153

154 Alan T. Sherman, Thesis—Part II: October 14, 1986

- Also, the idea of combinatorial search appears promising, but many important ques-
tions remain to be worked out.

This section describes some preliminary ideas for implementing the bottom-up
pairing and combinatorial search refinements. The section begins with a suggestion
for how these refinements can be incorporated into PI’s placement process.

13.1.1 An Alternate Control Strategy

This section describes one strategy through which the bottom-up pairing and com-
binatorial search refinements can be incorporated into the placement process. Under
this strategy, PJ refines the placement tree in the following five steps:

First, PI repeatedly applies the bottom-up pairing refinement to pair modules
that fit together very well. This process continues as long as well-matched pairs are
found, as identified by a pairing score computed by the bottom-up pairing refinement.

Second, PT performs top-down mincut partitioning until each pi-box of the place-
ment tree has only a few children. Specifically, PI applies mincut only to pi-boxes
- with at least T children, where T > 4 is a parameter that depends on the resources of
the computer running P]. The combinatorial search refinement will complete the re-
finement of the pi-boxes not processed by mincut. Since some modules might already
be paired, the mincut process must treat hardened pairs as if they were modules.

Third, PJ orients the modules and the pairs produced by the bottom-up pairing
refinement. Specifically, PI orients each hardened pi-box that is an only child. For
this step, the orientation refinement treats each hardened pair as if it were a module.

Fourth, PI applies combinatorial search to complete the work left by the mincut
refinement. Specifically, PI determines the exact placements of all leaves of the
planned subtree of the logic tree. _ ‘

Fifth, PT applies the bottom-up hardening refinement to harden all remaining
unhardened nodes of the placement tree.

13.1.2 Bottom-Up Pairing

Some chips have pairs of modules that can be placed next to each in a very natural
way. This situation often arises, for example, with a PLA and its driver. The bottom-

up pairing refinement identifies such module pairs (or, more generally, hardened pi-

~ boxes) and determines exactly how the modules should be placed next to each other.
This section discusses some preliminary thoughts on how PI might perform bottom-
up pairing. Some of the ideas in this section were originally developed by C. S.
Chow. .
Given a pi-box P that has at least three hardened children, bottom-up pairing
selects two hardened children of P and places them next to each other. Let A and B
denote these paired children. PJ creates 2 new pi-box C and makes C a child of P.

ot s e

Chapter 13: Extensions to the PI Systerh " : 155

[
1

Figure 13.1: Bottom-up pairing refinement

Pi-boxes A and B become children of C and are removed as children of P. During
bottom-up pairing, PI translates and orients A and B, leaving room for routing. PI
sizes C to fit tightly around A and B, and C is declared hardened (see ﬁgure_ 13.1).

One approach is to compute for each pair of modules a normalized pairing score
that measures how well the modules fit together. The two modules with the highest
pairing score are placed next to each other, S _

Since bottom-up pairing deals with exact placements, it is important that the
pairing score be sensitive to the orientations and relative positions of the two mod-
ules under consideration. Therefore, the pairing score is computed for each of the
32 different relative positions and orientations of the modules.} The pairing score for
each pair of modules is taken to be the maximum of the pairing scores computed for
all possible relative positions and orientations. To place the selected pair of modules
next to each other, PI applies its hardening refinement, using the relative position
and orientation that produced the highest pairing score. '

To speed up the pairing selection process, P] could use pruning techniques that
quickly reject certain pairs or relative positions of modules. Pruning of pairs might be
based on interconnectivity; pruning of relative positions might be based on geometric
factors. o _

~ For any pair of modules, for any relative position and orientation, P] computes
the pairing score as follows. First, P hardens the pair of modules using the hardening

1Given any two modules A and B, there are exactly 8 ways to flip and rotate A, and there are
exactly 4 ways to rotate B. Together, these operations describe the 32 possible relative positions and
orientations of A and B. ,

156 | ‘Alan T. Sherman, Thesis—Part II: October 14, 1986

Figure 13.2: A nonslicing placement

refinement. Second, PI evaluates the hardened pair. Such a score might be computed
as a weighted sum of terms based on the following considerations: layout density of
bounding box (calculated from module area and estimated wire area), number of nets
touching the two pi-boxes (with short nets weighted more heavily than long nets),
and estimated wire length for routing between the two paired pi-boxes (normalized
with respect to number of nets).

13.1.3 Cpmbinatorial Search

The combinatorial search refinement computes an exact placement of a small number
of modules. This refinement casta the placement problem as a search problem over
a finite subset of possible placements. PJ finds an optimum placement by evaluating
each placement in the search space. Although combinatorial search could also be
used in a bottom-up pairing strategy, the P team intended the combinatorial search
refinement to be used on small partial placements produced by mincut. This section
sumrmarizes some preliminary thoughts on how combinatorial search might be carried
out,

One important reason for using a combinatorial search refinement is to enlarge
the set of placements that PI can produce. In contrast with PI's current mincut
and bottom-up pairing refinements, combinatorial search is not limited to slicings.
Although all placements of three or fewer modules are slicings, this is not true when
there are four or more modules (see figure 13.2). Another reason for using combina-
torial search is to exploit the power of exhaustive search. To place a small number
of modules, it may be feasible to try all “essentially different” placements.

Casting the placement problem as a discrete search problem is of additional in-

-Chapter 13: Extensions to the PI System = 157

: Figure 1_3.3: Combinatorial search i'eﬁneinent

terest because such a formulation could lead to general-purpose placement stra.tegxes
based on heunstxc search techniques.

How Combinatorial Search Works

The combinatorial search refinement determines an exact placement of a set of mod-
ules (or, more generally, hardened pi-boxes) in the context of a placement tree. Input
to the combinatorial search refinement is a a pair (P, T), where P is a sized pi-box
P in the placement tree 7. P must have at least three children, and each child of
P must be hardened.? During combinatorial search, PT determines the exact relative
placements and orientations of P’s children, leaving space for routing. PI translates
and orients the children appropriately and modifies P’s extent to fit tightly around

the children. Finally, P is declared hardened and the structure of T is unaltered (see
figure 13.3).

-Combinatorial search works by exhaustively searching a finite subset of place-
ments. Since there are infinitely many legal placements, P limits its search to a
restricted subset of placements. Moreover, the subset is chosen so that it includes
one representative for each “essentially different” placement.

For each placement considered in the search, P] hardens the placement and com-
putes a combsnatorial search score. The search returns the best hardened placement,
as measured by the score. Since PI's hardener works only on slicings, a more general
hardener would have to be created. -

: 3If P has only two children, then the bottom-up pﬁrhg refinement cad be used to place the
children.

158 Alan T. Sherman, Thesis—Part II: October 14, 1986

The combinatorial search score of the hardened placement can be based on the

following considerations: estimated wire length (including both wiring within the

placement and wiring from the placement to the rest of the chip), bounding area,
and how well the placement fits into P’s extent.

Defining the ‘Search Space

The basis of the combinatorial search refinement is to search over a restricted, yet
representative, subset of placements. This section suggests several tentative ideas for
defining the search space. ‘

One approach is to divide the set of legal placements into equivalency classes.
The search space consists of one representative from each equivalency class. Within
each equivalency class, hardening produces the same result. Of course, it should be
possible to enumerate elements in the search space efficiently.

More specifically, the search space might be based on one of the following ideas:
topologically distinct partitions of a rectangle, Voronoi diagrams {356,354], adjacency
graphs (as defined by nearest neighbors), adjacency graphs (as defined by line of
sight), or lexicographic orderings of corner points.

13.2 A New Crossing Placement Algorithm

A new crossing-placement algorithm was designed, but never implemented. This new
algorithm performs crossing placement in three stages: crossing ordering, erossing
positioning, and crossing layer assignment. The crossing ordering stage determines
for each channel edge the order in which nets cross that edge. The crossing positioning
stage calculates the exact position of each crossing. The crossing ordering stage
assigns a layer to each crossing. ‘

The new crossing ordering algorithm uses a greedy strategy developed by Rivest
and Fiduccia that proceeds channel by channel [451]. For the special case of two-point
nets, this algorithm minimizes the number of forced crossovers.

The new crossing position algorithm minimizes estimated wire length through
formulating the crossing position problem as a linear programming problem. This
algorithm is due to Mark Novick, who also proved some additional properties about
the new Rivest-Fiduccia crossing ordering algorithm [448].

13.3 Ideas for Channel Routing

The main ideas behind PI's three switch-box channel routers are storing a library
of routing patterns, scanning the channel from one side to the other, and routing
the strands one at a time using a minimum-cost Steiner tree heuristic. Toward the

Chapter 13: Extensions to the PI System 159

end of the project, the P[team considered designing an additional router. Although
several promising ideas were discussed, a fourth router was never implemented. This
section briefly describes the four major ideas that were considered by the PJ team for
building a new switch-box channel router. These ideas are heuristic search, routing
to a grid, divide-and-conquer, and dilation-compaction.

Heuristic search routing treats channel routing as a search problem. Channel
routing takes place through a sequence of moves, where each move routes one strand.
As with the Lee router, heuristic search routing processes strands one at a time. But
unlike the Lee router, backtracking, look-a-head, and other standard heuristics guide
the search.

The routmg-to—a- grid strategy first constructs a grid in the interior of the channel.
The grid can have either regular or irregular spacings. Then, each crossing is routed
to the grid in such a way that the remaining routing within the grid is simple.

Divide-and-conquer routing, sometimes called hierarchical routing [412,413], re-
cursively divides the channel into subchannels until the subchannels can be easily
routed. One idea considered for PI is to use PI’s crossing-placement algorithm as
the mechanism for defining the subproblems. Specifically, at each step, the channel
is divided into two rectangles by a carefully chosen dividing line. If any strands
are forced to cross the dividing line, then crossing placement is performed along the
dividing line to determine the locations of these crossings.

Dilation-compaction routing works by expanding the channel, routmg the ex-
panded channel, and finally compacting the routed channel. One motivation behind
this strategy is to separate the topological aspects of routing from the geometric
concerns. The final compaction step attempts to map the solution of the expanded
problem into a planar-equivalent routing that fits into the geometrically restricted
channel. This method appears especially promising given the existence of good
planar-compaction algorithms, such as the one recently proposed by Miller Maley
[442]. According to Maley, researchers at Bell Laboratories have experimented with
this style of channel routing [442].

13.4 P1 at General Electric

The General Electric Research and Development Center (GE) in Schenectady, New
York, modified PJ into an extended system which they call 2PI. This section briefly
describes what extensions GE added to PI and summarizes GE’s experiences with
2P1.3

GE becarme 1nterested in the P1 System for routing custom VLSI chlps Since

2The information in this section in based on an August 7 1985 telephone conversation with Dr.
Robert M. Mattheyzes and on pnvat.e correspondence, dated October 8, 1985, from Ross Stenstrom
and Robert Mattheyses.

160 Alan T. Sherman, Thesis—Part II: October 14, 1986

most of GE’s applications involved highly structured placements, GE preferred to
place its chips by hand. Consequently, GE planned to use PT exclusively as a router.
. Initially, GE intended to use MIT’s prototype system, with minor modifications, as
production software. :

13.4.1 How 2PI1 Extends PJ

GE developed a new switch-box router and further modified PJ in several ways.
This work was carried out by Robert M. Mattheyses and Ross Stenstrom, with brief
programming help from a few other people. GE’s 2PI system extends PJ in the
following ways: : :

o The user can define busses (i.e. bundles of nets) each of which are treated as a
single net during global routing.

o To facilitate the routing of critical nets, the user can specify a priori'ty for each
net. The priority of each net affects the order or manner in which the net is
routed.*

e In 2PI, the user can interverne to a greater extent during various steps of the
layout process than with PI. For example, the user can adjust placements by
moving modules. (Specifically, the user can move any module by “pushing”
it with a mouse.®) Also, the user can select any channel with the mouse and
order 2PI to route the selected channel individually.

o 2PI uses a new switch-box channel router. The new GE router is similar in fla-
vor to PI’s slice router, but follows the original greedy router design [450] more
closely. According to Stenstrom and Mattheyses, the new router works much
more effectively than PI’s slice router. To adapt the greedy router strategy to
the switch-box context, the new router scans the channel in two passes, the
first pass proceeding left to right, the second pass proceeding right to left {429].

o 2PI uses a regular global grid and forces all layout features, including the input
pins, to be placed along this grid.

13.4.2 Expérimental Results

Using their version of PI, GE successfully routed the signal wires on two test chips.
Power and ground wiring was supplied only on the second chip.

4The PI System has a provision for assigning priorities to nets, but this provision is currently used
only by the global router. :
5A mouse is an input device through which a user can point to locations on a display screen.

g e

Chapter 13: Extensions to the PI System | _ 161

The first chip had 580 nets and 139 modules and measured approximately 11400 x
11320A. Channel definition produced 52 channels, 10 of which were empty. Running
on a Symbolics 3600 Lisp Machine, 2P1I spent roughly 90 minutes on channel routing,

90 seconds on crossing placement, 1 minute on global routing, and 30 seconds on
channel definition.

The second chip had 412 nets and about 150 modules and measured approximately
6100x4300A. Channel definition produced 41 nontrivial free channels, plus numerous
tiny covered channels resulting from the power and ground wiring. 2PI spent roughly
1 hour on channel routing and 30 minutes on global routing. Running times for
crossing placement and channe! definition were comparable to those from the first
chip. The increased time for global routing resulted from the fragmentation of covered
channels. |

With adjustments to handle new situations encountered in the two test chips,
2PI’s new router succeeded on all but two free channels for each chip. The failed
channels were too small to contain any successful routing. After a design engineer
manually expanded the failed channels, 2P1 successfully routed both chips.

Stenstrom and Mattheyses considered the proliferation of covered channels in the
second chip a problem, even though this proliferation apparently did not prevent 2P
from laying out the chip. o L . ‘

13.4.3 | Discussion

In hindsight, GE discovered that more than just “minor modifications” would be re-
‘quired to transform the prototype PI system into a useful production-quality system.
Since, at this time, GE is not interested in undertaking a major rewrite of P1, GE
has no immediate further plans for 2PI. Nevertheless, GE might abstract some of the
ideas and algorithms from Pf in future layout tools. o
Through their experiences with PI, GE concluded that building an individual
special-purpose layout tool is much easier than building a complete general-purpose
“VLSI layout system. Moreover, since most of GE’s chips are very specialized, GE
“believes that special-purpose layout tools best suite their current needs. _

Chapter-14 o
Open Problems

Organized in two sections, this chapter identifies and abstracts some of the important
layout issues that arise in PI’s placement algorithms. The first section precisely
formulates three placement problems motivated by PI; the second section identifies
some of the important issues that arise in mincut placement heuristics.

14.1 Abstractions of PI’s Placement Problems

This section defines placement problems that distill in a simple and meaningful way
some of the major considerations addressed by PI’s placement algorithms. It would

be useful to know which variations and restrictions of these problems are tractable
and which are not.

14.1.1 A General Context for Placement Problems

We shall focus our attention on placement problems whose input consists of a set
of modules to be placed, a set of nets which describe how the modules are to be
interconnected, and a target region into which the modules are to be placed. Each
net consists of a set of pins, and each pin is a point on some module.

We assume a layout methodology that lays out each chip in two separate phases:
placement and routing. We further assume that there is a layout cost that measures
the efficiency of a layout. For example, layout cost might be bounding area, wire
- length, or a linear combination of these measures. Similarly, we assume that there is
an estimated layout cost that estimates how efficient the final layout of a placement
will be. For example, estimated layout cost might estimate wire length by computing
sum of the perimeters of the bounding boxes of the nets.

The goal of the placement problem is to find a placement of the modules in the
target region that leaves enough room for routing while minimizing estimated layout
cost. The goal of the routing problem is to lay down the wires in a way that minimizes

162

~Chapter 14: Open Problems A 163

layout cost. Of course, we require that placements and layouts be legal in the sefise
‘that they satisfy the design rules for chip fabrication.

- We say that a placement ss routable if there is some routlng of the placement We
"also assume that there is a routability measure that estimates how “easy” it would
‘be route the placement. For example, the routability measure might be based on a
notion of layout density.

. The placemefit problem involves a combination of geometric and graph theoretic
‘concerns. At one extreme, if there are no nets and if the layout cost is bounding area,
‘the placement problem becomes the bin packing problem [22]. At another extreme,
if each module is a point, the placement problem becomes a graph embedding prob-
lem [381,380]. The PJ System deals pnma,rlly w1th forms of the placement problem
‘between these two extremes.

14.1.2 Three Placement Problems

To help understand what forms of the placement problem are efficiently solvable and
what forms are not, we define three restricted placement problems motivated by PI.
The first problem is a simple and general formulation of the placement problem; the
second problem requires the placement to reflect a specified hierarchy; and the third
‘problem deals with module orientation. Additional variations of these problems can
be formed by restricting the positions of pins, limiting the number of pins on each
net, and imposing different types of routability measures and layout costs.

. Termmology

' The following terms w1ll be used in deﬁnmg the restrxcted pla.cement problems
A net over a set of modules is a net each of whose pins lies on one of the modules.
A placement tree over a set of modules is a tree whose leaves are the modules. A
-placement tree is useful to express a hierarchy, such as a hierarchy that reflects the
interconnectivity of the modules.

Let T be a placement tree and let P be a pla.cement. of T’s modules. A T-tree
refinement of the placement P is a modification of P that preserves the structure of
T. The allowable modifications are recursively defined as follows. First, any module
can be interchanged with any of its sibling modules in T. Second, for any subtree S
of T, the placement of the leaves of S can be modified through any S-tree refinement.
Tree refinements can be used to compute an exact placement from an approximate
pla.cement produced by a mincut heuristic.

An orientation of a placement is a modification of the placement achieved through

ﬂlppmg and rotating the modules around their centers, intended to improve the
placement. .

164 ' Alan T. Sherman, Thesis—Part II: October 14, 1986

Unrestricted Uniform Placement

The unrestricted uniform placement problem is a simple formulation of a general
placement problem. Modules have uniform size and may be centered on any point

of a regular grid. Each pin is located at the center of its module. This problem is
NP-complete. ‘

Problem UUP. Instance: A 'set M of m modules, & set of n nets over M, a wire
length measure ¢, and an integer d. Restrictions: Each module is a square; all mod-
ules have the same size; the target region is a regular square grid; each pin is located
at its module center; and each module must be centered on a grid point. Question:
Is there a legal placement P of the modules such that ¢(P) < d? Note: For the

Manhattan wire length measure, this problem is NP-complete, by reduction from the
mincut linear arrangement problem [22].

‘Uniform Tree Placement

Uniform tree placement is a restriction of the placeineht problém in which the place-

.ment must preserve a specified hierarchy. This problem can arise, for example, in .

mincut placement strategies that first compute a placement hierarchy. The complex-
ity of this problem is not known.

Problem UTP. Instance: A set M of m modules, a set of n nets over M, an initial
- placement P of M, a placement tree T over M, a wire length measure ¢, and an
integer d. Restrictions: The target region is a regular square grid; the placement
tree is a complete binary tree; the initial placement is a slicing; each pin is located
at its module center; and each module must be centered on a grid point. Question:
Is there a legal, T-tree refinement 7 of P such that ¢{r(P)) < d?

The slicing geometry of the initial placement makes dynamic programming a
promising technique for solving this problem. Moreover, dynamic programming has
.been successfully applied to solve two similar problems. Stockmeyer considers a ver-
sion of this problem in which the layout cost is bounding area and the orientation of
each node in the placement tree is given, but in which modules may be arbitrary rect-
angles. Using dynamic programming, Stockmeyer solves his version of the problem
in polynomial time [408]. As pointed out by Leiserson and Bhatt, the orientation
information is not needed, but the tree must be height balanced in order for the
Leiserson/Bhatt algorithm to run in polynomial time. Rivest and Fiduccia use dy-
namic programming to solve a separate one-dimensional version of the tree-placement
problem in polynomial time [433]. Even if dynamic programming fails to solve the
uniform tree placement problem, it would still be useful to know what placements

b e i

i et i

. Chapter 14: Open Problems e ' 165

problems can be sofved by dynamic programming.

Uniform Module Orientatibn

In the uniform module orientation problem, each module may be flipped 'a.nd'i-otai:ed,
but must remain centered on its initial grid point. This problem can arise in the final
adjustment of an approximate placement. '

- Problem UMO. Instance: A placement P of a set M of m modules and a set of n
nets over M, a wire length measure #, and an integer d. Restrictions: Each module
is a square; all modules are the same size; the target region is a regular square grid;
each pinison a boundary of its module; and each module must be centered on a grid
point.” Question: Is there a legal orientation p of P such that ¢(p(P)) < d?

For the special case in which all modules lie along a line and the wire length
measure is based on the Manhattan metric, a simple greedy strategy finds the optimal

orientations. But the complexity of the general case of the uniform module orientation
problem remains an open problem. '

| 14.2 Mincut Issues |

Motivated by Pr’s placement algorithms, the following informal questions identify
several important issues that arise in using mincut strategies to place modules:

-

. 1. When applying mincut in a recursive fashion, what are the consequernces -of
 using various traversal orders (e.g. depth-first and breadth-first traversals)?

2. What are the consequences of applying mincut heuristics with different branch-
ing factors? :

3. Koss suggests that, for each level in the mincut hierarchy, simultaneous parti-
tioning of each rectangle at that level helps [392]. The intent of Koss’s scheme is
to enable mincut to make more of a global decision while refining each node the

~ placement tree, thereby increasing the chance that mincut will find a globally
optimal solution. What effect does this heuristic have?

4. When pé.rtitioning a circuit into two or more components, how should the
components be balanced? What effects do various area-balance conditions have
on the performance of mincut strategies? How can wire-area be incorporated
into a balance condition?

166

10.

Alan T. Sherman, Thesis—Part II: October 14, 1986

. In a mincut strategy which computes a slicing by recuriaivelfr dividing a rect-

angular region, where should the cut line be drawn? How should be partition
be oriented?

. Once a mincut tree has been deterﬁninéd, how should an exact placement be

calculated?

. Would a multiple-pass mincut algorithm be useful? That is, could an initial

mincut placement tree be useful to 2 mincut placement strategy?

. How does the initial estimate of chip size affect the placement produced by a

mincut procedure?

What preprocessing heuristics might be helpful? (For example, research by
Thang Bui suggests that compressing sparse sections of graphs might help some
mincut algorithms perform better [348].) -

How can mincut strategies be applied to nonrectangular modules?

Chapter15
Discussion

This chapter preéents additional information and analysis about the PI System, in-
cluding a brief review of related layout systems, a discussion of the implementation
of the P] System, and a critique of the P Project. '

15.1 Related Work

This section briefly describes a few other layout systems that exist in addition to
the PI System. This section also reviews some previous work on mincut placement
techniques.

15.1.1 Other Layout Systems . _

To the best of my knowledge, the PI System is the first fully automatic placement and
routing system for custom VLSI that has been described in the open literature. It is
possible, however, that other automatic layout systems exist as propriety products
in industry laboratories or as classified tools in government organizations. The rest
of this section describes a few layout systems that were developed around the same
time as the PJ System. : -

Berkeley’s Magic system ‘is an intelligent, interactive, practical VLSI layout sys-
tem [458]. Developed by John Ousterhout and his associates.. Magic extends the
capabilities of the earlier Caesar and KIC? layout editors [457,456]. Major features
of Magic include a continuous design rule checker, routers that can operate in the
presence of obstacles, and an interactive stretching and compacting operation known
as plowing. As the name suggests, plowing rearranges a layout by pushing chip
features out of the path of a “plow,” while preserving design rules and electrical con-
nectivity. To represent layouts, Magic maintains a set of logical planes, each of which

is partitioned into rectangular tiles. Tile are “sewn” together by corner stitches that
point to the orthogonal neighbors of the upper-right and lower-left tile corners.

167

168 . | Alan T. Sherman, Thesis—Part II: October 14, 1986

Phoeniz is an interactive program for placing modules on a custom chip. This
program was designed and implemented at Stanford by former PI team member
Chee-Seng Chow under the supervision of Brian Preas {397,460]. Phoenix is the
placement phase of a layout process that performs placement and routing in two
separate phases. Unlike PI, Phoenix makes no attempt to leave room for routing. In-
stead, Phoenix determines a placement topology which specifies the relative positions
of the modules. Channels separating modules can be expanded without altering the
placement topology. The routing phase intended for Phoenix will route each wire

globally and then perform detailed channel routing channel by channel. Phoenix

will process the channels in the order specified by a channel order constraint graph,
which describes which channels can affect others. During detailed routing, Phoenix
will expand channels as needed, but, when ¢ycles in the channel order constraint
graph exist, portions of the detailed routing process may have to be repeated until
a solution is reached. Routing can alter module placement, but not the placement
topology. : _

Using a combination of top-down and bottom-up approaches, Phoenix manipu-
lates rectangular modules zero or more corners of which are missing. The top-down
approach is based on a floor-planning mincut heuristic; the bottom-up approaches
are based on a variety of heuristic search techniques. Phoenix also supports a few
additional heuristics for improving placements. Although Phoenix was designed as a

hierarchical system, currently Phoenix deals only with one “assembly” in the hierar- .

chy. :
Other interesting layout systems include Metalogic’s MetaSyn silicon compiler
[459] and Alberto Sangiovanni-Vincentelli’s Timberwolf package, developed at Berke-
ley [461]. Timberwolf uses a simulated annealing heuristic [362,361,358] to place
modules on a gate-array chip. :

15.1.2 Previous Work on Mincut

‘Applying mincut strategies to solve placement problems has been tried since at least
1969, when, according to Leiserson, Glinther used a mincut technique to place ma-
chines in a workshop [379,389]. Some researchers focus on the problem of placing
uniform sized modules (standard cells). For example, Breuer studies how mincut
schemes can place uniform sized modules on a regular grid [384], and Dunlop and
Kernighan describe a mincut method for placing standard cells on a VLSI chip [387].
As do PP’s placement algorithms, the Dunlop-Kernighan heuristic can make a local
partition in the context of previously placed modules. The Dunlop-Kernighan heuris-
tic operates as part of an interactive layout system developed at Bell Laboratories.
Lauther applies a mincut strategy to place arbitrary sized rectangular modules on
integrated circuits [393]. Lauther’s method, which is part of a layout system devel-
oped at Siemens, improves an initial placement through three heuristics known as

Chapter 15: Discussion o 169

rotation, squeezing, and reflection. . e P :

.. Graph partitioning plays an important role in mincut placement strategies. Al-
though the basic graph partitioning problem is NP-complete [22], there are good
heuristics for solving this problem. For example, Kernighan and Lin describe a
general, iterative improvement heuristic for partitioning graphs {391]. Fiduccia and
Mattheyses give a detailed implementation and adaptation of the Kernighan-Lin al-
gorithm [388). By exploiting a simple data structure, the Fidueccia-Mattheyses imple-
mentation runs in linear time per pass in the number of pins. As part of his research
on the bisection size of random graphs, Thang Bui presents some graph partition-
ing heuristics [348]. Finally, as part of experimental work on simulated annealing,
Johnson and his associates found that repeated trials of the Kernighan-Lin heuris-
tic on random initial configurations usually obtained better results than a simulated
annealing method run for a comparable amount of time[360].

15.2 ‘PI System: Irhp'lementat"io'n,' Contributors,
- Status, Documentation | | -

- The PI Project took place from about 1981 through 1983. During the first year,
work focused on the slice router and global router. In the second year, the PI team
designed of most of the other algorithms and finished its initial implementation of
the signal routing phase. The third year was spent completing the design and im-

-plementation of the placement routines, power and ground routing algorithms, and
resizer. This section presents more information about the PT System’s implementa-
tion, contributors, current status, and documentation.

15.2.1 ‘Implementation o B o

The PI System is implemented in the Zetalisp dialect of Lisp and runs at MIT on a
Symbolics 3600 Lisp Machine [468|. There are approximately 40,000 lines of source
-code (including comments), which were written by roughly fifteen people. PI com-
pletely placed and routed its first chip in November 1983.

Initial implementation of P was done in Maclisp [469] on a PDP10 computer
known as “ML”. Several implementation difficulties arose from the PDP10’s rela-
tively small main memory. Eventually, the P| Project acquired a Symbolics 3600
Lisp Machine, at which time the P] team adopted ZetaLisp as the implementation
language. For a while, the P] team attempted to keep the system Maclisp and Fran-
zlisp compatible, but the team considered this effort too restrictive and eventually
gave it up. Nevertheless, the team made a fairly careful attempt to isolate all machine
and technology dependencies.

170 ‘ ~ Alan T. Sherman, Thesis—Part II: October 14, 1986

The decision to implement PI in Lisp was based on three reasons. First, Lisp’s
~ expressive power and object-oriented nature make it well-suited for developing pro-
totype systems. Second, Lisp is the most popular and best supported language at
- MIT. Third, several existing VLSI tools (¢.g. the DPL design system [341}) were
already implemented in Lisp.

Three major considerations influenced the design of Pr’s algorithms—quality of
results, implementation difficulty, and running time. The placement phase runs in
time O{mnlog, m) in the worst case, where m is the number of modules and n is
the number of nets. But this formal time analysis means little since the worst-case
inputs (i.e. complete graphs) are unrepresentative of typical inputs encountered in
practice. In practice, the running time of P is usually dominated by channel routing.

15.2.2 PJ People

Numerous people contributed to the PI Project. Some people simply attended a few
of the weekly meetings; others spent one or more years on the project. Although
many of the algorithms were sketched out during the group meetings, each of the
major contributors took primary responsibility for the design and implementation of
one or more of the component algorithms. Most decisions regarding the structure of
PI were made during the group meetings. :

Given the large number of people who were involved with the PI Project, it is
difficult to remember everyone’s contributions. Nevertheless, I will now attempt to
acknowledge the major participants. My apologies go to anyone whose contributions
I may have omitted.

Ronald Rivest provided the inspiration, leadership, and continuity for the project,
as well as many of the crucial ideas. He also designed and implemented the quick
router, the Lee router, the initial version of the resizer, and many other parts of PI.

Alan Baratz designed and implemented the global router.

Arthur Chin designed and implemented the random example maker.

Chee-Seng Chow studied the problem of bottom-up pairing and implemented the
geometric transformations used by the placement a.lgorxthms

David Christman helped implement the slice router.

Jean Fitzmaurice worked on a routine to convert PI's output to SIF format.

Ali Ghaznavi created a few test examples. :

Alain Hanover participated in several design dlscussmns

David Hsu wrote some of the graphics routines.

David Jilk implemented an early version of the pad placement algorithm.

Joe Kilian investigated ideas for building a hierarchical switch-box channel router.

Jim Koschella designed and implemented the slice router.

Michael Koss implemented an initial version of the hardening refinement.

Chapter 15: Discussion T . 171

- Gordon Linoff designed and implemented the pad placement routine. He also
wrote much of the graphics code. _
Andrew Moulton designed and implemented the power-ground router.
Mark Novick analyzed the crossing-placement problem and designed a new
crossing-ordering algorithm. _
Ron Pinter contributed to the initial design of PI.) o _
Flavio Rose helped maintain the entire system and wrote the Pr System User
Manual. He also revised the crossing placement routine. o
' Alan Sherman designed and implemented the placement heuristics. He also re-
vised the initial implementation of the resizer. S
Susmita Sur worked on the design and implementation of the resizer.
In addition, the following people also participated in the P1 Project: Clark Baker,
John Batali, Ramana Rao, Gerry Roylance, Alok Vijayvargia. :

1523 Curréht Status and Futui‘e Plans -

All major pieces of the P[System have been implemented, except the resizer. The
PI System runs at MIT and is available for use in laying out chips. A few students

have used PJ to lay out project chips, but there is still a very large overhead in using

PT due to its software faults and untuned condition. The initial implementation of
the PI System demonstrates the feasibility of PT’s approach, but is not very useful as
a practical layout tool. . _

A few extensions, alternate algorithms, and bells and whistles have not been
implemented. In particular, the revised crossing-placement algorithm and the two
additional placement strategies described in chapter 13 have not been implemented.
Also, the fourth switch-box channel router planned for P] was not implemented,

~though a new greedy router was built at the General Electric Research Center.

PI has not been adequately tested. The major reason for this is that the initial
implementation of the system is still in a rather rough state. Before it would make
sense to benchmark the system, numerous software faults would have to be corrected
and many of the algorithms would have to be fine-tuned.

To make PJ into a practical layout tool, a complete reimplementation of the system

- would be required. Although no one has expressed an interest in undertaking such

a revision, several researchers have expressed an interest in abstracting some of the

~ ideas and algorithms from P1 for use in other layout tools.! . ‘

The PI team has no plans for pursuing the P[Project any further, though several

- members of the team will likely continue working on problems motivated by PJ.

1For example, Professor Richard Zippel has indicated an interest to incorporaté some of Pp's
algorithms into his Schema system [470}.

172 Alan T. Sherman, Thesis—Part II: October 14, 1986

' 15.2.4 Works on the PI System

The most informative short description of the P] System appears as a 1982 conference

‘paper by Rivest [452]. In his 1984 book on VLSI, Ullman also gives an overview of
the PT System [345]. Both of these descriptions, though, are based on early designs
of PJ that have since changed in a few small ways. : _

In 1982, Flavio Rose wrote a user’s manual for the PI System, but this document
is now outdated [453]. _ T

Several theses and technical papers describe the PT System in detail. Alan Baratz'’s
1081 Ph.D. dissertation presents his work on global routing [443,449).

The Rivest-Fiduccia greedy router is explained in a 1982 conference paper [450],
and Jim Koschella’s adaptation of this router to P is described in his 1981 Bachelor’s
thesis [444]. In a 1985 conference paper, Stenstrom and Mattheyses discuss the new
greedy switch-box router that they developed for General Electric’s 2P1 project [429].

The Rivest-Fiduccia crossing-ordering algorithm appears in a 1983 unpublished
paper {451]. Mark Novick’s 1985 Bachelor’s thesis further analyzes this algorithm
and describes PI’s new crossing-positioning heuristic [448].

- A detailed description of PI's power and ground routines can be found in Andrew
Moulton’s 1984 Master’s thesis [446,447].

15.3 - Critique of the PI Project
This section takes an introspective look at the PI Project, identifying its major contri-

butions, reflecting on its major design decisions, and evaluating how well it achieved
its original objectives. - :

15.3.1 Major Contributions

The following five accomplishments stand out as the major contributions of the Pl
Project: = :

o A particular prbblém decomposition for layihg out custom VLSI chips.

Specialized component algorithms for solving subproblefns that result from the
problem decomposition. : ,

Identification of important issues and problems that arise in laying out VLSI
chips.

¢ An initial implementation of the PI System.

Practical experience in designing and building an automatic placement and
routing system.

Chapter 15: Discussion . _ SR _ 173

In addition, the P Project helped stimulate interest in VLSI and provided a source
of research problems for many students. _

. The single most important contribution of the PI Project is the method by which
the P] System decomposes its layout problem. One novel feature of this problem
decomposition is the unique crossing placement step, which plays a crucial role in
reducing the signal routing task to independent fixed sized switch-box channel routing
problems, _ . R

. The PI System’s component algorithms also contribute many useful ideas, These
ideas come mainly through the goals, considerations, and strategies of the various
component algorithms. For many of these algorithms, the goals, considerations, and
strategies are more important than the particular details. But in heuristic algorithms,
it is often more important what considerations are taken into account than how they
are accounted for. Note also that the global routing algorithm and the new crossing
placement algorithms come with proofs of several desirable properties [449,448)|.

For the placement algorithms, the major contribution is the framework in which -
these algorithms operate. This framework, which is centered around the placement
tree, offers an effective means of supporting a variety of placement heuristics that
combine geometric and graph-theoretic concerns. _ - _ :

Finally, the entire PI experience—including the initial implementation of the Pr

- System—offers useful background to anyone planning to build an automatic layout
system.

15.3.2 Reflections on the Major Design Decisions
This section takes a second look at each of the major design decisions that were made -
in the PI System. . .

.. As we knew at the beginning of the project, the decision to build a completely
automatic layout system was an ambitious decision. Savings in labor costs, and the
flexibility to make frequent changes in the design of a chip, make automatic systems
extremely attractive. As the number of components on a chip increases, automatic
layout systems wil! become 2 necessity to handle the huge number of modules and
wires. In addition, the future holds promise for automatic layout systems producing
higher quality layouts than those made by human experts. While it might be prudent
for a company building a production-quality layout tool to tackle a less ambitious
task, PT’s goal of complete automation was a sound research direction. -

. Furthermore, P]’s approach is relevant to nonautomatic, interactive systems. Al-
though the PJ team did not do 80, it would be a straight-forward task to add many
interactive features to the P System. For example, the placement algorithms sup-
port certain types of partially specified placements. The global router, the quick
router, and the Lee router can proceed with some nets already routed. However,
some changes would need to be made to transform PI into an interactive system. In

174 : ' Alan T. Sherman, Thesis—Part IT: October 14, 1986

particular, a more flexible data structure would be needed and many changes in the
user interface would be required. Also, significant modifications would be required to
enable the placement and detailed routing algorithms to lay out chips with arbitrary
partial placements of wires and modules.

The decision to represent modules as arbitrarily shaped recta.nglu pnma.rlly af-
fected the placement algorithms. PI’s mincut approach works well with rectangular
modules, especially since the mincut process produces a rectangular slicing of the
logic box. Although PI's placement approach can be naturally adapted to handle
other regular module shapes that tile the plane (e.g. triangles or hexagons), sub-
stantial modifications would be required to handle more complicated shapes such as
arbitrary rectilinear modules. Of course, any arbitrary shape could be embedded in
a bounding rectangle, but this strategy wastes lots of space. By contrast, the rout-
ing and resizing algorithms can easily accommodate more complicated shapes. For
example, only the channel definition routine would have to be changed to enable the
signal routing algorithms to handle arbitrary rectilinear modules.

The decision to decompose the layout process as a sequence of subproblems was
an effective, practical way to proceed. PI’s particular problem decomposition divided
the layout process into natural subproblems of manageable size. This problem de-
composition helped designers fine-tune parts of the layout process. Though, as we
had known from the onset, PI can miss optimal solutions even if each subproblem is

optimally solved.

' PP’s problem decomposition helps manage the complexity of the layout process
in three ways. Separating the placement and routing phases divides the layout pro-
cess by task. Distinguishing coarse routing from detailed routing divides the layout
process by resolution. Breaking up the detailed routing problem into independent
channel routing problems divides the layout process by locality.

_ The resizer plays a crucial role in PI’s problem decomposition. All parts of PJ are
crucial to its success, but the resizer is especially important in guaranteeing that PI
will eventually find a layout. Since the resizer expands and compresses the layout,
the resizer can have a significant effect on the final placement of the modules. Also,
since the resizer works in a symbolic world of constraints, the total behavior of the
P] System has a certain symbolic flavor, even though the placement and routing
algorithms work with absolute coordinates. Given the importance of the resizer, it
may have been wiser to implement this component of the system first. .

The PI team believed that high quality results could most easily be achieved
through having PI work with absolute coordinates during routing. Since the resizer
was never fully implemented, the effectiveness of PI’s use of absolute coordinates
remains difficult to assess. _ _

PI’s treatment of covered channels has a profound impact on signal routing. Since
power and ground wires run all over the chip, they create numerous covered channels.
Even more covered channels appear after the resizer widens the power and ground

Chaptér 15: Discussion p R . 175

wires to meet their current carrying requirements. This proliferation of covered
channels causes PJ to create more, but simpler free channels than it would without
the covered channels. The final effect is to shift more burden on the global routing
and crossing placement algorithms and less on the signal routers. Initially, the P
team underestimated the magnitude of this effect. :

~ Although the crossing placement algorithm and some of the channel routers ma.ke
some use of grids, P] does not require all chip features to be placed on a global grid.
(Here, the term “global grid” refers to a regular grid that spans the entire chip, with
spacings no smaller than the resolution of the manufacturing process.) PI treats
‘corner points of chip features as objects, the representation of whose coordinates is
left up to the computer running P]. But since the implementation of P] represents
coordinates with finite precision, there is an implicit grid, albeit an extremely fine
one.

Initially, the P] team viewed requiring that all chip features be placed on a global
grid as an unnecessary and artificial restriction. The team did not want to impose
restrictions on where pins can be located on modules, since that would impose an
undo burden on module designers. However, the team did realize it would be possible -
to encase each module in a rectangle and route each pin to a nearby grid point on the
edge of the encasing rectangle. More importantly, the team did not want to require
- that wires be routed on grid lines, since there are situations where that restriction
makes it impossible to route an otherwise routable placement. The decision not to
use a global grid gained some flexibility in routing, but caused several nuisances
involving wire alignments, rounding errors, and the creation of tiny channels and
wire segments.

When PI ran on the PDPIO it was a necessﬂ:y to conserve space by not storing
-pointers to the neighbors of each wire rectangle. But this decision, together with the
lack of a global grid, made it more difficult for the resizer to handle existing wires and
contact cuts. Although there is no inherent reason why these difficulties could not
be overcome, some of these difficulties were never adequately resolved. In hindsight,
life would have been much simpler had P maintained nelghbor pointers and a global
grid.

15 3 3 Conclusmns

Overall the PI Pro_lect was a success. The PI team des1gned and 1mplemented an
automatic layout system based on a sound problem decomposition and a large col-
lection of layout heuristics. Chips laid out by P] demonstrate the feasibility and
effectiveness of PI’s approach.

. The placement algorithms apply a top-down mincut stra.tegy to pla.ce modules
on a custom VLSI chip. The placement tree—the data structure around which these
placement algorithms operate—provides an effective means for constructing heuris-

176 Alan'T. Sherman, Thesis—Part II: October 14, 1986

tics that combine geometric and graph-theoretic concerns.

The PI Project falls roughly into the area of advanced research and development.

Emphasis on algorithm design gave the project a theoretical flavor, yet the 1mple—
“mentation of the PI System presented a large practical task.

It is difficult to evaluate projects like the P] Project. Theoreticians look for theo-
rems; practioners want to see experimental results. But often theorems apply only to
special cases or to asymptotic behaviors, and experimental results tend to say more
about the quality of the implementation than about the underlying ideas. Moreover,
heuristics are difficult to analyze and the assessment of the P] System is complicated
by interactions among the algorithms, user interface, and implementation.

At times, the P] Project was caught in between theory and practice. Work on
algorithm design and analysis took away from the implementation, and the imple-
mentation siphoned resources away from design. Although the emphasis was always
on algorithm design, implementation sometimes forced the designers to make difficult
engineering choices. I believe that both the theoretical and practical dimensions of
the project would have benefited from a cleaner separation of design and implemen-
tation. But given the ambitious character of the project, the PI System would never
have been completed if implementation had waited until all algorithms were perfected
to the complete satisfaction of the designers. Moreover, the implementation gave the
designers useful feedback and helped ensure that no important detail was overlooked.

Although there was never any attempt at writing production-quality software,
the initial implementation of the P] System fell short of one of its goals to be useful
to students in laying out project chips. While a rewrite of the P] System would likely
succeed at this goal, the current software is not very useful.

Many factors affected the quality of PI’s software. First, there was never a full-
time programmer nor a primary person in charge of the software effort. Too many

- people wrote software and many of the people were with the project for a relatively
short period of time. Moreover, most of the participants had very little software
experience and were not interested in writing production-quality software. Initial
work on the PDP10 was hindered by a poor programming environment, but, even
after work switched to a Symbolics 3600 Lisp Machine, the P team never made

.full use of that machine’s features. The lack of a global grid created some systemic
‘complications, and specifications of the P] System evolved throughout the project.
On the positive side, PI’s problem decomposition helped break up the software task
into fairly independent modules. Independent of its VL.SI connections, the PI project
provides an interesting case study in software engineering.

High-quality software development is expensive and almost always requires at
least one major revision of the entire system. To become a useful production-quality
layout system, the PI system needs to be rewritten. I estimate this could be done
with three full-time programmers working over one year. But what is more likely to
happen is for other researchers and developers to extract the major algorithms and

- Chapter 15: Discussion R - - _ 177

ideas from the P Project and adapt them into new systems.

178 Alan T. Sherman, Thesis—Part II: October 14, 1986

Bibliography

This detailed bibliography lists and organizes sources I used during my

dissertation research. The bibliography is organized hierarchically by subject

_categories and attempts to give clear pointers to sources referred to in the body

of the dissertation. In addition, the bibliography strives to list each technical

work that may have indirectly influenced my research, even if the work is not

- referenced in the body of the thesis. But no attempt was made to make the
bibliography a comprehensive guide to literature in VLSI and cryptology.

The bibliography is divided into three major sections: basic mathematics

and computer science, cryptology, and VLSIL Each of these sections is subdi-

. vided into additional subject categories. Within each subject category, works

are listed alphabetically by the last name of the first author. Each work is as-

signed a primary subject category. Of course, the choice of categories and the

assignment of works to these categories is somewhat arbitrary, and for some
works several subject categories could have been assigned.:

For ease of finding entries in the bibliography, each work is numbered by
the order in which the work’s primary citation appears. A single numbering -
.scheme spans the entire bibliography. As a supplementary indexing mechanism,
an outline of subject categories begins on page 180.

179

180 Alan T. Sherman, Thesis: October 14, 1986

Outline of Bibliography

- General Works on Mathematics and Computer Science................. 182
Number Theory and Algebra...........cooveuevnnnnnnnneennn.. 182
Probability and Statisticsoooeiveiniunnnnnnnnn. ., eeeeas 182
Combinatorics.........oiiiiiiiiiiii i 183
Algorithms and Complexnty Theory coeuiiviieianiriiiiaeeannnnnn, 183
Information Theoryocoiiiviiiiiiiiiinneiie 184

Works on Cryptology.......... Chesatesavenenea v N testececeanrancnens 185
Basic Sourcesiiiiiinriniiiinannnnn., Geemensseronens 185

Bibliographies

Major Annual Conferences for Technical Cryptology
Other Conferences
Collections
Survey Works _
History and Policyvvvuunn.... ceerececenaa. creeaane teeevena. 188
History
Policy
: Speczahzed Topics in Mathematics..................... eireeaeeanas 189
Random Functions and Random Permutatlons
Cycle Detection
Factoring
Primality Testing
Discrete Logarithm
Information-Lossless Computatlon
_ Other Specialized Works in Mathematics =
Theory of Cryptology and Cryptographic Secunty Ceieasinsesnsanan 192
Complexity Theory and Cryptographic Security
Information Theory and Cryptographic Security
Physics and Cryptographic Security
Public-Key Cryptography
Specific Cryptosystems..........covvevernvnnnnnn. Cerescenetieraeans 195
Federal Standards Involving DES
Data Encryption Standard '
Knapsack Cryptosystems '
RSA Cryptosystem and Related Cryptosystems
Discrete-Log Cryptosystems
Pseudo-Random Bit Generators
Feedback Shift Registers
Other Cryptosystems

Bibliography: Outline ' 181

__General Cryptanalysis....... et saeeteemiinatasetianennasenes o202
Digital Signatures.....cocoiiiiiiiiiaresntnnrsnsneaciiissiestcaras 202
ProtoCol8 «uvuveieienerrnceesesosnsannssassnsasanasasasssasssssnans 203
Practical Securityc.vvvvvnnnnn. Ceeeetestecacanarnrrasanenons -« 204

Computer Security
~ Physical Security _ _ - _
Other Topics.... 0 ceeeinererreressesnnsens Ceettestesereaeennananen 205
: Combining Cryptosystems

Natural Random Bit Generation

-Secret Sharing

" Other Works
Works on VLST . neveneneieneeearnnnnn et ara e . 208
. Basic SOUICeS .cvvvevenreernnronrccssscanscssasanas Cessssesansnennne 208
Bibliographies

Major Conferences
Collections and Other Conferences
~ Survey Works _
- Specialized Topics in Mathematics.......... vasnsassus eevesinainans 210
Graph Theory :
Computational Geometry
- Optimization Techniques

VLSI Models :

Lower-Bounds for VLSI La.yout

Systolic Systems

Other Works : . S
Placement:...... iesarsaimnane eeeees e eder e teetaneaee.ss 213

Mincut Placement Techmques :

Other Placement Techniques

Routing....... Ceneratesssarsrasasarssenisas emerasisesanenasssassi2ld

Channel Routmg '

Other Works on Routing o ' ‘
Compaction.......... tisesasnens eeeesaeana R esesassaesses 217
The PI System....occoveeeecvnoes Ceeeverenans e eeetreiarenraaeans 218
Other Placement and Routing Systemsovviaiiiaanan, 218

" Layouts of Specific Circuits....... Cetttesaressanersns Cisasesesanans 219

Other WOTKS « v v v nernresnesassesnnsnseeneissnecnrsasasasenasnses 219

182 - Alan T. Sherman, Thesis: October 14, 1986

General Works on Mathematics and Computer
Science

Number Theory and Algebra

[1} Albert, Adrian A., Fundamental Conccpts of Higher 'A'lg.cbra, University of
Chicago Press (Chicago 1966).

[2] Carmichael, Robert D., Introduction to the Theo’fy of Groups of Finite Order,
Dover (New York, 1956). :

[3] Hardy, G. H.; and E. M. Wright, An Introduction to tfze Theory of Numbers,
Oxford Univ. Press (London, 1971).

[4] Herstein, 1. N., Topics in Algebra, Blaisdell (New York, 1975).
[5] Hungerford, Thomas W., Algebra, Springer (New York, 19'74). -
[6] LeVeque, Fundamentals of Number Theory, Addison-WesIey”(1977).

[7) Niven, Ivan; and Herbert §. Zuckerman, An Introduction to the Theory of
Numbers, John Wiley (New York, 1980). :

[8] Rotman, Joseph J., The Theory of Groups: An Introduction, Allyn and Bacon
- (Boston, 1978). . :

[9] Wielandt, Helmut, Finite Permutation Groups, Academic Press (New York,
1964). | - | | |
Probability and Statistics : |

(10] Cramer, H., Mathematical Methods of Stafféti?s, Princeton Univ. Press (1974).

[11] Feller, W., An Introduction to Probability Theory and its Applieations, vols.
I, John Wiley (New York, 1957). S

[12] Good, Irving John, The Estimation of Probabilities: An Essay on Modern
Bayesian Methods, MIT Press (1965). o : :

[13] Larsen, Richard J; and Morris L. Marx, An Introduction to Mathematical Statis.
tics and its Applications, Prentice-Hall (Englewood Cliffs, N.J., 1981).

[14] Osteyee, David Bridston; and Irving John Good, Information, Weight of Ev-
tdence, the Singularity between Probability Measures and Signal Detection,
Springer (Berlin, 1974).

beIiography: General Works on Mathematics and Computer Science 183

~ Combinatorics
[15] Comet, Louis, Advanced Combinatorics, D. Reidel Publishil_ig Company (1974).

[16] Lovasz, L., Combinatorial Problems and Ezercises, North-Holland (Amster-
dam, 1979).

[17) Roberts, Fred, Applied Combinatorics, Prentice-Hall (1984).

- Algorithms and Complexity Theory

[18] Aho, Alfred; John E. -prcroft; and Jeffrey Ullman, The Design and Analysis
: of Computer Algorithms, Addison-Wesley (Reading, MA, 1974).

N [19] Berge, C., The Theory of Graphs and its Applications, John Wiley (New York, -
. 1966). - ' :

[20] Cook, §. A., “The complexity of theorem-proving prOcedﬁres,” Proceedings of
the 8rd STOC (1971), 151-158. -

[21] Even, Shimmon, Graph Algorithms, Computer Science Press {Potomac, MD,
1979).

»[22] Garey, Michael R.; and David S. Johnson, _C'omp’uht'era and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman (San Francisco,
1979). ' :'

[23] Hillier, Frederick S:; and Gerald J. Lieberman, Operations Rcseafé;l, Holden-
Day (San Francisco, 1974). :

[24] Hopcroft, John E.; and Jeffrey Ullma.n,'-Iﬁtroduction to Automata Thwry, Lan-
guages, and Computation, Addison-Wesley (Reading, MA, 1979).

[25] Karp, Richard M., “Reducibility among combinatoria.l problems,” in Complez-
ity of Computer Computations, R. E. Miller and J. W. Thatcher, eds., Plenum -
Press (1972), 85-103. _

[26] Knuth, Donald E., Fundamental Algorithms in The Art of Computer Program-
ming, vol. I, Addison-Wesley (Reading, MA, 1973).

[27] Knuth, Donald E., Seminumerical Algorithms in The Art of Computer Pro-
gramming, vol. II, Addison-Wesley (Reading, MA, 1973).

[28] Knuth, Donald E., Sorting and Searching in The Art of Computer Program-
ming, vol. III, Addison-Wesley (Reading, MA, 1973). '

184 Alan T. Sherman, Thesis: October 14, 1986

. [29] Kolmogorov, A., “Three approaches to the quantitative definition of informa-
tion,” Problems of Information Transmission, 1 (Ja.nua.ry—March, 1965), 1-7.

[30] Levin, L. A., “Universal sorting problems,” Problems of Information Transmis-
sion, 9 (1973), 265-266.

[31] Levin, L. A., “Problems complete in ‘average’ instance,” Proceedings of the
16th STOC (April 1984), 4865,

[32] Lewis, Harry R.; and Christos H. Papadimitriou, “The efficiency of algorithms,”
Scientific American, 238 (January 1978), 96-109.

[33] Papadimitriou, Christos H.; and Kenneth Steiglitz, Combinatorial Optimiza.
tion: Algorithms and Complezity, Prentice-Hall (1982).

[34] Purdom, Paul W. Jr.; and Cynfhia. A. Brdwn, The Analysis of Algorithms,
Holt, Rinehart, and Winston (New York, 1985).

[35] Savage, John E., The Comﬁlcﬁtﬁ of C’omputt'ng, John—Wiley (New York, 1978).
Information Theory

- [36] Gallager, Robert G., Information Theory and Reliable Communication, John
Wiley (New York, 1968). :

' ‘[37] K.ullba.ch, Solomon, Information Theory and Statistics, John Wiley (New York,
1959). | | |

'[38] Shannon, Claude E., “The t.na.them'a.tical theory of commuﬁicat'i'o‘vﬁ,” Bell Sys-
tem technical Journal (July and October, 1948), 656-715.

Bibliography: Works on Cryptology | _ 185

'WOrks“ on Cry'ptt)lb“gy |
‘Basic Sources

Bibliographies

: [39] Diffie, Whitfield, “A technical Bibliogr#phy of cryptdgrap.hy," te‘chiﬁca.l paper,
BNR Inc., Mountain View, CA (Gctober 1983).

~ [40] Diffie, Whitfeld, Results of an unclassified computerized literature search in
cryptology using the Defense Technical Information Center, unpublished doc-
ument (1984).

[41] :'Levine, Jack, United States Cr"yptogmphic" Patents i861"-1981,' Ci'ypfologia
(Terre Haute, Indiana, February 1983). ' - :

[42] ‘Pri.ce, Wyn L., Annotated bibliographies of recent publications on data security
and cryptography, National Physical Laboratory technical reports, Teddington,
England (January 1978 to date). '

'[43] Sherman, Alan T., Results of a computerized 1iteré.turé gearch in cryptology
: using CONIT and the Science Abstracts, unpublished document, MIT Labo-
"ratory for Computer Science (May 1984).

- [44] Schulman, David, An Annotated Bibliogfdphy of Cryptography, Gé.rié.nd Pub-
"~ lishing {New York, 1976). _ '
" See also the bibliographies in [58,60,62,69].

" Major Annual Conferences for Technical Cryptology

-e Crypto, A workshop on the theory and application of cryptogréphic tech--
~ niques, sponsored by the International Association for Cryptologic Research,
" Univ. of Cal. Santa Barbara (1981 to date). :

[45] Gersho, Allen, ed., “Advances in cryptology: a repdi't on Crypto 81,” ECE
" report 82-04, Department of EECS, U. C. Santa Barbara (1982).

. [46] Chaum, David; Ronald Rivest; and Alan T. Sherman, eds., Advances in Cryp-
tology: Proceedings of Crypto 82, Plenum Press (New York, 1983).

[47] Chaum, David, ed., Advances in Cryptology: Proceedings of Crypto 88, Plenum '
Press (New York 1984).

[48] ‘Blakley, G. R.; and David Chaum, eds., Advances in Cryptology: Proceedings
of Crypto 84, Springer (1985).

186 Alan T. Sherman, Thesis: October 14, 1986

[49] Williams, H. C., ed., Advances in Cryptology: Proceedings of Crypto 85,
Springer (1988). '

e Eurocrypt, sponsored by the International Association for Cryptologic Re-
search (1982 to date). |

[50] Beth, Thomas, ed., Cryptography, Pfoccedings of the Workshop on Cryptog-
raphy, Burg Feuerstein, Germany, March 29-April 2, 1982, Springer (Berlin,
1983). \

[61] Beth, Thomas; N. Cot; and 1. Iﬁgemarsson, eds., Advances in Cryptology: Pro-
ceedings of Eurocrypt 84, Springer (1984).

[52] Pichler, Franz, ed., Advances in Cryptology—Eurocrypt 85, Springer (1985).

o IEEE Symposium on Security and Privacy (SSP), sponsored by the IEEE
Technical Committee on Security and Privacy (1979 date). Proceedings pub-
lished by IEEE Computer Society Press. '

Other Conferences

-.[53] .Fé.k, Viiveke, ed.,'Sccurit.y,. IFIP/Sécurftﬁ '83: Proceedings of the First Secy.
. rity Conference, Stockholm, Sweden, 16-19 May, 1988, North-Holland (Ams-
terdam, 1983).

¢ Workshop on the Mathematical Aspeci.:s" of Secﬁrity; MIT Endicott House,
sponsored by the National Science Foundation (Dedham, MA, June 1985).

* Annual Symposium on Foundations of Computer Science (FOCS), sponsored
by the IEEE Computer Society’s Technical Committee on Mathematical Foun-
dations of Computing (1960 to date). Proceedings published by the IEEE Com-
puter Society Press. :

o International C’ollocjuium on Automata, Languages, and Programming
(ICALP), sponsored by European Association for Theoretical Computer Sci-
‘ence (1974 to date). Proceedings published by Springer.

¢ Annual ACM Symposium on Theory of Computing (ST0C), spbnsored by
the ACM Special Interest Group for Automata and Computability (SIGACT),
(1969 to date). Proceedings published by ACM. o

Collections

[54] Davies, Donald, ed., Tutorial: The Security of Data in Networké, IEEE Com-
puter Society Press (1982).

: Bibliegraphy: Works on Cryptology : 187

. [55] DeMillo, Richard A.; David P. Dobkin; Anita K. Jones; and Richard J. Llpton
Foundations of Secure Computations, Academic Press (New York, 1978).

: [56] Longo, G., ed., Secure Digital Communications, Springer (Vienna 1983).

[57] Simmons, Gustavus J., ed., Secure Communications and Asymmetric Cryp--

tosystems, AAAS Selected Symposmm, Westview Press (Boulder Colorado,
1982). |

Survey Works

| [58] Beker, Henry.; and Fred Piper, Cipher Systems: The Protection of Communi-:
cations, John Wiley (New York, 1982). .

' [59] Davies, Donald W.; and W. L. Price, Sccunty for Computer Networks: An

Introduction to Data Security in Teleprocessing and Electronic Funds Transfer,
John Wlley (New York, 1984).

[60] Denning, Dorothy E. R., Cryptography and Data Securzty, Addlson-Wesley
(Reading, MA, 1982).

'[61] Denmng, D.; and P. Denning, “Data. secunty,”ACM C’omputmg Surveys, 11
(September 1979) 227-249.

__ [62] Diffie," Whitfield; and Martin E Hellma.n, “anacy and authentication: An

introduction to cryptography,” Proceedings of the IEEE, 87 (March 1979), 397-
427, .

: [63] _ ijifﬁe, Whitﬁ'el&, “’Seeurity problems in modern ceMuhieations,” working pa-
per (August 1984).

.[64] Felstel Horst, “Cryptography a.nd Computer Prwa,cy, Screntnﬁc Amer:can,
228 (May 1973), 15-23. _

[65] Ga.mes, Helen Fouché, Cryptana!ys:a A Study of C‘zphcrs and Their Solution,
Dover (1956).

(6] 'Konheiin, Alan G., C‘ryptegraphyf A Pr:'mer, John Wiley (New York, 1981).

[67] Lempel, Abraham, “Cryptology in transition: a survey,” ACM Computing Sur-
veys, 11 (December 1979), 285-303.

- [68] Meyer, Carl H.; and Stephen M. Matyas, Cryptology A New D:menston in
Computer Data Security, John Wiley (New York, 1982).

188 . | Alan T. Sherman, Thesis: October 14, 1986

[69] Rivest, Ronald L., “Cryptology," in Handbook of Theoretical Computer Science,
Albert Meyer, ed., North-Holland (1986), to appear. '

[70] Simmons, Gustavus J . “Symmetric and asymmetric encryption,” Computing
: Surveys, 2 (December 1979), 305-330.

History and Policy

History

[71] Deavours, Cipher; and Louis Kruh, Machine Cryptography and Modern Crypt-

analysis, Artech House (Dedham, MA, 1985).

[72] Bamford, James, The Puzzle Palace: A 'R.eport on NSA, Amertca’s -most Secret
Agency, Houghton Mifflin (Boston, 1982). :

[73] Kahn, David, “Cryptology and the origins of spread spectrum,” IEEE Spectrum
(September 1984), 70-80. _

[74) Kahn, David, Kahn on Codes, Macmillan (New York, 1983).

[75] Kahn, David, The Codebreakers, the Story of Secret Writing, Macmillan (New

York, 1967).

[76] Kozaczuk, Wladyslav, Enigma: How the German Machine Cipher was Broken,
and How it was Read by the Allies in World War Two, edited and translated
by Christopher Kasparek, University Publications of America (1984).

' [77] Parrish, T., The Ultra Americans: The U.S. Role tn Breaking Nazi Codes, Stein
- and Day (Briarcliff Manor, NY, 1986). ~ -

[78] Randell, Brian, “The COLOSSUS,” technical report 90, Univ. of Newcastle
upon Tyne (June 1976). o

[79] Welschman, Gordon, The Hut Siz Story, Breaking the Enigma'C'odes, McGraw-
Hill (New York, 1982). - a _

[80] Winterbotham, F. W., The Ultra Secret, Futura (London, 1975). '

[81] Yardly, Herbert O., The American Black C’hamber, Bobbs-Merrill (Indianapo-
lis, 1931), |

Policy
[82] Kolata, Gina, “Codes go public,” Boston Globe (September 30, 1985), 44.

Bibliography: Works on Cryptology o 189

[83] Inman, Bobby R., “The NSA perspective on telecommunications protection in
the nongovernmental sector,” Signal, 33 (March 1979), 6-79.

[84] Sanders, Sylvia, “Data privacy: what Washington doesn’t want you to know,”
Reason (January 1981), 24-37.

[85] Shapley, Deborah; and Gina Bari Kolata, “Cryptology: scientists puzzle over
~ threat to open research,” Science, 209 (September 1977).

‘Specialized Topics in Mathematics and Theoretical Com-
puter Science o

Random Functions and Random Permutations;' .
[86] Bovey, John; and Alan Williamson, “The probability of generating the sym-
metric group,” Bull. London Math Society, 10 (1978), 91-96.

[87] Bovey, J. D., “An approximate probability distribution for the order of elements
of the symmetric group,” Bull. London Math Society, 12 (1980), 41-46.

[88] Bovey, J. D., “The probability that some power of a permutation has small
degree,” Bull. London Math Society, 12 (1980), 47-51.

'[89] Dixon, John D.', “The probability of generating the symmetric group,” Math
' Zentrum, 110 (1969), 199-205.

{90] Erdds, P.; and P. Turan, “On some problems of a sfatistical group-theory. I1,”
~ Acta Mathematica Academiae Scientiarum Hungaricae, vol. 18, nos. 1-2 (1967),
151-163. : '

[91] Goldreich, 0.; S. Goldwasser; and S. Miéali, “How to construct random func-
tions,” Proceedings of the 25th FOCS (1984}, 464-479.

| '; [92] Harris, Bernard, “Probability distributions related to random mappings,” An-
nals of Math. Statistics, 31 {1959), 1045-1062. ‘

~ [93] Purdom, Paul W.; and J. H. Williams, “Cycle length in a random function,”
Transactions of the American Mathematics Society, 133 (1968), 547-551.

‘[.9'4]:Shepp, L. A.; and S. P. leyd, “Ordered cycle lengths in a random permu-
tation,” Transactions of the American Mathematics Society, (February 1966),
- 340-357. .

190 ' Alan T. Sherman, Thesis: October 14, 1986

. Cycle Detection

[95] Allender, Eric; and Maria Klawa.,: “Improved Lower Bounds for the Cycle De-
tection Problem,” working paper.

[96] Fich, Faith E., “Lower bounds for the cycle detection problem,” Procecdfngs of
the 13th STOC (1981), 96-105.

[97] Hinsdale, John Kelley, “Implementing thé'Sédgewick-Szyina.nski cycle detection
algorithm,” BS Thesis, Dept. of Electrical Engineering and Computer Science,
MIT (February 1985). :

[98] Sedgewick, Robert, and Thomas G. Szymanski, “The complexity of finding
periods,” Proceedings of the 11th STOC, (1979), 74-80.

{99] Sedgewick, Robert; Thomas G. Szymanski; and Andrew C. Yao, “The com-
plexity of finding cycles in periodic functions,” Siam Journal on Computing,
11 (1982), 376-390,

Factoring

[100]. Bach, Eric, “How to generate random ihtegém with known factorization,” Pro-
ceedings of the 15th STOC (April 1983), 184-192.

[161] Berlékamp, Elwyn R., “Factoring polynomials over large finite fields,” Math.
 Comp., 24 (1970), 713-735. | -

[102] Brent, Richard P., “Analysis of some new cﬁréle;ﬁndihg and fa.cforization al-
gorithms,” technical report, Department of Computer Science, Australian Na-
‘tional University (1979). '

[103] Davis, James, A.; Diane Holdb’ﬁdgé; and Gustavus Simmons'," “Status report
on factoring” in [48]. | _ :
- [104] Lenstra, A.; H. Lenstra; and L. Lovész, “Factoring 'bolyndm'ia'ls' with rational
coefficients,” Mathematische Ann., 261 (1982), 513-534.

[105] Miller, Victor, “Lenstra’s factoring algorithm,” (1985).

{106] Pollard, J. M., “A Monte Carlo method for factorization,” Bit, 15 (1975),
331-334.

[107] Pomerance, Carl, “Analysis and comparison of some integer factoring algo-
rithms,” in Computational Methods in Number Theory, H. W. Lenstra and R.
Tijdeman, eds., Math. Centrum Tract 154 (Amsterdam 1982), 89139,

-Bibliography: Works on Cryptology = - o o 191

- Primality Testing :

[108] Adleman, Leonard M.; and M A Huang, “Recogmzmg prlmes in random
polynomial time,” unpubhshed abstract (1986). :

[109] Adleman, L.; C. Pomerance; and R. Rumely, “On distinguishing pnme numbers
from compogite numbers,” Annals of Math. 117 (1983), 173-206.

[110] Goldwasser, Shafi; and Joe Kilian, “Almost all primes can be quickly certlﬁed »
Proccedmgs of 18th STOC (May 1986), 316-329.

1111] Rabin, M., “Probabilistic algorithms for testing pnmahty, Journal of Numbcr
Theory, 12 (1980), 128-138.

[112] Solovay R.; and V. Strassen, “A fast Monte-Carlo test for prxma.hty, SIAM
-~ Journal on Computing, 6 (1977) 84-85.

) Discrete Logarithm

.[1'13] Adlefhan, Leonard M., A shbexporientlél algorithm for the ﬂiscrete logarithm
problem with apphca.tlons to cryptogra.phy, Procecdmgs of the 20th FOCS
~ (1979), 55-60. :

- {114] Coppersmtth D., “Evalua.tmg Loga.rxthms in G'F(Z"), Procaedinés of 16th
STOC (1984), 201-207.

[115] Odlyzko A: ‘M., “Discrete loga.nt_hms in ﬁmte fields and their cryptographlc :
significance” in [51], 224-314, :

i

[116] Pohlig, S.; and M. Hellman, An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance,” IEEE Trans. on Informat:on
Theory, IT-24 (Janua.ry 1978), 106-110. |

: -Information—LosslesB Computation

[117] Bennett, Charles H.; and Rolf Landa.uer,'“Thé Fﬁlﬁdémentai 'Phjrsica.l Limits
of Computation,” Seientific American, 253 (July 1985), 48-56.

[118] Benﬁett, Charles H., “Logical reversibility of computation,” IBM Journal of
Research and Development, 17 (November 1973), 525-532. :

{119] Kurmit, A. A., Information-Lossless Automata of Finite Order, John Wiley
(New York, 1974)

192 § Alan T. Sherman, Thesis: October 14, 1986

[120] Toffbli, Tommaso, “Reversible computing,” technical meémorandum TM-151,
" MIT Lab. for Computer Science (February 1980).

Other Specialized Works in Mathematics

- {121] Adleman, L.; K. manders; and G. Miller, “On taking roots in finite ﬁélds,”
: Proceedings of 18th FOCS (1977), 175-177.

[122] Berlekamp, Elwyn R., Algebraie Coding Theory, McGraw-Hill (1968).

[123] Berlekamp, E. R.; R. J. McEliece; and H. van Tilborg, “On the inherent in-
tractability of certain coding problems,” IEEFE Trans. on Info. Theory, IT-24
(1978), 384-386.

[124] Angluin, Dana, “Lecture notes on the complexity of some problems in number

theory,” technical report 243, Dept. of Computer Science, Yale Univ. (August
1982).

(125] Chandra, Ashok K., “Efficient compilation of linear recursive programs,” tech-
nical report no. STAN—CS—72—282 Computer Science Dept., Sta.nford Univ
- {April 1972)

[126] Reif, John, “Probablhstxc a.lgonthms in group theory,” techmcal report Aiken
Computation La.boratory, Harvard Univ. (1984).

[127] Sattler, J.; and C. P. Schnorr, “Generating random walks in groups, unpub-
lished manuscript (October 1983) €

Theory of Cryptology and Cryptqgi-aphic Sécurity
Complexitjr Theory and Cryptographic Sécu'rity '

[128] Adleman, Leonard | M, “On new foundations for cryptoglog‘y,” unpublished
manuscript, MIT Lab. for Computer Science (1980).

.[129] Angluin, D.; and D. Lichtenstein, “Provable security of cryptosystems: a sur-
vey,” techmca.l report TR—-288 Dept. of Computer Science, Yale Univ. (October
1983).

[130] Blum, Manuel; and Silvio Micali, “How to generate cryptographically strong
sequences of pseudo random bits,” SIAM Journal on Computing, 13 (November
1984), 850-864. .

[131] Boyack, Stephen W., “The robustness of combinatorial measures of boolean
matrix complexity,” Ph.D. thesis, Dept. of Mathematics, MIT (June 1985).

Bibliography: Works on Cryptology _ : -193

[132] Brassard, Gilles, “Relativized cryptography, Proceedmgs of the 20th FOCS
(1979), 383-391. |

[133] Brassard, Gilles, “A time-luck tradeoff in cryptology,” JCSS, 22 (June 1981),
280-311.

.[134] Brassard, Gilles, “A note on the complexity of cryptography,” IEEE Transac-
tions on Information Theory, IT—25 (March 1979), 232-233.

[135] Even, Shimon; and Y. Yacobi, “An observation concerning the complexity of
problems with few solutions and its application to cryptography,” technical
.report TR-167, Computer Science Dept., Technion (1980}). :

[136] Even, Shimon; and Y. Yacobi, “Cryptocomplexity and NP-complét’éﬁé," tech- -
nical report 172, Computer Science Dept., Technion, Israel {March 1980).

._[137']. E\?en, Shimon; Alan L Selman; and Yacov Yacobi, “The | complexity of
promise problems with applications to pubhc-key cryptogra.phy, Proceedings
 of ICALPS2 (1982), 502-509. -

[138] Goldwasser, Shafi; and levxo Mlcah '“Probabxhstlc encryptlon, JCSS 28
(1984), 270-299. |

[139] Goldwasser, S.; S. Micali; a.nd P. Tong, “Why a.nd how to esta.bhsh a private
' code on a pubhc network,” Proceedings of the 28rd FOCS (1982), 134-144

[140] Grollman, J.; and A. % Selman, “Complexity measures for pubhé-key cryp-
tosystems, Procecdmga of the 25th FOCS (1984), 495-515.

[141] Halsey, J. C., “Finite automata a.dmitting inverses with ‘some apj)Iications to
cryptography,” Ph.D. Thesis, Dept. of Mathematics, North Carolina State Uni-
versity (1970).

[142] Devin, L., “One-way functions and pseudorandom gehéra.toré,” Proceedings of
the 17th STOC (1985), 363-365.

[143] Lieberherr, Karl, “Uniform complexity and dlglta.l s:gnatures Theoret:cal
: Computer Seience, 18 (October 1981), 99-110. :

[144] Micali, Silvio; Charles Rackoff; and Robert Sloan, “The notion of secﬁrity for
probabilistic cryptosystems,” unpublished manuscript (1986).

[145] Selman, Alan L., “Complexity measures for public-key cryptosystems,” Pro-
ceedings of the 25th FOCS (1984), to appear.

194 Alan T. Sherman, Thesis: October 14, 1986

[146] Selman, Alan L., “Remarks about natural self-reducible sets in NP and com-
plexity measures for public-key cryptosystems,” submitted to ICALP8} (1984).

[147] Sloé.n, Robert H., “The notion of security for probabilistic public-key cryp-
tosystems,” ma.ster s thesis, MIT Dept. of EECS (1986).

[148] Yao, A., “Theory and applications of one-way functions,” Prbceédidgs of the
28rd FOCS (1982), 80-91.
Information Theory and Cry;itographié Secufity

[149] Hellman, Martin E., “An extension of the Shannon theory approach to cryp-
tography,” IEEE Transactions on Information Theory, IT-23 (May 1977),
289294,

[150] Shannon, Claude E., “Communication theory of secrecy systems,” Bell System
Technical Journal, 28 (October 1949), 656-715.

[151] Sloane, N. J. A., “Error-correcting codes and cryptography” m The Mathemat-
tcal Gardner, D. Kla.rner, ed., Wadsworth (Belmont, CA, 1981), 346-382.

[152] Wyner, Aaron D., “The wire tap channel,” Bell System Techmca! Journal, 54
(October 1975), 1355—-1387

Physics and_Cryptdgraphic Security' 7

[153] Bennett, Charles H.; Gilles Brassard; Seth Breidbart; and Stephen Wiesner,
“Quantum cryptography, or unforgeable subway tokens,” in [46], 267-275.
Public-Key Cryptography =~ |

[154] Diffie, Whitfield; and Martin E. Hellman, “New directions in cryptography,”
IEEE Transactions on Information Theory, IT-22 (November 1976), 644—654.

[155] Hellrnan, M., “The mathematics of public-key cryptography, Scientific Amer-
fean (February 1979}, 146-157.

[156] Merkle, Ralph C., “Seciure communications over insecure channels,” CACM,
21 (April 1978), 204-299.

' Bibliography: Works on Cryptology 195

. Specific Cryptosystems

Federal Standards Inuolving DES

[157] “Data Encryption Standard,” National Bureau of Standards, Federal Informa-
~~ tion Processing Standards Publications No. 46 (January 15, 1977).

[158] “DES modes of operations,” Federal Information Standards Publication No. 81
(December 1980).

~[159] “Guidelines for implementing and using the NBS Data Encryption Standard,”
National Bureau of Standards, Federal Information Processing Standards Pub-
lications No. 74 (April 1981).

[160] “Telecommunications: Interoperability and 'secunty. Tequirements for use of
the Data Encryption Standard in the physical layer of data communication,”
General Service Administration, FS 1026 (August 3, 1983).

.- Data Encryption Standard

[161] Branstad, D. K.; Gait, J.; and S Ka.tzke “Report of the workshop on cryptog-.

raphy in support of computer security,” National Bureau of Standards Report
NBSIR 77-1291 (September 21-22, 1976).

[162] Brickell, E. F.; J. H. Moore; and M. R. Purtill, “Structure in the S-boxes of
- the DES,” extended abstract, presented at Crypto 86 (August 1986).

_[163] ‘Chaum, Davnd “Breaking 4,5,6 and more rounds of DES: An mterm report on
investigation of PC-2” in [49).

-[164] Coppersmith, Don; and Edna Grossman, “Generators for certain é.lternat:ng
groups with applications to cryptology,” Siam Journal on Applied Mathemattcs,
29 (December 1975), 624-627.

[165] Davies, Donald W., “Some regular prope'rties of the DES” in' [46], 8906,

.[166] Dames, Donald W.; and G. 1. P. Parkin, “The average size of the key stream
‘in output feedback enc1pherment“ in {50], 263-279.

“[167] Davies, Donald W.; and G. I. P. Parkin, “The a.vera.ge size of the key stream
~ in output feedback mode in [46], 97-98.

[168} Davio, Mar, et al., “Analytical Characteristice of t'he bES,” in [47] (1983).

[169) Davio, Mark; Yvo Desmedt; and Jean-Jacques Quisquater, “Dependence of
> output on input in DES: small avalanche characteristics” in [48].

196 Alan T. Sherman, Thesis: October 14, 1986

{170] Davio, Mark; Yvo Desmedt; Jozef Goubert' Frank Hoornaert; and Jean-

Jacques Quisquater, “Eﬂiment hardware and software implementations for the
DES” in [48].

[171] Davis, R. M., “The Data Encryption Standard in perspective,” Computer Secu-
rity and the Data Encryption Standard, National Bureau of Standards Special
Publication 500-27 (February 1978).

[172] Desmedt, Yvo, “Analysis of the security and new a.lgoﬁthms for modern in-

dustrial cryptography,” dissertation, Department Elektrotechniek, Katholieke
Universiteit Leuven (October 1984). :

[173] Diffie, Whitfield; and Martin E. Hellman, “Exhaustive cryptan'alje’is of the
NBS Data Encryption Standard,” Computer, 10 (June 1977), 74-84.

[174] Feldman, Frank, “A new spectrum test for nonrandomness and the DES,”
working paper (Apnl 1985).

[175] Gait, Jason, “A new nonlinear pseudorandom number genera.tor,"' IEEFE Trans-
actions on Software Engineering, SE-3 (September 1977), 359-363.

[176] Goldreich, Oded, “DES-like functions can generate the alternating group,”
- IEEE Transactions on Information Theory, IT-29 (1983), 863-865.

[177] Gordon, J. A.; and H. Retkin, K., “Are big S-boxes best?” in [50].

[178] Grossman, Edna; and Bryant 'I‘uckermam “Analysis of a Feistel-like cipher
weakened by having no rotating key,” IBM research report RC 6375 (#27489),
(January 31, 1977).

[179] Grossman, Edna; a.nd Don Coppersmith, “Generators for certain alternating

_groups with apphcatlons to cryptology,” IBM techmca.l report RC 4741 (Febru-
ary 26, 1974).

(180] Hellman, Martin E., et al., “Results of an initial attempt to crypta.nalyze the
- NBS Data Encryption Standard,” technical report SEL 76-042, Information
Systems Laboratory, Stanford Univ. (November 1976).

{181] Hellman, Martin E., “A cryptanalytic t.lme-memory tra.deoﬁ' ” technical report,
Stanford Univ. (1978)

[182] Hellman, Martin E., “DES will.be totally insecure within ten years,” IEEE
Spectrum, 16 (July 1979).

[183] Hellman, Martin E.; and Justin M. Reyneri, “Distribution of Drainage in the
DES,” in [46] (1982), 129-131.

- Bibliography: Works on Cryptology 197

{184] Jueneman, Robert R., “Analysis of certain aspects of output-feedback mode,”
in [46] (1982), 99-127.

[185} Kaliski, Burton S.; Ronald L'.Rlvest; and Aleﬁ T. Sherman, “Is the Data
Encryption Standard a Group'?" in [52], 81-95.

[186] Kaliski, Burton S.; Ronald L. Rivest; and Alan T. Sherman, “Is DES a pure
cipher? (Results of more cycling experiments on DES)” in [49].

[187) Ke.liski, Burton S., “On the design of fast cycle detection hardware for DES,”
master’s thesis, Dept. of EECS, MIT, to appear.

[188] Kola.ta. G. B., “Computer encryption and the Na.tlona.l Secunty Agency,” Sci-
' ence, 197 (July 29, 1977), 438—440.

[189] Kolata, Gina, “Flaws found in popular code,” Science, 28 (January 1983),
369-370. :

[190] Meiésner, P ed., “Reporf. of the workshop on estimation of significant advances -
in computer technology, National Bureau of Standards Report NBSIR 76-1189
‘(December 1976).

[191] Momlrov Milan, -“LSI lmplementation of the Data Encryptlon St.a.ndard ”
Computer Des:gn (June 1980), 158-164.

[192] Moore, J. H and G. J. Simmons, “Cycle structure of the DES with weak and
semiweak keys, extended abstract, presented at Crypto 86 (August 1986).

‘[193] Morris, R N J. A. Sloan; andA D. Wyner, “Assessment of the NBS proposed
Data Encryptxon Standard,” Cryptologia, 1 (July 1977), 281-291.

[194] Reeds, J. A.; and J. L. Manferdell, “DES has no per round llnea.r factors,” in
[48].

[195] Schaumiiller-Bichl, Ingrid, “Zur Analyse des Data Encryptibn Standard und
Synthese verwandter Chiffiersysteme,” dissertation, Johannes-Kepler Univer-
sity, Linz (May 1981). | | :

[196] Shamir, Adi, “Is the DES secure?” in [49].

[197] Tuchman, W. L., talk presented at National Computer Conference, (June
1978).

[198] Tuchman, W. L., “Hellman prents no shortcuts to the DES,” IEEE Spectrum,
16 {July 1979), 40-41.

198 Alan T. Sherman, Thesis: October 14, 1986

[199] “Unclassified summary: Involvement of NSA in the development of the Data
Encryption Standard,” staff report of the Senate Select Committee on Intelli-
gence, United States Senate (April 1978).

Knapsack Cryptosystems.
[200] Adleman, Leonard, “On breaking iterated knapsacks” in [46], 303-308.

[201] Adleman, Leonard, “On breaking generalized knapsack public-key cryptosys-
tems,” Proceedings of the 15th STOC (1983), 402—412.

[202] Brickell, Ernest F.; and Gustavus J. Simmons, “A status report on knapsack

based public-key cryptosystems,” Congressus Numerahtium, 37 (June 1983),
3-72.

[203] Brickell, E., “Breaking Tterated Knapsacks” in 48], 342-358.

[204] Chor, Benny; and Ronald Rivest, “A knapsack type public-key cryptosystem
based on finite field arithmetic,” in [48], 54-65.

[205] Lagarias, J. C., “The computational complexity of simultaneous diophantine
approximation problems, Proceedmga of the 28rd FOCS (November 1982),
- 32-39.

| [206] Lagarias, J.C.; a.nd A M. Odlyzko, “Solvi'x.ig low-density subset sum problems,”
Proceedings of the 24th FOCS (November 1983), 1-10.

[207] Merkle, Ralph C.; aynd M. E. Hellman, “Hiding information a.nd signatures in

trapdoor knapsacks,” IEEE Trans. on Info. Theory, IT-24 (September 1978), -

525-530.

[208] Odlyzko, A., “Cryptanalytic attacks on the multiplicative knapsack scheme

and on Shamir’s fast signature scheme,” IEEE Trans. on Information - Theory,
IT-30 (July 1984).

[209] Shamir, Adi, “A polynomial time algorithm for breaking Merkle-Hellman cryp-
tosystems” Proceedings of the 28rd FOCS (1982), 145-152.

[210] Shamir, Adi, “On the cryptocomplexity of knapsack systems,” Proceedings of
the 11th STOC (1979), 118-129.

{211] Willett, Michael, “Trapdoor knapsacks without super-increasing structure,”
Dept. of Mathematics, Univ. of North Carolina at Greensboro (1982).

Bibliography: Works on Cryptology o 199

-RSA Cryptosystem and Related Cryptosystems

- [212] Alexi, W.; B. Chor; O. Goldreich; and c. P. Schnoor, “RSA/Rabin bits are
1/2 + 1/poly(log N) secure,” Proceedings of 25th FOCS (1984), 449-457,

[213] Ben-Or, Michael; Benny Chor; and Adi Shamir, “On the cryptographic security
of single RSA bits,’f Proceedings of the 15th STOC (April 1983), 421-430.

[214] Blakley, G. R., “Rivest-Shamir-Adleman public-key cryptosystems do not al-
ways conceal messages,” unpublished manuscript, Dept. of Mathematics, Texas
" A&M University (1979).

 [215] _Bla,k.ley, G. R., “Security of number theoretic public-key cryptosjstems against
random attack I-III,” Cryptologia (December 1978, January 1979, and April
1979).

[216] Chor, Benny; and Oded Goldreich, “RSA least'.s'igniﬁca.nt bits are 1/2 +
1/poly(log n) secure,” in [48). - : _

[217] C'hor, Ben-Zion, Two Issues in Pubh;c-Kcy Cryptog phy: RSA Bit Security
and a New Knapsack Type Cryptosystem, MIT Press (1985). -

[218] DeLaurentis, John M., “A further weakness in the common modulus protocol
for the RSA cryptosystem,” Cryptologia, 8 (July 1984), 253259,

[219] DeJonge, Wiebren, “Attacks on some RSA signatures,” in [49].

[220] Gardner, Martin, “A new kind of cipher that would take millions of years to
break,” Mathematical Games column, Scientific American, 237 (August 1977),
120-124.

[221] .Hastad, J., “On using RSA with low exponent in a publié-kéy network” in [49],
403~-408. :

[222] Herlestam, T., “Critical remarks on some public-key cryptosystems,” BIT, 18 -
(1979), 493-496.

[223] Lipton, Richard, “How to cheat at mental poker,” Dept. of Conipu.ter Science,
~ Univ. of Cal., Berkeley (1979). L

[224) Miyaguchi, Shoji, “Fast ehcryptioxi'-'a.lgoﬁthm for the RSA cryptographic sys- -
- tem,” Proceedings of COMPCON (1982), 632-638.

—. [225] Rabin, Michael 0., “Digitalized signatures and public-key functions as in--
tractable as factorization,” technical report TR-212, MIT Lab. for Computer
Science, (January 1979).

200 Alan T. Sherman, Thesis: October 14, 1986

[226] Rivest, Ronald; Adi Shamir; and Leonard Adleman, “On digital signatures and
public-key cryptosystems,” CACM, 21 (February 1978), 120-126.

[227] Rivest, Ronald L., “A description of a single-chip implementation of the RSA
cipher,” Lambda (fourth quarter, 1980), 14-18.

[228] Rivest, Ronald L., “A short report on the RSA chip,” in [46], 327.

- [229] Rivest, Ronald L., “Remarks on a proposed cryptanalytic attack on the M.LT.
public-key cryptosystem,” Cryptologia (January 1978), 62-65.

[230] “Critical remarks on ‘Critical remarks on some public-key cryptosystems’,”
BIT, 19 (1979), 274-275.

[231] Rivest, R.; and A. Shamir, “How to exposé an eavesdropper,” CACM (April
1084), 393-395.

[232] Simmons, Gustavué; and Michael J. Norris, “Preliminary comments on the
M.LT. public-key cryptosystem,” Cryptologia (October 1977), 406—414.

[233] Williams, H. C., “A modification of the RSA public-key cryptosystem proce-
dure,” IEEE Trans. on Info. Theory, IT—26 (November 1980), 726-729.

[234] Yuval, G., “How to swindle Rabin,” Cryptologia, 3 (July 1979), 187-189.

Discrete-Log Cryptosystems

[235] El-Gamal, Taher, “A public<key cryptosystem and a signature scheme based
" on discrete logarithms,” IEEE Trans. Info. Theory, 31 (1985), 469-472.

[236] Long, Douglas L.; and Avi Widgerson, “‘How discreet, is the discrete log?,”
Proceedings of the 15th STOC (April 1983), 413-420.

'Pséudo-Random Bit Generators

[237] Blum, Lenore; Manuel Blum; and Michael Shub, “Comparison of two pseudd—
random number generators,” in [46], 61-78. '

[238] Fairfield, R. C.; R. L. Mortenson; and K. B. Coulthart, “A LSI random number

generator (RNG),” Proceedings of Crypto 84, to appear.

[239] Kaliski, Burton 8., “A pseudo-random bit generator based on elliptic loga-
rithms,” presented at Crypto 86 (August 1986).

[240] Lagarias, Jeff; and Jim Reeds, “Extrapolation of noﬂlinear recurrexices,” Pro-
ceedings of Crypto 84, to appear.

Bibliography: Works on Cryptology o _ . 201

[241] Plumstead, Joan B.,; “Inferring a sequence generated by a linear congruence,”
Proceedings of the 28rd FOCS (November 1982), 153-159.

[242] Shamir, Adi, “On the ‘generation of cryptographically strong pseudo-random
sequences,” Proceedings of ICALP (1981), 544-550.

[243] Vazirani, Umesh V.; and Vijay V. Vazirani, “Efficient and secure pseudo- -
random number generation,” Proceedings of the 25th FOCS, 458—463.

Feedback Shift Registers
[244] Gifford, David K.; John M. Lucassen; and Stephen T. Berlin, “The application .

of digital broadcast communication to large scale information systems,” IEEE
Journal on Selected Areas in Communications, 3 (May 1985), 457-466.

[é45] Golomb Solomon, Shift ch:ster Sequences, Aegean Park Press (Laguna Hllls .
CA, 1982).

Other Cryptosystems

[246] Blum, Manuel; and Shafi Goldﬁasser, “An efficient proba.bilistic pu’blio-key en-
cryption scheme which hides all partial information,” Proceedmgs of CRYPTO
84, to appear.

[247] Goldwa.sser, Shafi; and Silvio Micali, “A bit by bit secure public-key cryptosys-
tem,” technical memo UCB/ERL M81 / 88, Univ. of Cal., Berkeley (December
1981).

[248] Goldwasser, Shafi; ‘Silvio Micali; and Po Tong, “Why and how to establish a
: private code on a public network,” Proccedmgs of the 28rd FOCS (November
1982), 134-144. .

[249] Hill, Lester Sanders, “Cryptography in an algebraic alphabet Ameriean Math-
ematical Monthly, 36 (June-July 1929), 306-312.

{250] Hlll Lester Sa.nders, “Concerning certain linear transformation abparati.xs of
crypt.ogra.phy, American Mathematical Monthly, 38 (March 1931), 135-154

[251] Kruh Louis, “The genesis of the Jefferson/Bazeries cipher device,” Cryptologia,
5 (October 1981), 193-208.

[252] McEliece, R.J., “A public-key cryptosystem based on algebraic coding theory,”
Deep Space Network Progress Report 42-22, Pasadena Jet Propulsion Labs.
(January-February 1978), 114-1186.

202 . Alan T. Sherman, Thesis: October 14, 1986

[253] Pless, Vera, “Encryption schemes for computer confidentiality,” unpublished
manuscript (May 1975).

[254] Reeds, J. A.; and P. J. Weinberg, “File security and the Unix crypt command,”
ATS8T Bell Labs. Technical Journal, 83 (October 1984), 1673-1682.

[255] Sherman, Alan T., “On the Enigma cryptograph and formal definitions of cryp-
tographic strength,” master’s thesis, MIT Department of EECS (June 1981).

[256] Sloane, N. J. A., “Encrypting by random rotations,” technical memorandum
(1983). |

[257] Wagner, Neal R.; and Marianne R. Magyarik, “p fmblic-kéy cryptosystem
based on the word problem,” Proceedings of Crypto 84, to appear.

[258] Yagisawa, Masahiro, “A new method realizing public-key cryptosystem un-
published document (1983).

General Cryptanalysis

[259] Friedman, William F., Elements of Cryptana!yaié, Aégeﬁn Park Press (Laguna
Hills, CA, 1976)

[260] Friedman, William F. M:htary C’ryptanalyaw, Agea.n Park Press (Laguna. Hills,
CA, 1980).

[261] Hellman, Martin E., “A cryptanalytic time-memory tfadeoﬂ',” IEEE Trans. on
Information Theory, 1T-26 (1980), 401-406. :

[262] Hitt, Parker, Manual for the Solution of Military Ciphers, Aegean Park Press
(Laguna Hills, CA, 1976).

[263] Kullbach, Solomon, Statistical Methods in Cryptanalyszs, Aegea.n Park Press
(Laguna Hills, CA 1976).

. [264] Schroeppel, Richard; and Adi Shamlr, “A T-8= 0(2") time/space tradeoff
for certain NP-complete problems,” Proceedings of the 20th FOCS (1979) 328-
336.

[265] Sinkov, Abra.ha.m, Elementary Cryptanalysis, A Mathematical Approach, The
Mathematical Association of America (Washington, D.C., 1966).

Digital Signatures

[266] Davies, D. W., “Applying the RSA digital signature to electronic mail,” Com-
puter, 16 (February 1983), 55-62.

Bibliography: Works on Cryptology = 203

[267] Davies, D.; and W. Price, “The application of digital signatures based on
public-key cryptosystems,” Proceedings of the Fifth International Computer
Communications Conference (October 1980), 525-530.

{268] Even, S.; and Y. Yacobi, “Relations among public-key signature systems,”
technical report TR-175, Computer Science Dept., Technion (1980).

[269] Goldwasser, Shafi; Silvio .Ml'ca.h, and Ronald Rivest,, “A ‘paradoxical’ solution
to the signature problem,” Proceedings of the 25th FOCS (1984), 441-448.

[270] Goldwa.sser, Shaﬁ Silvio Micali; and Andy Yao, “Strong signature schemes
Proceedings of the 15th FOCS (1982), 431-439.

[271] Lamport, L., “Constructing digital signatures from a one-way function,” tech-
nical report CSL-98, SRI International (October 1979).

[272] Ong, H.; C. P. Schnorr; and Adi Shamir, “An efficient signature scheme based
on quadratic equations,” Proceedings of the 16th STOC (1984), 208-216.

[273] Rabin, M., “Digitalized signatures” in [55], 133-153.

[274] Shamir, Adi, “A fast sighature scheme,” technical memorandum TM-107, MIT
Laboratory for Computer Science (1978). : _

[275] Sha.mu', Adi., “Identlty-based cryptosystems and signature schemes, technical
* report, Weizmann Institute, Israel (March 1984).

Protocols

[276] Ben—or, M.; O. Goldreich; S. Micali; and R. Rivest, “A fa.lr protocol for signing
contra.cts, Proceedings of ICALP (1985), 43-52.

'[277} Blum, Mantiel, “Coin flipping by te!ephone, Proceedmgs of IEEE COMPOM
(1982), 133-137.

{278) Blum, Manuel, “How to exchange'(secret) keys,” ACM Tran.‘i. on Computer
Systems, 1 (May 1983), 175-193.

- [279] Chaum, David, “Untraceable electronic mail, return addresses, and digital -
pseudonyms,” CACM, 24 (1981), 84-88.

~ {280] Chaum, David, “Security without identification: transaction systems to make
big brother obsolete,” CACM, 28 (October 1985), 1030-1044.

{281] Cohen, J.; and M. Fischer, “A robust and verifiable cryptographically secure
election scheme,” Proceedings of 26th FOCS (1985}, 372-382.

204 Alan T. Shermah,' Thesis: October 14, 1986

[282] DeMillo, R.; N. Lynch; and M. Merritt, “Cryptographic protocols,” Proceedings
of thelfth STOC (1982), 383-400,

[283] DeMillo, Richard; Nancy A. Lynch; and Michael J. Merritt, “Cryptographic
protocols,” Proceedings of the 14th STOC (May 1982), 383-400.

[284] Dolev, Danny; Shimmon Even; and Richard Karp, “On the securitjr of piﬁ-pong
protocols,” in [46], 177-1886.

[285] Dolev, D.; and A. C. Yao, “On the sécurity of public-key protocols,* Proceedings
of the 22nd FOCS (October 1981), 350-357.

[286] Even, S.; and O. Goldreich; “On the security of multi-party ping-pong proto-
cols,” Proceedings of the 24th FOCS (November 1983), 34-39.

[287] Even, S.; O. Goldreich; and A. Lempel, “A randomized protocol for signing = -

contracts,” CACM, 28 (June 1985), 637-647.

[288] Feldman, P.; and S. Micali, “Byzantine agreement in constant expectéd time
(and trusting no one),” Proceedings of the 26th FOCS (1985), 267-276.

[289] Goldwasser, Shafi; Silvio Micali; and C. Rackoff, “The knowledge complexity
of interactive proof-systems,” Proceedings of the 17th STOC (1985), 291-304.

(290} Luby, M.; S. Micali; and C. Rackoff, “How to simultaneously exchange a secret
by ﬂlpplng a symmetrically biased com, Proceedings of the 24th FOCS (1983),
11-22.

[291] Needham, Rogei'; and Michael D. Schroeder, “Using encrypt’idn for authentica-
- tion in large networks of computers,” CACM, 21 (December 1978), 993-999.

-[292] Shamir, Adi; Ronald L. Rivest; and Leo'li:a;rd Adleman, “Mental p.oker, The

Mathematical Gardner, D. Klarner, ed., Wadsworth (Belmont, CA, 1981), 37-
43.

{293] Yao, Andrew C., “Protocols for secure computatlons, Proceedmgs of the 28rd
Focs (November 1983), 160-164.

Practical Sec'u'rity

Computer Security
[294] Cornwall, Hugo, Hacker’s Handbook, Century Communicatioris (1985).

[295] Grampp, F. T.; and R. H. Morris, “UNIX operating system security,” ATET
Bell Labs. Technical Journal, 63 (October 1984), 1649-1671.

B

- Bibliography: Works on Cryptology 205

[296] Landwehr, Carl, “Formal models for computer security,” ACM Cbb;puting Sur-
veys (September 1981), 247-278. _

~ [297] Saltzer, Jerome H.; and Michael D. Schroeder, “The-prbtectib’n of information

in computer systems,” Proceedings of the IEEE, 83 (September, 1975), 1278-
1308, '

[298] Morris',.R.;- and K. Thompson, “Password security: a case history,” CACM, 22
' (November 1979), 594-597. ' :

Physical Security |

~ [299] Ch.a.um, David, “Design concei)ts for tamper-responding systems,” unpublished

manuscript (February 1981). ' :

[300] Cunningham, John E., Security Eleetronics, Howard W. Sams {Indianapolis,
Indiana, 1983). | |

[301] Robinson, Robert L., Complete Course in Professional Locksmithing, Nelson-

__ Hall (Chicago, 1973). : , - - '

[302] Sloan,. Eugene A., The Co.iﬁﬁletc ‘Book of Locks, Kéyb,‘ Burglar and Smoke

| Alarms, William Morrow (New York, 1977).

| [303] Wil"e,. Eddie The, The Complete Guide to Lock Picking, Lodmpa'.n'ics Unlimited

(Mason, MI, 1981). - '

| Other Topics
"C.ombi"hﬁizn'g. Cfsrptdéyéféms

[304] Asmuth, C. A.; and G. R. Blakley, “An efficient algorithm for constrﬁcting a
cryptosystem which is harder to break than two other cryptosystems,” Comp.
& Maths. with Appls., 7 (1981), 447-450. _ o

-{305] Even, S.; and O. Goldreich, “On the power of cascade ciphers” ACM Trans.
- on Computer Systems, 3 (May 1985), 108-116. . '

| [308] Luby, Michae!; and Charles Ré.ckoff, “Pseudo-random permutation generators
- - and cryptographic composition,” Proceedings of 18th STOC (May 1986), 356
363.

206 ' _ . Alan T. Sherman, Thesis: October 14, 1986

[307] Merkle, Ralph C., and Martin E. Hellman, “On the security of multiple en-
cryption,” CACM, 24 (July 1981), 465—467.

Natural Random Bit Generation

[308] Blum, Manuel, “Independent unbiased coin flips from a correlated biased
source: a finite state markov chain,” Proceedings of 25th FOCS (1984), 425-433.

' [.30'9] Chor, B.; and O. Goldreich, “Unbiased bits from sources of weak randomness

and probabilistic communication complexity,” Proceedings of the 26th FOCS
(1985), 429-442.

(310]) Elias, Peter, “The efﬁclent construction of an unbiased random sequence,
Annals of Math. Statistics, 43 (1972), 865-870.

- [311] Maddocks, R. 8., et al., “A compact and accurate gen'erator for trﬁlﬁ random
binary digits,” Journal of Physics E: Seientific Instruments, 5 (1972), 542-544.

[312] Von Neumann, J., “Various techniques for use in connection with random dig-
 its,” in Von Neuman’s Collected Works, Pergamon (1963), 768~770.

(313] Santha, M.; and U. V. Vazirani, “Generating quasi-random sequences from
slightly-random sources,” Proceedings of the 25th FOCS (1984), 434-440.

[314] Vazirani, U. V., “Towards a strong communication complexity theory, or gen-
erating quasi-random sequences from slightly-random sources,” Proceedings of
the 17th STOC (1985), 366-378.

Secret Sharing _ ,

[315] Cher, B.; S. Goldwasser; S. Micali; and B. Awerbuch; : “Verifiable secret sharing
and a.chlevmg simultaneity in the presence of fa.ults Proceedings of 26th FOCS
(1985), 383-395.

' [316] Shamir, A., “How to share a secret,” CACM, 22 (November 1979), 616-613.

Other Works

[317] Alpern, B,; and F. B.'Sehneider, ““Key exchange using ‘Keyless Cryptography’,”
Information Processing Letters, 16 (1983), 79-81.

[318] Baldwin, Robert W.; and Alan T. Sherman, “How we solved the $100,000 Deci-
pher Puzzle,” presented at the “Rump Session” of the Eurocrypt 85 conference
(Linz, Austria, April 1985).

- Bibliography: Works on Cryptology _ 207

[319] Data Ciphering Processors Am9518, Am9568, Am28068 Technical Mamm! Ad-
vanced Micro Device, Inc. (1984).

[320] Gerhart, L.; and R. Dixon, eds., Special Issue on Sp:read Spectrum Communi-
cations, IEEE Trans. on Commaunications, COM-25 (August 1977).

(321} IBM Personal Computer Technical Reference (July 1982). - -

- [322] Rivest, R. L.; L. Adleman; and M. L. Dertouzos, “On Data Banks“ and Privacy
Homorphlsms in [55], 169-180.

| [323] Rivest, Ronald L.; and Alan T. Sherman “Ra.ndomlzed encryption techniques”
in [46], 145-163. :

[324] Shamir, Adi, “On the pbwer of comniutati"rity in cryptography,” unpublished
paper, MIT Départment of Mathematics (July 1980).

[325] ‘Shannon, Claude E., “Prediction and Entropy of Pnnted Enghsh BeH System
Tech. Joumat (Ja.nua.ry 1951), 50-64. _

208

Alan T. Sheiman, Thesis: October 14, 1986

 Works on VLSI

- Basic Sources

[326]

(327]

Bibliographies

Cleemput, W. M., “Compﬁter aided &aigﬁ of digit‘aﬂ éystems: a bibliography,”
Computer Science Press, vols. I-1II (1978). |
Rosenberg, Arnold L.; “References to the literature on VLSI algorithmics and
related theoretical issues” in {337].

See also the bibliography in [345].

- Major Conferences

{3281

e Caltech Confcrence on VLSI

Seitz, Charles L., ed., Proceedings of Caltech Confercnce on Very Large scale
Integration, Computer Science Dept., California Institute of Technology {Jan-

~ uary 1979).

[329]

[330]

[331]

‘[332]

[333]

Seitz, Charles E., ed., Proceedings of the Second Caltech Conference on Very
Large Scale Integration, Computer Science Dept., California Institute of Tech-
nology (1981).

Bryant, Randal, ed., Third Caltech Conference on Very Large Scale Integration,
Computer Science Presa (1983).

. C’arneg:e-MeIlon Unmerszty Conference on VLSI Syatema and Computations.
Kung, H. T.; Bob Sproull; and Guy Steele, eds., C'arncgic-MeHon Univer-

sity Conference on VLSI Systems and Computations, Computer Science Press
(Rockville, MD, October 1981).

e Chapel Hill Conference on Very Large Sca!e Integrat:on

Fuchs, Henry, ed., 1985 Chapel Hill Conference on Very Large Secale Integration,
Computer Science Press (Rockville, MD 1985). -
o MIT Conference on Advanced Research in VLSL

Penfield, Paul Jr., ed., Proceedings, Conference on Advanced Research in VLSI,
January, 1982, Artech House (Dedham, MA, January 1982).

[334] Penfield, Paul Jr., ed., Proceedings, Conference on Advanced Research in VLSI

1984, Artech House (Dedham, MA, 1984).

[

'Bibh'og‘raphy: Works on VLSI . 209

[335]

Leiserson, Charles E., ed., Advariced Research in VLSI: Proceedings of the
Fourth MIT Conference, MIT Press (1986).

o Annual Allerton Conference on Communication, Control, and Computing
(1961 to date). -

e ACM IEEFE Annual D-e.;sig'n Automation Conference (DA C) {1964 to date).

‘s Annual Symposmm ‘on Foundations of Computer Seience (FOCS), sponsored

by the IEEE Computer Society’s Technical Committee on Mathematical Foun-

_ dations of Computing (1960 to date).

o IEEFE International Conference on C’omputer-Atded Design.

o IEEE International Conference on Circuits and Computers (ICCC), spon-
sored by the IEEE Computer Soc:ety and the IEEE Circuits and Systems So-
ciety (1981 to date).

o International Symposium on Cireusts and Systems (ISCS) (formerly, Inter-

national Symposia on Circuits and Systems), sponsored by the IEEE (1974 to

 date).

{336]

831]

[338)

o Annual ACM Symposmm on Theory of Computmg (STOC'), sponsored by
the ACM Special Interest Group for Automata and Computablllty (1969 to

date).
Colléctio'ns and Other Coﬁfereﬁces‘

Duff, I. S,; and G. W. Stewa.rt Sparse Matriz Proceedmgs 1978, Soc1ety for
Industrial a.nd Applied Mathematics (1979).

Entenman, George; et al., “Course projects on VLSI algorithmics’: 1983,‘” tech-
nical report 83-06, Microelectronics Center of North Carolina (July 1983).

Gray, John P., ed., VLSI 81: Very Large Secale Integratwn, Academic Press
(London, 1981)

' Su‘rvey' Works ;

[339] Glasser, Lance; and Daniel W. Dobbérpuhl, The Design and Analysis of VLSI

Circuits, Addison-Wesley (Reading, MA, 1985).

[340] Gray, J. P., “Introduction to silicon compilation,” Proceedings of the 16th DAC

(1979), 305-306.

[341] Mead, Carver; and Lynn Conway, Introduction to VLSI Systems, Addison-

Wesley (Reading, MA, 1980).

210 ' | Alan T. Sherman, Thesis: October 14, 1986

[342] Mukherjee, Amar,'Int}oducts'on to nMOS and CMOS, Prentice-Hall (1986).

[343] Soukup, Jiri, “Circuit layout,” Proceedings of the IEEE, 69 (October 1981),
1281-1304.

[344] Sze, S. M., VLSI Technology, McGraw-Hill (1983).

[345] Ullman, Jeffrey D., Computational Aspects of VLSI, Computer Science Press
(Rockville, MD, 1984).

[346] Weste, Neil; and Kamran Eshraghian, 'Pﬂ'nciples of CMOS VLSI Design: A
Systems Perspective, Addison-Wesley (1985).

Specialized Topics in Mathematics

- Graph Theory

[347] Aho, A. V; M. R. Garey; and F. K. Hwa.ng, “Rectilinear Steiner tress: efficient

special case algorithms,” Networks, T (1977), 37-58.

[348] Bu1, Thang Nguyen, “On bisecting random graphs,” MS thesig, Dept. of Com-

puter Science, MIT (January 1983).

[349] Garey, M. R.; and D. S. Johnson, “The rectilinear Steiner tree problem is
NP-complete,” SIAM Journal of Applied Mathematics, 32 (1977), 826-834.

[350] Hopcroft, John; and Robert Tarjan, “Efficient planarity testmg, JACM, 21
(October 1974), 549-568. .

| [351] Lipton, Richard J.; and Robert E. Tarja‘n', “‘A sepa.ritor theorem for planar
graphs,” SIAM Jou'rnal on Applied Math., 38 (April 1979), 177-189.

Computatmnal Geometry

[352] Bentley, Jon Louis; and Thomas Ottman, “The complexlty of ma.mpulatmg hi-
erarchically defined sets of rectangles,” technical report 81-109, Dept. of Com-
puter Science, CMU (April 1981).

[353] Bentley, Jon Louis; and Derick Wood, “An 6ptixﬁal v.vorst-:case'a.lgorithm for
reporting intersections of rectangles,” IEEE Transactions on Computers, C—29
(1980), 571-577.

[354] Guibas, Leo J.; and Jorge Stolfi, “Primitives for the manipulation of general
subdivisions and the computation of Voronoi diagrams,” Proceedings of the 15th
STOC (April 1983), 221-234.

" Bibliography: Works on VLSI e o 211

[355] McCreight, Edward M., “Priority search trees,” technical report CSL-81-5,
Xerox Palo Alto Research Center (January 1982).

[356] Shamos, M. L; and D. Hoey, “Closest-point problems,” Pfoceed:'ﬁgs'of tﬁe 16th
FOCS (1975), 151-162.

Optimizatioh Techniques _' ' C i
{357] Greene, Jonathan W.; and Kenneth J. Supowit, “Simulated annealing without
rejected moves,” Proceedings of the 1984 ICCD (October 1984).

[358] Hajek, Bruce, “A tutorial summary of the theory and applications of simulated
.annealing,” Proceedings of the 24th Conference on Decision and Control, (Ft.
Lauderdale, FL, December 1985), 757-759.

[359] Hillier, Frederick S.; and Gerald J. Lieberman, Operations Research, Holden-
Day (San Francisco, 1974). : :

[360] Johnson, David S.; L. McGeoch; C. Rodriguez; and C. Schevon, “Optimization
by simulated annealing: an experimental evaluation,” Workshop on Statistical
Physies in Engineering and Biology (April 1984).

[361] Kirkpatrick, S.; C. D. Gelatt, Jr.; and M. P. Vecchi, “Optimization by simulated
annealing,” Seience, 220 (May 1983). |

';'[362] Ktirkpatric]};,' S.; C.D. Gelatt, Jr.; and M. P. -Vrc.acchi,ﬂ‘ “OIb'ti"mizatidn By simulated

' annealing,” IBM technical report RC 9355 (41093), (April 1982).

: [363] Leiserson, Cha.rles E.; and James B. Saxe, “A mixed-integer linear program-

ming problem which is efficiently solvable,” Proceedings of the 28rd Allerton

(October 1983), 204-213.

[364] i'Lin, Shen, “Some Computer Solutions of the Traveling-Salesman Problem,”
Bell System technical Journal, 44 (1965), 2245-2269.

[365] Romeo, Fabio; and Albérto4'Sa.ngiova.nni-Vincentélli, “Probabilistic Hill Climb-

" ing Algorithms: Properties and Applications” in [332], 393—417.

'[366] Yao, Frances F., “Efficient dynamic programming using quadrangle inequali- -

ties,” technical report, Xerox Palo Alto Research Center (1979).

212 N Alan T. Sherman, Thesis: October 14, 1986

VLSI Theory

VLSI Models

[367] Aggarwal, Alok; Maria Klawe; David Lichfenstem, Nathan i,lma.l and Avi
Wigderson, “Multi-layer grid embeddings,” Proceedmgs of 26th FOCS (October
1985), 186-196.

[368] Bilardi, G.; M. Pracchi; and F. P. Prepa‘.rata, “A critique a.nd an appraisal of
VLSI models of computation,” in [331], 81-88.

[369] Thompson, C. D., “Area-time complexity for VLSL” Proceedings of the 11th
STOC, (1979), 81-88.
- Lower-Bounds for VLSI Layout

~ [370] Abelson, H.; and P. Andreae, “Information transfer and area-time tradeoffs for
VLSI multiplication,” CACM, 23 (January 1980), 20-23.

[371] Baudet, G. M., “On the area required by VLSI circuits” in [331], 100-107.

[372] Brown, D.; and Ronald L. Rivest, “New lower bounds for channel width” in
[331], 178-185.

[373]' Cole, Richard; and Alan Siegel, “On information flow and sorting: new upper
and lower bounds for VLSI circuits,” Proceedings of 26th FOCS (October 1985),

208-221.

-[374]= J:i'a.-We'i Hong; and H. T. rKung;' “I/.O compléitity: the red-blue pebble game,”
technical report 81-111, Dept. of Computer Science, CMU {March 1981).

, [375] Sahni, S.; and A. Bhatt, “The complexity of design automation problems,”
Proceedmgs of the 17th DAC (June 1980), 402-411. .

[376] Vitanyi, Paul M. B., “Area penalty for sublinear signal propagation delay on
- chip,” Proceedings of 26th FOCS (October 1985), 197-207.

[377] Vuillemin, Jean, “A combinatorial limit to the computing power of VLSI cir-
cuits,” Proceedings of the 21st FOCS (1980), 294-300.
Systolic Systems

[378] Kung, H. T.; and Charles E. Leiserson, “Systohc arrays (for VLSI),” in [336),
256282,

Bibliography: Works on VLSI .~ - 213

[379] Leiserson, Charles, E., Area-Efficient VLSI Computation, MIT Press (1983).

Other Works

[380] Bhatt, Sandeep N.; and Frank T. Lelghton' “A fra.mework for solving VLSI
graph layout problems," techmca.l report TR-305, MIT Lab. for Computer
Science (October 1983).

'[381] Leighton, Frank T., Comple:nty Issues in VLSI: Opt:mal Layouts for the
- Shuffle-Ezchange Graph and Other Networks, MIT Press (Cambridge, MA,
1983).

[382] Leiserson, Charles, “Fat-trees: universal networks for hardware-efficient super-
: computmg, IEEE Trans. on Computers (October 1985).

:[383] Slmonson, Charles, “Gra.ph Embedding Problems,” Ph.D. Thes1s, Dept of
: Computer Science, Northwestern University (June 1986).-

Placement
Mincut Placement Techniques

(384] Breuer, M. A., “Min-cut placement,” J. Design Automation and Fault Tolerant
Computmg, (October 1977), 343-362.

[385] Cles1elsk1, Macnej J; and Edwin Kinnen, “Digraph relaxation for CAD layout
of cell based mtegrated circuits,” 1983-1984 computer science and computer
engineering research review, Univ. of Rochester (1984).

{386] Corrigan, L. I., “A placement capability based on partitioning,” Proceedings of
the 16th DAC (1979), 406-413.

|387] DunIOp, Alfred E.; and Brian W. Kermghan, “A placement procedure for poly- -
cell VLSI circuits,” Proceedings of the IEEE Conference on Computer Atded
Des:gn (September 1983}, 51-52.

[388] Fiduccia, C. M.; and R. M. Ma.ttheyses, “A lmea.r—tlme heuristic for improving
network partitions,” 19th DAC (1982), 175-181.

[389] Ginther, T., “Die raumllche Anordung von Einheiten mit Wechselbezelehun-
gen,” Elcktromsche Datenverarbeitung 6 (1969), 209-212.

[390] Mild, M and J. O. Piednoir, “Efficient Placement Algorxthms for VLSI » VLSI
Design, (April 1985) 46-50.

214 . : _ Alan T. Sherman, Thesis: October 14, 1986

[391] Kernighan, B. W.; and S. Lin; “An efficient heuristic procedure for partitioning
graphs,” Bell System Technical Journal (February 1970), 291-307.

[392] Koss, Michael C., “Optimal leaf cell layout using the min-cut heuristic,”
SB/MA Thesis, Dept. of EECS, MIT (August 1982). ' .

_ [393} Lauther, Ulrich, “A min-cut placement algorithm for general cell assemblies |

based on a graph representation,” 16th DAC (June 1979), 1-10.

[394] Yannakakis, Mihalis, “A polynomial algorithm for the mincut linear arrange-
ment of tress,” Proceedings of the 24th FOCS (1983), 274-281.

Other Placement Techniques

{395] Baker, Brenda; and Ron Y. Pinter, “An afgorithm for the optimal placement
- and routing of a circuit within a ring of pads,” Proceedings of the 24th FOCS
(November 1983), 360-370. : '

~ [396] Baker, Brenda S.; E. G, Coffman Jr.; and Ronald L. Rivest, “Orthogonal pack-
ing in two dimensions,” technical report TRCS79-1, Dept. of Computer Sci-
ence, Univ. of Cal., Santa Barbara (1979).

[397] Chow, Chee-Seng, “Phonex: An interactive hierarchical topological floorplan-
ning placer,” master’s thesis, Department of Electrical Engineering and Com-
puter Science, MIT (June 1985).

[398] Dolev, Danny; and A. Siegel, “The separation required for a.rbit'ra.ry wiring
barriers,” unpublished manuscript, Dept. of Computer Science, Stanford Univ.
(April 1981). :

- [399] Dunlop, Alfred E.; and Brian W. Kernighan, “Automatic layout of gate arrays,”
IEEE Symposium on Circusts and Systems, (May 1983), 1245-1248.

[400] Leiserson, Charles E.; anid Ron Y. Pinter, “Optimal plé.ceinent for river rout-
ing,” SIAM Journal on Computing, 12 (August 1983), 447-462.

[401} Preas, B. T., “Placement and routing a.lgbrithma for hierarchical integrated
circuit layout,” Ph.D. thesis, Stanford Univ. (1979).

[402] Preas, B. T.; and W, M. van Cleemput, “Placement algorithms for arbitrarily
shaped blocks,” Proceedings of the 16th DAC (1979), 474-480.

[403] Preas, B. T.; and C. W. Gwyn, “Genera.l. hierarchical automatic layout of cus-
tom VLSI circuit masks,” J. Design Automation and Fault- Tolerant Computing,
3 (1979), 41-58.

‘Bibliography: Works on VLSI - ' ' 215

[404] Schweikert, Daniel, “A 2-dimensional placement algorithm for the layout of
electrical circuits,” Proceedings of the 18th DAC (1976), 408—416.

[405] Siegel, Alan, “The optimal offset problem for river routing,” unpublished
~ manuscript, Dept. of Computer Science, Stanford Univ. (February 1983).

[406] Siegel, Alan, “Fast optimal pla.cément for river routing,” unpublished
 manuscript, Dept. of Computer Science, Stanford Univ. (February 1983).

[407] Siegel, Alan; and Danny Dolev, “Some geometry for general river routing,”
unpublished manuscript, Dept. of Computer Science, Stanford Univ. (February
1083). - |

',[408] Stockmeyer, L. J., “Optimal orientations of cells in slicing floorplan designs,”
Information and Control 57 (1983). :

[409] Wong, Geofffejr E., “Analog integrated circuit placement optimization by sim-
' ulated annealing,” master’s thesis, Dept. of EECS, MIT (1984).

Routing
" Channel Routing

[410] Baker, Brenda S.; Sandeep N. Bhatt; and Frank T. Leighton, “,Ah approxima-
tion algorithm for Manhattan routing,” Proceedings of the 15th STOC (April
1983), 477-486. - o |

[411] Berger, Bonnie Afiné;*“New Upper Bounds for two;layer channel routing,” MA
thesis, Dept. of EECS, MIT (January 1986). :

{412] Burnstein, Michael, “hierarchical wire rbutiﬁg,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, {October 1983).

[413]' Burnstein, Michael, “hierarchical channel router,” Proceedings of the 20th De-
sign Automation Conference (1983). :

'[414] Deutsch, D. N., “Compacted Channel Routing,” Proé'cedi'n'g.s. of the ICCAD,
(November 1985), 223-225.

[415] Frank, Andrés, “Disjoint paths in a rectilinear grid,” Combinatorica, 2 (Noirem-
ber 1982), 361-371.

{416] Hamachi, Gordon T., and John K. Ousterhout, “A switchbox router with obsta-

cle avoidance,” Proceedings of the 21st Design Automation Conference (1984),
173-179. ‘

216 -Alan T. Sherman, Thesis: October 14, 1986

[417] Hashimoto, Akihiro: and Jamrmes Stevens, “Wiring routing by optimizing chan-
nel assignment within large apertures,” Proceedings of the 8th DAC (1971},
155-169.

" [418] Leong, H. W, D. F. Wong; and C. L. Liu, “A simulated-annealing channel
router,” (November 1985), 226-228.

[419] Luk, W. K., “A greedy switch-box router,” technical report: VLSI document
V158, Dept. of Computer Science, Carnegie-Mellon University (May 1984).

Other Works on Routing

[420] Brady, Martin L.; and Donna J. Brown, “Arbitriry planar routing with four
layers,” Proceedings of the 1984 MIT (January 1984), 194-201. '

[421] Dolev, Danny; Kevin Karplus; Alan Siegel; Alex Strong; and Jeffrey D. Ullman,
“Optimal wiring between rectangles,” Proceedings of the 18th STOC (1981},
312-317.

- [422] Eustace, Robert Alam, “Intra region routing,” Ph.D, Thesié, Dept. of Com-
puter Science, Univ. of Central Florida (August 1984). '

[423] Joobbani, Rostam; Daniel P. Siewiorek; and Sarosh N. Talukdar, “Application
of knowledge-based expert systerns to detailed routing of VLSI chips,” Pro-
ceedings of the IEEE International Conference on Computer Design: VLSI in
Computers (October 1985), 199202, '

[424] Kramer, Mark R.; and J anuary van Leeuwen, “Wire routing is NP-complete,”
technical report RUU-CS-82-4, Dept. of Computer Science, Univ. of Utrecht
(February 1982).

[425] LaPaugh, Andrea S;, “Algorithms for integrated circuit -1a.y6ut: an analytic
approach,” Ph.D. thesis, Dept. of EECS, MIT (1980).

[426]) Larson, Richard C.; and Victor O. K. Li, “Finding minimum rectilinear distance
paths in the presence of barriers,” Networks, 11 (1981), 285-304.

[427] Lee, C. Y, “An algorithm for path connection and its applications,” IRE Trans-
actions on Electronic Computers, EC—10 (September 1961), 346-365.

[428] Leiserson, Charles; and Miller Maley, “Algorithms for routing and testing

routability of planar VLSI layouts,” Proceedings of the 17th STOC (1985},
69-78. .

e e L

-Bibliography: Works on VLSI - : ' 217

[429] Stenstrom, J. R.: and Robert M. Mattheyses, “Swiﬁth-"bdfroﬁting the greedy
way,” Proceedings of the ICCAD Conference (November 1985), 307-311.

- [430] Mattison, Roland L., “A high quality, low cost router for MOS/LSL” Proceed-
ings of the 9th DAC (1972), 94-103. : _ :

[431] Pinter, Ron Y., “The impact of layer assignment methods on layout algorithms
for integrated circuits,” Ph.D. thesis, Dept. of EECS, MIT, (1982).

[432] Preparata, Franco P.; and Witold Lipski, Jr., “Three layers are enough,” Pro-
ceedings of the 23rd FOCS (November 1982}, 350-357.

[433] Rivest, Ronald L.; and C. M. Fiduccia, private correspondence (1983).

-[434] Syed, Zahir; Abbas El Gamal; and M. A. Breuer, “On routing for custom
integrated circuits,” Proceedings of the 190th DAC (July 1982), 887-893.

_[435] Tompa, Martin, “An optimal solution to a wire-routing problem,” JCSS, 23
| (October 1981), 127-149, -

[436] Vecchi, M. P.; and §. Kirkpatrick, “Global wiring by simulated annealing,”
IEEFE Transactions on Computer-Asided Design, 2 (October 1983), 215-222.

Compaction - - ST e
[437] Dunlop, A. E., “Slip: symbolic layout of integrated circuits with compaction,”
~ Computer Aided Design, 10 (November 1978), 387-391. _ '

[438] Hsueh, Min-Yu; and Donald O. Pedersbn, “Computer-aided 'la.yout of LSI cir-
- . cuit blocks,” Proceedings of the 1979 ISCS (1979), 474477,

.[439] Kedem, Gershon; and Hiroyuki Wa.nté.nabe, “Optimization techniques for IC
layout and compaction,” technical report 117, Dept. of Computer Science,
Univ. of Rochester (September 1982). -

[440] Lengauer, T., “Efficient algorithms for the constraint generation for integrated
circuit layout compaction,” Proceedings of the 9th Workshop on Graphtheoretie
Concepts in Computer Science (June 1983). :

| [441] Lengauer, T., “The complexity of compacting hiera:rchiéa.lly. sﬁeciﬁed layouts of
integrated circuits,” Proceedings of the £25rd FOCS (November 1982), 358-368.

[442] Maley, Maley, “Compaction with Automatic Jog Introduction,” Chapel Hill
Conference on VLSI, Computer Science Press (Rockville, MD, 1983), 261-283.

218 | Alan T. Sherman, Thesis: October 14, 1986

The PI System

[443] Baratz, Alan, “A graph theoretlc VLSI layout procedure, PL.D. Theeus, Dept.
of EECS, MIT {August, 1981). :

[444] Koschella, James J., “A placemenf/interconnect channel router: cuf.ting your
PI into slices,” BA thesis, Dept. of Computer Science, MIT (May 1981).

[445] Stenstrom, Ross; and Robert M. Mattheyses, private correspondence (October
8, 1985).

[446] Moulton, Andrew 8., “Routing the power and ground wires on a VLSI chip,”
MA Thesis, Dept. of EECS, MIT (February 1984).

[447] Moulton, Andrew, “Laying the power and ground wires on a VLSI chip,” Pro-
~ ceedings of the 20th DAC (1983), 754-755.

{448] Novick, Mark, “Algorithms for crossing placement in VLSI design,” BA thes;ls,
Dept. of Computer Science, MIT, {June 1985).

[449] Rivest, Ronald L.; Alan E. Baratz; and Gary Miller, “Provably good channel
routing algorlthms in [331], 153-159.

[450] Rivest, Ronald L.; and C. M. Fiduccia, “A greedy channel router,” Proceedings
of the 19th DAC, (June 1982), 418-424_

[451] Rivest, Ronald L.; and C. M. Fiduccia, “An algorithm for optimal crossing -
placement in VLSI design,” unpublished manuscript (1983).

[452] Rivest, Ronald L., “The PI (placement and routmg) system,” - Procccdmga of
the 19th DAC (June 1982), 475—481.

[453} Rose, Flavio, “The PI System User’s Ma.nual » unpubhshed document MIT
Lab. for Computer Science {April 1982).

Other Placement and Routing Systems

[454) Hsueh, Min-Yu, “Symbolic layout and compaction of integrated circuits,” tech-
nical memorandum UCB/ERL/ M79/80 (December 1979).

[455] Johannsen, David L., “Silicon'compfla’.tion,” Ph.D. Thesis, Cal. Institute of
Technology, (1981).

[456] Keller, K. H. and A. R. Newton, “KIC2: A low-cost, interactive editor for
integrated circuit design,” Proceedings of COMPCON (1982), 305-306.

Bibliography: Works on VLSI ‘ 219

_‘{4'57] Qusterhout, John K., “Caesar: An Interactive Editor for VLSI Layouts,” VLSI
Design, fourth quarter (1981), 34-38.

[458] Ousterhout, John K.; Gordon T. Hamachi; Robert N. Mayo; Walter S. Scott;
and George S. Taylor, “A collection of papers on Magic,” technicgl report
UCB/CSD 83/154, University of California at Berkeley (December 1983). .

[459] Siskin, Jeffrey M.; Jay R. Southand; and Kenneth W. Couch, “Generating
custom high performa.nce VLSI designs from succinct a.lgonthmlc descnptlons
in (333] (1982), 28-39.

' {460] Preas, Brian T., and C. S. Chow, “Placement and Routin’g Algorithms for Topo- -
: logical Integrated Circuit Layout,” Proceedings of the International Symposium
on Cireuits and Systems (June 1985).

[461] Sechen, C.; and A. Sangiovanni-Vincentelli, “The Timber Wolf placement and
routing package,” Proceedings of the 1984 Custom Integrated Circuit Confer-
ence, (Rochester, May 1984), 522-527.

Layouts of Specific Clrcults

‘[462] Brent, Richard P.; and H. T. Kung, “A regular la.yout for parallel adders,”
IEEE Transact:ons on Computers, C-31 (March 1982), 260-264.

[463] Fischer, M. J.; and M. S. Paterson, “Optimal tree layout,” Proceedings of the
19th STOC (1980), 177-189.

- [464] Gulbas, L.J; H. T. Kung, and C. D. Thompson, “Direct implementation of
combma.tona.l algorithms” in [328], 509-525.

[465] Lingas, Andrzej; Ron Y. Pinter; Ronald L. Rivest; and Adi Shamir, “Minimum
edge length decomposition of rectilinear polygons,” Proceedings of the Allerton

Conference on Communications, Control, and Computing 3 (October 1982),
53-63.

[468] Stone, Harold S., “Parallel processing with the perfect shufHe;” IEEE Trans-
actions on Computers, C—20 (February 1979), 153-161.

Other Works

[467] Brooks, Frederick P., The Mythtcal Man-Month, Essays on Software Engineer-
ing, Addlson-Wesley (January 1982).

[468] Moon, David; Richard M. Stallman; and Daniel Weinreb, Lisp Machine Man-
ual, 6th edition {June 1984).

220 . ‘ Alan T. Sherman, Thesis: October 14, 1986

[469] Pitman, Kent M., “The revised MacLisp ‘manual,” techriical report TR-295,
MIT Lab. for Computer Science (May 21, 1983).

[470] Zipple, Richard, “Schema,” Proceedings of the DAC (1985).

iy

221

.&bout the Author

On February 26, 1957, Alan Theodore Sherman was born in Cambridge, Mas-
sachusetts. The son of a college history professor and a high schoo!l German teacher,
Alan grew up in Williamsburg, Virginia, attending public schools.

In June 1974, Alan graduated as salutatortan from Lafayette High School in
Williamsburg, Virginia. He then entered Brown University in Providence, Rhode
Island, where he pursued a liberal arts course of study. At Brown, he was elected to
Phi Beta Kappa and Stgma Xi. In June 1978, Alan graduated from Brown, magna
eum laude, with an Sc.B. in mathematics.

Having become interested in theoretical computer science, Alan entered the Ph.D
program in computer science in the Department of Electrical and Computer Science
at the Massachusetts Institute of Technology in Cambridge, Massachusetts. Working
under Professor Ronald Linn Rivest, in June 1981, Alan received a 8.M. degree in
Electrical Engineering and Computer Science. The title of his master’s thesis was “On
the Engima cryptograph and formal definitions of cryptographic strength.” While
at MIT, Alan also completed a graduate minor in computer music. Continuing his
research under Professor Rivest, in October 1986, Alan completed all requirements
for a Ph.D. in computer science.

Throughout his education, Alan undertook a variety of jobs. From fourth through
twelfth grade, Alan played fife in the Colonial Williamsburg Fife and Drum Corps.
During summer vacations from college, Alan worked as an interpreter at the Magazine
in Colonial Williamsburg and as a programming aide for the Computer Sciences
Corporation at the NASA Langley Research Center in Hampton, Virginia. While at
MIT, Alan supported himself as a research and teaching assistant; he also served as
a private consultant on the application of cryptography. In September 1985, Alan
joined the faculty in the Department of Computer Science at Tufts Unwersn'.y in
Medford, Massachusetts, where he is now an assistant professor.

In spring 1986, Alan won a senior class award for teaching at Tufts University.

Alan’s interests outside of computer science include music, board games, and
sports. While at MIT, Alan studied piano under Nicholas Van Slyck at the New -
School of Music and played piano in the MIT Chamber Music Society. During 1980,
Alan served as President of MIT’s Tang Hall Residents’ Association. In his spare
time, Alan enjoys chess, tennis, squash, racquet ball, badminton, hiking, skiing,
jogging, and ballroom dancing. On August 2, 1986, Alan married Tomoko Shimakawa
in Cambridge, Massachusetts.

o e

i = e e

