An ACM Distinguished Dissertation
1985

Two Issues in

Public Key Cryptography
RSA Bit Security and a
New Knapsack Type System

Ben-Zion Chor

TWO ISSUES IN PUBLIC-KEY CRYPTOGRAPHY

ACM Distinguished Dissertations

1982

Abstraction Mechanisms and Language Design
by Paul N. Hilfinger

Formal Specification of Interactive Graphics Programming Language
by William R. Mallgren

Algorithmic Program Debugging
by Ehud Y. Shapiro
1983

The Measurement of Visual Motion
by Ellen Catherine Hildreth

Synthesis of Digital Designs from Recursion Equations
by Steven D. Johnson
1984

Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms
by Eric Bach

Model-Based Image Matching Using Location
by Henry S. Baird

A Geometric Investigation of Reach
by James U. Korein

1985

Two Issues in Public-Key Cryptography
by Ben-Zion Chor

The Connection Machine
by W. Daniel Hillis

TWO ISSUES IN PUBLIC-KEY CRYPTOGRAPHY
RSA BIT SECURITY
AND
A NEW KNAPSACK TYPE SYSTEM

Ben-Zion Chor

The MIT Press
Cambridge, Massachusetts
London, England

© 1986 by The Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechani-
cal means (including photocopying, recording, or information storage and retrieval) without permission
in writing from the publisher.

This dissertation was submitted in June 1985 to the Department of Electrical Engineering and Computer
Science, the Massachusetts Institute of Technology, in partial fulfillment of the degree of Doctor of
Philosophy.

Printed and bound in the United States of America.
Library of Congress Cataloging-in-Publication Data

Chor, Ben-Zion.
Two issues in public-key cryptography.

(ACM distinguished dissertations; 1985)
Originally presented as the author’s thesis (doctoral)—MIT, 1985.
Bibliography: p.
1. Telecommunication—Security measures. 2. Cryptography. I. Title. II. Series.
TK5102.5.C478 1986 384'.028'9 85-24072
ISBN 0-262-03121-3

To my parents
Moshe and Nehama

CONTENTS

1. Introduction

Part I. RSA Bit Security
2. Background

2.1 The RSA Cryptosystem

2.2 Multiplicative and Additive Properties of the RSA
2.3 Predicate Security

2.4 Some Predicates and Relations Among Them

. Very Reliable Oracles

3.1 Binary Search Inversion

3.2 Parity Information From Reliable Least Significant Bit Oracle

. Inverting RSA with a Reliable Parity Subroutine
4.1 General Plan

4.2 Brent-Kung GCD

4.3 GCD Inversion Using a Parity Subroutine

4.4 Reliable Parity Subroutine from % + m Oracle
. The Least Significant Bit is m Secure

5.1 Error Doubling and Attempts to Overcome it

5.2 Schnorr and Alexi Improvement

5.3 Two Points Based Sampling

5.4 Probability Analysis

. Extensions and Applications

6.1 Simultaneous Security

6.2 Secure Bits in Rabin’s Encryption Function

6.3 Multi Prime Moduli with Partial Factorization

6.4 Direct Construction of Pseudo Random Bit Generators
6.5 Applications to Probabilistic Encryption

Part II. A New Knapsack Type Cryptosystem
7. The New Cryptosystem

7.1 Background

-~

10
12
14
14
16
19
19
20
21
23
26
26
27
28
29
33
33
35
38
39
40

43
43

7.2 Knapsack Type Cryptosystems
7.3 Bose-Chowla Theorem
7.4 How the Cryptosystem is Constructed and Used
7.5 System Performance: Time, Space, and Information Rate
7.6 Transforming Unconstrained Bit Strings
7.7 Proposed Parameters
7.8 Implementation Details
8. Possible Attacks
8.1 Specialized Attacks
8.2 Low Density Attacks
8.3 Countermeasures against Shortest Vector Attacks
8.4 Brute Force Attacks
8.5 A Word of Caution
Appendices
1. On Discrete Logarithms and Factorization
2. Lagarias—Odlyzko Low Density Attack
3. A Specific Public-key
References
Index

44
45
47
50
51
52
53
54
54
58
59
61
62

63
64
67
72
77

SERIES FOREWORD

This book is being published by the MIT Press as an outgrowth of the annual contest for the
best doctoral dissertation in computer-related science and engineering. The contest was initiated
in 1982 by the ACM in cooperation with MIT Press.

The Distinguished Doctoral Dissertation Series has been created to recognize that some of the
theses considered in the final round of selecting a contest winner also deserve publication. In
the judgment of the ACM selection committee, this thesis is of such high quality that it deserves
special recognition in this series.

Dr. Ben-Zion Chor wrote his thesis on "Two Issues in Public-Key Cryptography, RSA Bit
Security and a New Knapsack Type System" at the Massachusetts Institute of Technology. The
thesis was supervised by Ronald L. Rivest, Professor of Electrical Engineering and Computer
Science. The thesis was submitted to the 1985 competition. The ACM Doctoral Dissertation
Award Subcommittee recommended publication of this thesis because it makes two major
contributions to the field of cryptography. The first part of the thesis analyzes the security of
the well-known "RSA" public-key cryptosystem. Dr. Chor demonstrates that under suitable
conditions an adversary has no hope of determining the low-order bits of an RSA plaintext from
the RSA ciphertext. This definitive theoretical result has practical importance since it provides
assurance that the RSA scheme can be used confidently.

The second part of Dr. Chor's thesis deals with cryptographic design and presents a public-key
cryptosystem of the "knapsack" type. While previous knapsack-type proposals have been broken,
this proposal seems to resist cryptanalysis effectively and, thus, represents one of the first plausible
alternatives to the RSA cryptosystem.

John R. White
Chairman, ACM Doctoral Dissertation Award Subcommittee

PREFACE

This book is a slightly revised version of my MIT dissertation, written in Spring
1985. The general subject of this thesis is public-key cryptographic systems. In
the first part of the thesis, we investigate the question of cryptographic security
of bits in the RSA encryption. In the second part of the thesis, a new knapsack
type public-key cryptosystem, based on arithmetic in finite fields, is constructed.

In the first part of the thesis, we prove that the following two problems are
equivalent (each is probabilistic polynomial-time reducible to the other):

1) Given the RSA encryption of a message, retrieve the message.

2) Given the RSA encryption of a message, guess the least-significant bit of the

message with success probability % + m (where n is the length of the
RSA modulus).

This equivalence implies that an adversary, given the ciphertext, cannot have a
non-negligible advantage (over a random coin flip) in guessing the least-significant
bit of the plaintext, unless he can break RSA. The results are then extended
to Rabin’s encryption function, and to simultaneous security of the logn least-
significant bits in both RSA and Rabin’s functions. This implies that Rabin/RSA
encryption can be directly used for pseudo random bit generation, provided that
factoring/inverting RSA is hard.

In the second part of the thesis, we introduce a new knapsack type public-
key cryptosystem, and give a detailed description on its implementation. The
system is based on a novel application of arithmetic in finite fields, following a
construction by Bose and Chowla. Appropriately choosing the parameters, we
can control the density of the resulting knapsack. In particular, the density can
be made high enough to foil “low density” attacks against our system. At the
moment, we do not know of any attacks capable of “breaking” this system in a
reasonable amount of time.

Most of the material in this thesis appeared in preliminary form in three
papers, all of which are the result of joint work: “On the Cryptographic Security
of Single RSA Bits”, joint work with M. Ben-Or and A. Shamir, in 15th ACM
Symp. on Theory of Computation, April 1983. “A knapsack type public-key
cryptosystem based on arithmetic in finite fields”, joint work with R. Rivest,
in Advances in Cryptology: Proceedings of Crypto84. “RSA/Rabin least signifi-
cant bits are % + m secure”, joint work with O. Goldreich, in Advances in
Cryptology: Proceedings of Crypto84. This last paper was later combined with
the work of W. Alexi and C.P. Schnorr, and titled “RSA and Rabin functions:
Certain parts are as hard as the whole”, it will appear in SIAM Jour. on Com-
puting (extended abstract in Proc. of the 25th IEEE Symp. on Foundation of
Computer Science, October 1984).

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Ron Rivest, for his guidance and encour-
agement. Ron introduced me to public-key cryptography, which is the subject of
this thesis. He always supplied me with insights and criticism which sometimes
took me months to fully appreciate. The second part of this thesis is joint work
with Ron.

Many other people have contributed to my research at MIT. Charles Leiser-
son helped me get on the research track when I was still overwhelmed by this
new environment. Mike Sipser tought me about complexity theory, and supplied
valuable advice and encouragement throughout my work. Michael Ben-Or and
Adi Shamir were very helpful in the first stages of the research on the RSA
bits. Chapters 3.2 through 4.4 are joint work with both Michael and Adi. Oded
Goldreich was indispensable when the work on the RSA bits reached its highest
point. Chapters 5 and 6 are joint work with Oded. In addition to his contri-
butions to this research, Oded also provided me with constant feedback on my
ideas, and carefully read and commented on the entire thesis. I found the theory
group in MIT to be a very lively environment for conducting research. In par-
ticular, I benefited from many discussions with Brian Coan, Shafi Goldwasser,
Johan Hastad, Nancy Lynch, Mike Merritt, Silvio Micali, and David Shmoys.

Some of the work on part II of the thesis was done while I visited Bell Lab-
oratories in Summer 1983. I’d like to thank Ernie Brickell, Don Coppersmith,
Jeff Lagarias, and Andrew Odlyzko for discussions which clarified many of the
issues in designing knapsack-type cryptosystems. Andrew’s assistance in a first
implementation of the system, and later in testing the low density attack against
it, were particularly helpful. I’d also like to thank Scott Warner for his assistance
in the final implementation of the system, back at MIT.

My work at MIT was supported in part by the National Science Foundation
under grant MCS-8006938, and by an IBM Graduate Fellowship.

I am grateful to Oded for his friendship, and to Ron and Shlomit Pinter for
their help during my first steps at MIT. Finally, many thanks to Metsada.

CHAPTER 1

INTRODUCTION

The general subject of this thesis is public-key cryptographic systems. The
first part of this thesis deals with the analysis of the best known public-key
cryptosystems, the RSA. The second part of the thesis deals with the design of
a new public-key cryptosystem. In both parts, the corresponding questions are
examined from computational complexity point of view.

Cryptography, as a mean for sending secret information over insecure com-
munication channels, is thousands of years old. In conventional cryptosystems,
the sender and the receiver possess a joint secret key. The sender uses this key
to encrypt the plaintext he sends, while the receiver uses the same key in order
to decrypt the ciphertext he gets. Suppose the messages sent are uniformly dis-
tributed random strings and the encryption is a permutation of these strings.
In such an idealized cryptosystem it is impossible for an eavesdropper to infer
any information about the identity of the messages or the key by just observing
ciphertexts, no matter how much computing power he possesses. However, the
situation changes greatly if the message space has a different distribution than
the uniform one. Shanon [47] analyzed this problem quantitatively, introducing
the tools of information theory. He showed that every additional ciphertext nar-
rows down the key space, in the sense that certain keys become more and more
likely. Ciphertext of sufficient length will determine the key uniquely (with high
probability). Given long enough ciphertext, the problem can thus be solved in
principle. Shanon concluded that the question should be what ¢s the computa-
tional effort of the cryptanalyst versus that of the legitimate user.

Public-key cryptography differs from conventional cryptography in the way
the key is used. While the same key is used for both encryption and decryption in
conventional cryptography, this is not the case in public-key cryptography. There
are two keys: The encryption key, and the decryption key. The decryption key is
kept secret, while the encryption key is made public. Thus each user can encrypt

2 ISSUES IN PUBLIC-KEY CRYPTOGRAPHY

messages. Without knowing the decryption key, however, messages sent by other
users cannot be efficiently decrypted.

Public-key cryptography was proposed in 1976 by Diffie and Hellman in the
seminal paper “New Directions in Cryptography” [20]. A few months later, the
first two implementations of public-key cryptosystems were found: The Merkle—
Hellman scheme [35] and the Rivest-Shamir—Adelman scheme [42]. These works
related well-known complexity-theoretic questions, whose solution is believed
to be intractable (like solving a 0-1 knapsack or factoring large numbers), to
the difficulty of cryptanalysis. The relation between public-key cryptography
and complexity theory is more obvious than the relation for conventional cryp-
tography. Even without inspecting any ciphertext, the public encryption key
determines at least one secret decryption key. This secret key enables every-
one (in principle) to decrypt all messages efficiently. However, while this means
that public-key cryptosystems are useless from the information theoretic point
of view, things look brighter if one considers the amount of resources needed to
carry out such an attack. It might well be infeasible to determine the decryption
key within any reasonable computational effort.

Attacks other than finding the secret decryption key should also be consid-
ered. For example, it might be possible to decrypt certain ciphertexts without
having the secret decryption key. Even the possibility of getting partial informa-
tion about the contents of the plaintext without actually decrypting the cipher-
text might be unacceptable in some circumstances. To overcome these potential
difficulties, Goldwasser and Micali proposed a new type of randomized public-
key cryptosystems in their “Probabilistic Encryption” paper [25]. They gave
a concrete implementation for their scheme, based on the difficulty of deciding
quadratic residuosity modulo composite numbers. The scheme randomly maps
cleartext bits into a ciphertext block in a bit-by-bit fashion. An attractive prop-
erty of this scheme is that an adversary with polynomially bounded resources
cannot learn any partial information about the plaintext from the ciphertext.
Thus a very strong measure of secrecy is achieved.

While such strong result cannot hold for deterministic encryption schemes,
it is not hard to see that some predicates must still remain somewhat secure.
More precisely, some predicates B(z) which are efficiently computable given

INTRODUCTION 3

the cleartext z, cannot be computed given the ciphertext E(z) with no error.
Otherwise, F could be inverted everywhere by computing the bits of z one by
one. This observation, however, does not rule out the possibility that all such
predicates B can be efficiently computed with only a small error.

In the first part of this thesis we explore questions related to the security of
partial information in the RSA cryptosystem. It is quite easy to see that the
RSA cryptosystem does leak certain partial information. For example, the Jacobi
symbols of the plaintext and the ciphertext are always the same. Since Jacobi
symbols are easy to compute, this partial information is not at all hidden under
the RSA. So, assuming that RSA is indeed hard, the question of demonstrating
predicates, which are kept secret under RSA encryption, naturally arises.

The bits in the binary expansion of the plaintext provide a very simple can-
didate for such secure predicates. For example, there seems to be no easy way to
recover the least significant bit of the plaintext from the ciphertext. Of course,
extracting this bit cannot be any harder than recovering the plaintext from the
ciphertext. Thus the approach taken is to reduce the problem of inverting RSA
to that of successfully guessing the least significant bit of the plaintext from the
ciphertext.

We start by giving with the formal setting for investigating bit security.
Following the approach of Blum and Micali [7], probabilistic Cook reductions
are used. We assume that we are given an oracle for the least significant bit,
and attempt to invert RSA using this oracle. It turns out that the quality of
the oracle makes things different - better oracles are easier to use, while flaky
ones are harder, or even impossible, to handle. The extreme case is that of an
oracle which is correct exactly one half of the time. Since such oracle could in
fact be implemented using an unbiased coin, any successful reduction using it
would indicate that RSA is easy to invert.

We continue by describing three reductions. We start with the most reliable
oracle for the least significant bit — one that never errs, and show how it can
be used in a binary search procedure for inverting RSA. Next, oracles which
are correct more than seventy five percent of the times are handled, using a
combination of a new sampling method together with a binary gcd procedure.

4 ISSUES IN PUBLIC-KEY CRYPTOGRAPHY

Finally, we introduce the technique of two points based sampling. This technique
allows efficient reduction even if the least significant bit oracle is only slightly
better than a random coin toss. The reduction implies that the following two
problems are equivalent (each is probabilistic polynomial-time reducible to the
other):

1) Given the RSA encryption of a message, retrieve the message.

2) Given the RSA encryption of a message, guess the least-significant bit of the

message with success probability % + m (where n is the length of the
RSA modulus).

This equivalence means that an adversary, given the ciphertext, cannot have a
non-negligible advantage (over a random coin flip) in guessing the least-significant
bit of the plaintext, unless he can break RSA.

We conclude the first part by extending these results to the simultaneous
security of several least significant bits, and to the Rabin encryption function [39].
Applications to probabilistic encryption and to efficient generation of pseudo-
random number generators [7] are also described.

A different line of research in public-key cryptography has dealt with the ef-
ficient cryptanalysis of the Merkle-Hellman cryptosystems. In 1982 Shamir [45]
showed how to break the basic Merkle-Hellman cryptosystem. This work has
led the way to attacks on more sophisticated versions of the Merkle-Hellman
cryptosystem. In particular, Brickell [12] found a way to break the general
Merkle-Hellman scheme, and Lagarias and Odlyzko [31] developed a technique
which seems to threaten the security of any knapsack-type public-key cryptosys-
tem having certain low density properties.

The second part of the thesis describes a new knapsack type public key
cryptosystem which has a high density. The system is based on a construction
of Bose and Chowla in finite fields arithmetic. This construction yields dense
sequences of integers, with the property that all subset sums are distinct. (More
precisely, all subset sums for subsets not exceeding a certain size.) This is an
appropriate starting point for building a knapsack type public-key cryptosystem,
since the property of unique decryption is guaranteed.

INTRODUCTION 5

Certain difficulties have to be overcome to make this idea work. First, the
decryption must be made efficient given all the information at the disposal of the
system constructor. Once this is done, we have to make a public-key cryptosys-
tem out of the construction. Some information must be kept secret to prevent
decryption by users other than the legitimate receiver. Finally, an efficient way
of generating the keys should be given. In our case, in order to compute the
keys, one has to take discrete logarithms in the finite field GF(p"). While no
efficient algorithms for this problem are known in general, some particular cases
can be handled in practice. These cases provide the practical basis for the new
cryptosystem. We give detailed description of implementing the scheme and
propose concrete parameters.

Finally, we examine some possible cryptanalytic attacks against the new cryp-
tosystem. We argue that the new cryptosystem resists these specific attacks (i.e.
these attacks are infeasible for the proposed parameters). However, we are not
able to prove that this cryptosystem is unbreakable, and leave its security as an
open problem. We conclude by presenting a specific instance of the cryptosystem,
whose cryptanalysis is proposed as a challenge to the would-be cryptanalyst.

PART I

RSA BIT SECURITY

CHAPTER 2

BACKGROUND

This chapter serves to provide technical background for the first part of the
thesis. The RSA function and its properties are examined. Next, the formal
framework for studying bit security is given. Throughout the thesis, when we
say that something is easy to compute, we mean that it can be computed in
(deterministic or probabilistic) polynomial time as a function of its arguments.

2.1 The RSA Cryptosystem

In this section we introduce some notation which will be used throughout the
first part. We proceed by reviewing the definition of the RSA encryption and
some of its properties.

Definition 2.1.1: Let N be a natural number. Zpy will denote the ring of
integers modulo N, where addition and multiplication are done modulo N.

It would be convenient to view the elements of Zy as points on a circle (see
figure 2.1). Throughout the thesis, n = log, N will denote the length of the
modulus N. All algorithms we’ll discuss have inputs of length O(n).

0

3N/, N/4

N/2

Fig. 2.1 — Cyclic representation of Zy

8 RSA BIT SECURITY

Definition 2.1.2: Let N be a natural number, and z an integer. [z|ny will
denote the remainder of z modulo N (notice that for all z, 0 < [z]y < N).

Let p,q be two large primes, and N = pq be their product. The RSA en-
cryption function is operating in the message space Zn, where N is of the above
form. The encryption of z is En(z) def [z¢]n, where e is relatively prime to
©(N) = (p—1)(¢ — 1) . The numbers N and e are put in a public file and thus
any user can encrypt messages with them. Exponentiation is efficiently com-
puted by, for example, the successive squaring method [29, p. 441]. Below, we
explain how the RSA decryption works. This is not necessary for the rest of this
thesis and is given here only for the sake of completeness.

The integers in the range [0, N — 1] which are relatively prime to N constitute
a group under multiplication modulo N. This group is denoted by Zy,. The
number of elements in this group is ¢(N) = (p—1)(¢—1) . By Lagrange theorem,
for every z € Z§, if a = 0 (mod ©(N)), then z* =1 (mod N) (since the
group contains ¢(N) elements). Let e be relatively prime to ¢(N). Then there
is another integer d which satisfies ed =1 (mod (N)). Every z € Z}, satisfies
(:ce)d = z¢ = zmod N. Given e and p(N), d can easily be found, using the
extended Euclidean algorithm [29]. However, knowing N and e but not ¢(N),
finding d is equivalent to factoring N. In the RSA cryptosystem, the public
encryption key consists of N and e, while d is the secret decryption key. To
encrypt a message z € Zp, the user computes En(z) = [z¢]y. To decrypt
y = En(z), the legitimate receiver computes [y¢]y = En(z)¢ mod N. By the
identity above, this gives the original message z. Messages in Zy — Zy; are not of
special concern since any of them (except 0) enables the factorization of N and
hence are not likely to be found (unless factoring N is easy). For this reason, we
will not be particularly careful to distinguish between Zy and Z}.

2.2 Multiplicative and Additive Properties of the RSA

Viewed as a function from Zy into itself, the RSA is a multiplicative function,
namely Ey(zy) = En(z)En(y). Thus if we have an encryption En(z) together
with an element r € Zy, it is easy to compute Ey(rz), even without knowing z:
First compute En(r), and then multiply En(z) by En(r) modulo N. For every

BACKGROUND 9

z, multiplication by z is a one-to-one operation in Z5. Given En(z), if r is chosen
with uniform probability distribution from Z§, then rz is uniformly distributed in
Z}. Thus it is easy to compute En (rz) with r known and uniformly distributed.
A useful observation on the difficulty of inverting RSA follows: A T'(n)-time
algorithm for inverting RSA on a subset S C Zy of density v = |S|/N implies
a T(n)y~! expected time algorithm for inverting RSA on the whole range Zy.
Given En(z), map it at random into Zx by computing En (rz). With probability
4=, rz € S will hold. But in such case En(rz) can be inverted. To recover z
from rz, multiply rz by r=! modulo N.

The situation with respect to addition is quite different. Given En(z) and
r, it is not at all clear that Ex(r + z) can be found. In fact, for small exponents
e, the problem of computing En(z + r) is equivalent to the problem of inverting
En(z). As an example, consider the case with e = 3. Suppose we have an oracle
which, given En(z) and r, returns

En(r+z) = [(r + 2)3|n = [r® + 3r%z + 3rz® + 23]y .
Feeding the same oracle with En(z) and 2r, we’ll get
((2r + 2)%|n = [87® + 12r%z + 6r2® + 23|y .

Subtracting multiples of [r®]; and [z3|y (which we have) from both equations,
and dividing by 3, we are left with two equations over Zy
r’z +rz? = a,
4r’z + 2rz? = b,
where a, b, r are known. The quadratic term in z can be eliminated, and we are
left with a linear equation in z which is easily solved over Zy. In general, this

procedure will be polynomial in e (and not in its length) and so is efficient only
for small exponents e.

While the last paragraph indicates that, given Ex(z), we cannot hope to
come up with pairs En(s), En(s + z) with s known and uniformly distributed,
we can get such pairs if we omit the requirement that s be known. To achieve
this, recall that if r is uniformly distributed, so is [rz]n. Since (r +1)z = rz +z,
we can compute both Ey(rz) and En(rz + z). Substituting s = rz, we get a
pair with the desired properties. (Notice that for a single element it would not
mean much to ask for Ey(sz) with s uniformly distributed but unknown.)

10 RSA BIT SECURITY

2.3 Predicate Security

In this section we give definitions for the notion that a bit (or, more generally,
a Boolean predicate) is well hidden under an encryption function. The formal
framework is that of polynomial-time probabilistic Cook reductions. This ap-
proach follows the work of Blum and Micali [7].

Definition 2.3.1: Let B(z) be a Boolean predicate, defined on the elements
of Zn. Let On be a probabilistic oracle which, given En(z), outputs a guess,
On(En(z)), for B(z) (this guess might depend on the internal coin tosses of
On). Let €(-) be a function from integers into the interval [0, 1]. Recall that n
denotes the length of N. We say that O is a €(n)-oracle for B if the probability
that the oracle is correct, given En(z) as its input, is at least 3 + €(n). The
probability space is that of all z € Zx and all 0 — 1 sequences of internal coin
tosses, with uniform distribution.

To clarify the definition, notice that very different oracles can be &(n)-oracles
for some predicate B. Two extreme examples are an oracle which is deterministic
(i.e. always outputs the same answer when given Ey(z) as input) and is correct
on % + &(n) of the z’s, versus an oracle which is “totally probabilistic” — gives
the correct answer with probability % + &(n) for every z. It turns out that the
second type of oracle is relatively well behaved, while the first type can be quite
obnoxious. Nevertheless, the theorems we’ll prove will only be sensitive to €(n)
and not to the inner structure of the oracle (which is hard to analyze). A second
comment on the definition is the reason for restricting it to oracles which succeed
with probability at least % Oracles with success probability less than % can be
transformed to oracles of the above type by reversing their answers.

Definition 2.3.2: We say that the Boolean predicate B is €(n)-secure if there is
a probabilistic polynomial time algorithm which inverts Ey, using an arbitrary
g(n)-oracle Oy for B.

A Boolean predicate is % secure if a totally reliable oracle for B can be used

to invert RSA in probabilistic polynomial time. It is % secure if any oracle which
is correct in seventy five percent of its answers can be used to invert RSA in
probabilistic polynomial time. Since we only required probabilistic polynomial

BACKGROUND 11

time reductions, it is conceivable that a reduction for % oracles is slower than a
reduction for totally reliable oracle. Notice, however, that such reduction should
run for any % oracle in expected time n° for some ¢ > 0, and ¢ cannot depend
on the oracle (a reduction might run for less than n° for certain % oracles, but
n¢ should be an absolute upper bound).

Definition 2.3.3: Let B,(-), B2(:) be two Boolean predicates, defined on the
elements of Zy. We say that B, is RSA reducible to B if there is a probabilistic
polynomial time oracle procedure PC which satisfies: For every 0 < e(n) < %
and every €(n)-oracle O for By, P© is an e(n)-oracle for Bj.

This definition is similar to the standard definition of probabilistic polyno-
mial time Cook reductions. The difference is that instead of being fed with the
argument z, the procedure is given the encryption En(z). Thus it should per-
form the reduction “blindfolded”. Of course, if RSA is easy to invert than the
last definition becomes identical to the standard one.

Definition 2.3.4: Let B;(-), B2(-) be two Boolean predicate, defined on the
elements of Zy. We say that B; and By are RSA equivalent if each is RSA
reducible to the other.

It is possible to give more restrictive definitions (e.g. insist on deterministic
reductions) or more general ones (e.g. allowing some degradation in output
quality due to the reduction), but we will not do it here. The main reason for
introducing the notion of RSA reducibility is that it allows to derive predicate
security for one predicate by using results for another predicate. This is stated
formally in the following lemma.

Lemma 2.3.5: Let By(-), B2(-) be two Boolean predicate, defined on the ele-
ments of Zy. If By is RSA reducible to By, and B; is e(n)-secure, then By is
also €(n)-secure.

12 RSA BIT SECURITY

2.4 Some Predicates and Reductions Among Them

In this section we introduce some notation and define the parity predicate,
parn (), and the hal fy (-) predicate. We then show that hal fy is RSA equivalent
to the least significant bit.

Definition 2.4.1: For 0 < z < N, Ly(z) denotes the least-significant bit in the
binary representation of x.

Definition 2.4.2: Let z be an integer. We define
[z]w if [z]n < %;
absy (z) =

N —[z]ny otherwise.

Pictorially, abs(z) can be viewed as the distance from [z to 0 on the Zy circle
(see figure 2.). Notice that absy(z) = absy (—z).

0 absN(z)

absN(y/)_/‘ ’\'\

¥4

Fig. 2.2 — The abspy function.

Definition 2.4.3: The parity of =, parn(z), is defined as the least-significant
bit of absn (z).

Since absy is symmetric with respect to 0, so is pary. For example, pary (N —
3) = parn(3) = 1. The parity predicate and its relation to the least significant
bit will play a crucial role in the next chapters.

BACKGROUND 13

Definition 2.4.4: The predicate hal fn(-) is defined by

top, if % <z < N;
hal fy (z) =
bottom, otherwise.

Lemma 2.4.5: Ly and halfy are RSA equivalent.

Proof. We use the fact that N is odd, which implies that division by 2 is well
defined and a one-to-one operation in Z}. If Ly(z) = O then z is even and
therefore dividing it by 2 over Zy coincides with division by 2 over the integers.
But in such a case, 0 < z < N implies 0 < £ < % Hence Ly(z) = O implies
halfn(z/2) =bottom. Since exactly half the elements are mapped to bottom
elements, the rest must be mapped to top elements. We thus get Ly (z) = 0 iff
hal fn (z/2) =bottom.

Thus, given a &(n)-oracle Op for the least significant bit, we construct a
g(n)-oracle Oy for the halfy predicate by taking the input En(z), computing
En(2z) = En(2)En(z), and feeding En(2z) to Og. If Op replies Ly(2z) = 0
then we output hal fy(z) =bottom, otherwise we output hal fy (z) =top.

Conversely, given a e(n)-oracle Oy for the halfy predicate, we construct a
g(n)-oracle O for the least significant bit, by taking the input En (z), computing
En(z/2) = Exn(27Y)En(z) = q‘(%ﬂ)q(x), and feeding En(z/2) to Oy. If the
reply is halfy(z/2) =bottom then we output Ly(z) = 0, otherwise we output

LN(:D) =1.

Clearly both reductions are in polynomial time, and the reliability of the
resulting oracle is equal to the reliability of the original oracle. a

CHAPTER 3

VERY RELIABLE ORACLES

In this chapter we investigate the use of very reliable oracles for the halfn
predicate. Using deterministic reductions, we demonstrate %-security for this
predicate. We then switch our attention to reliable oracles for the least significant
bit, and investigate the statistical information which can be derived from them.

3.1 Binary Search Inversion

In this section we investigate reliable oracles for the hal fyy predicate. We show
how to use them in a binary search procedure for inverting RSA. The results in
this section were obtained independently by Goldwasser, Micali and Tong [26].

Theorem 3.1.1: halfy is 1-secure.

Proof. Let Oy be a % oracle for the halfy predicate. By the definition, this
means that given as input En(z), Oy outputs the correct answer for halfy(z).
The answer of Oy restricts the possible interval in which = might fall to half the
original space. Suppose, for example, that halfy(z) =top. Thus & <z < N.
As an integer, 2z must therefore be in the interval [N, 2N]. Reduction modulo N
shifts this interval back to [0, N]. Thus if kal fy (22) =bottom, we can infer that
over the integers, N <2z < 3—21! This, in turn, restricts the possible interval for

z to % <z< %, an interval of length % (see figure 3.1).

By querying Oy with Ey(z), En(22)...,En(2'z),... (for i = 0,1,...,log, N)
we get the (correct) answers for halfy(z), halfy(2z), ..., halfx(2'z),.... We
can thus perform a binary search for z: Start with a “possible interval” Py =
[0, N], and narrow it by a factor of 2 after every query. If the remaining interval
before the i-th query was P; = [EI;N L1 N, then after the i-th query we are left

y 2t
with

AN, 2ELN], if hal fy (2iz) =bottom;
Py =

gﬁ—;N, 221,1'12 N], otherwise.

VERY RELIABLE ORACLES 15

After n = [log, N| queries, P, is narrowed down to a length 1 interval, which
must contain x. 0

halfn(z) = top

0 N/4 N/2 3N/4 N
— } i)
0 N/4 N/2 3N/4 N

halfn (2z) = bottom

Fig. 3.1 — Possible position after two queries.

The reliability of Oy was crucial for this proof. A single incorrect answer throws
us to the wrong interval. However, the proof can be modified to tolerate any %— o
oracle (@ < 1 a constant). To demonstrate the basic idea of the modification,
assume that the oracle is deterministic. In that case, being a % — & oracle means
that Oy gives the correct answer for at least 1 — 2 of all Zy elements. Since for
every input En(z), Oy is queried exactly n times, the density of elements for
which some error occurs is no greater than «. Thus the above procedure will
be successful in inverting E on at least a 1 — « fraction of all inputs. By the
observation in section 2.2, this implies a probabilistic polynomial-time algorithm
for inverting RSA (given access to such oracle). However, this technique works

only for % -0 (%) oracles.

Using the equivalence between the least significant bit and halfy, theorem
1 implies the following:

Corollary 3.1.2: The least significant bit is %-secure.

This corollary means that RSA can be inverted in polynomial time, given an
error-free oracle for the least significant bit.

16 RSA BIT SECURITY

3.2 Parity Information From Reliable Least Significant Bit Oracle.

In view of the limitations in the inverting method of the previous section, we
develop here a different one. This method will enable us to determine the parity
of z, pary(z), for arguments = which are close to 0 mod N. In the following
chapter we will explain how to invert RSA, given access to such parity subroutine.
The intuitive idea is to infer pary(z) for any “small” z by comparing the least
significant bit of s with that of s + z, where s is chosen at random in Zy. If
both bits are the same, the hypothesis pary(z) = 0 is supported, while if they
are different then pary(z) =1 is supported.

We would find it convenient to switch the emphasis to oracles for the least
significant bit, Op. The way these oracles will be used here is different than that
of the previous section — instead of gaining deterministic information (which
interval = belongs to), we are now going to gain statistical information. This
information will depend on our good luck, or rather on the lack of bad luck.
However, using the laws of large numbers, this statistical information is as useful
as deterministic one.

For the rest of this section, we assume that the (unknown) z is “not too large”,
namely absy (z) < 6N for some constant § < %. Using the cyclic representation
of Zyn, we say that a wraparound 0 occurs when z is added to s if s and s+ =
are on opposite sides of 0.

S +X

S, + X
S,

Fig. 3.2 — Wraparound (s;, s; + z), and no wraparound (sz, sz +).

VERY RELIABLE ORACLES 17

More precisely, wraparound occurs for a “positive” z (absy(z) = z) if N —
absy(z) < s < N, and for a “negative” z iff 0 < s < absy(z). In either case,
if s is chosen at random in Zp, then the probability of a wraparound 0 when
z is added to s is exactly absy(z)/N. Since absy(z) < §N, this probability is
bounded above by § < %. If no wrap-around occurs, the parity of z is equal
to 0 if the least-significant bits of s and s + = are identical, and equal to 1
otherwise. Thus if s is chosen in Zy with uniform probability distribution, then
the conditional probability that pary(z) = 0, given that Op answers the same
on En(s),En(s + z), is at least 1 — § > 3/4 (and similarly for pary(z) = 1
given different answers). To generate pairs En(s), Eny (s + z) with s uniformly
distributed, the trick of section 2.2 is used. We call a single pair query of Op
a r measurment. From the discussion above, a single £ measurement indicates
the parity of z correctly with probability > 3/4. To improve the reliability of
the result, several independent z measurments are performed, and the indication
given by their majority is taken.

Code for parity subroutine with parameter m.

procedure PARITY(z):
INPUT « Ey(z)
countg — O
count; < 0

for 7 « 1 to
pick r; € %N at random

if Op (En(riz)) =0r (En(riz + z))
then county < countg +1
else count,; « count; +1

d
?f countg > count,
then return pary(z) =0
else return pary(z) =1

SESO®XIoTuR N =

[y
Sl

If the m random points r; are chosen independently, then with probability 1 —

—6(m) the majority of the measurements will give the correct answer. This can
be easily proved using the Chernoff bound [41, p. 387]). A detailed proof (using
even less reliable oracles) can be found in chapter 4. If the r;’s are not mutually
independent, but just pairwise independent, then the answer is correct with
probability at least 1 — O (#) A proof of this statement, based on Chebyshev’s

18 RSA BIT SECURITY

inequality, can be found in chapter 5. This weaker version will be crucial in
proving the strong security result.

CHAPTER 4

INVERTING WITH A RELIABLE PARITY SUBROUTINE

In the first section we give a high level description of our future plan. This is
followed by what might otherwise seem to be unrelated — an examination of the
Brent—Kung gcd procedure, its properties, and running time. In the third section
we show how to implement the Brent-Kung gcd procedure on messages, using
as data only encrypted messages, provided that a reliable parity subroutine is
available. We continue by demonstrating that the parity subroutine of chapter
3 can be reliably implemented even if the least significant bit oracle O, can err.
Finally, a quantitative analysis of the error gives a % + m security result for
the least significant bit.

4.1 General Plan

Given Ey(z), we would like to find z. The parity subroutine of the last chapter
supplies pary(z) when z is not too big and O is very reliable. As we’ll see
later, it is possible to implement exactly the same subroutine even if Op is not
that reliable, provided that z is restricted to be of smaller absolute value. So far,
this is not a severe restriction, because even if the original z did not have this
property, we can get a known multiple of it, az, which is small (this will happen
with reasonable probability, but at this point there is no way to verify that it
indeed happened). The question is what do we do with this bit of information?

If pary(z) = 0, we can divide z by 2. If z is small, so is /2. Therefore
the parity subroutine will give the correct answer about pary (z/2) as well. But
unless z is a power of 2 (or ‘almost’ one), this process will be stopped the first
time the parity returns 1 as its answer. If we go on dividing by 2, the result will
not be small, and thus the parity subroutine will give the wrong answer if asked
again. To make progress, we must keep the arguments small.

20 RSA BIT SECURITY

Suppose we start with two random multiples of z, [az]y and [bz]n, both
small. When computing gcd, the intermediate numbers involved only become
smaller. If the gcd makes only parity tests, and could be implemented even when
the arguments are encrypted, then we have a chance to invert.

4.2 Brent—Kung GCD

Both classical and binary (29, p. 321] gcd algorithms find the ged of two n-bit
integers in O(n) iterations. To find the gcd both require tests of the form ‘is
b < ¢?’, which we do not know how to do if b and ¢ are encrypted. For this
reason we need a modified version of the binary gcd algorithm, one which makes
no such tests. The specific version given here is from Brent and Kung [9], and
was used to efficiently implement ged in a systolic array. (The main advantage
of this version is that only the least significant bits should be looked at in order
to perform the parity checks. This is a desired feature when the bits are spread
across the systolic array.) The Brent—-Kung method is faster than the one which
was used originally in [3].

1. procedure PLUS MINUS gcd:
{aodd,b+#0,|a|,|b| <2"}

2. INPUT « a,b

3. —n

4. “—n

5. repeat

6. while parity(b)=0 do

7. b b/2

8. Be—f—1

9. od
{b odd, |b] < 2°}

10. if B < a then swap (a,b), swap (a,3)
{a < B,|a| < 2%,|b] < 2P; a and b odd}

11. if parity(%$®) =0 then b« % else b« 23°
{b even, |b| < 2#}

12. until p =0

13. return ged =a

This algorithm returns the gcd of its input provided that a is odd and b #
0. Its correctness under this condition follows from the fact that if b is even
and a is odd, then gecd(a,bd) = ged(a, %), while if both b and a are odd then

INVERTING WITH RELIABLE PARITY ROUTINE 21
ged(a,b) = ged(a, “T'H’) = gcd(a, “—;—b-) The assertions in braces simplify the
run time analysis: In every repeat loop (except the first one if b was odd to
begin with) the sum o« + B decreases by at least 1. Therefore the number of
loops is at most 2n + 1. Each time a parity is checked in line 6 of the code
and is found to be 0, o + decrease by 1. The only other place where parity is
checked is in line 11 of the code, and this happens once per repeat loop. Thus
there are no more than 2 parity checks per loop where the sum a + # remains
unchanged. Therefore the total number of parity checks per gcd invocation is at
most 3(2n + 1) = 6n + 3 = O(n).

4.3 GCD Inversion Using a Parity Subroutine

Given an encrypted message, Ey(z), the plaintext z is reconstructed as follows.
First, two random multiples of En(z), En(az) and Ey(bz), are computed. A
Brent-Kung gcd procedure is applied to [az|y and [bz]y. This ged procedure
uses a parity subroutine which we assume to give correct answers. Even though
neither [az|y nor [bz|y are explicitly known, we can manipulate them via their
encryption. In particular, we can compute the encryption of any linear combi-
nation Alaz|y + B[bz]y when both A, B are known. When the gcd procedure
terminates, we get a representation of gcd([az|n, [bz]n) in the form [lz]y, where
! and Ey (Iz) are known. If [az]y and [bz|y are relatively prime, then [iz]y = 1.
This fact can be detected since Ex(1) = 1. Therefore, z =1~! (mod N) can
be easily computed and verified (by comparing En (") to En(z)).
procedure gcd INVERSION :

1.
2. INPUT « Ey(z)
Randomization

.wu'

Pick a,b € Zy at random. Compute Ey(az), Ey(bz)
: Brent-Kung ged of [az|n, [bz]n
{21 = [az]|n, 2, = [bz|n}
4. a+n,
5. B+n
6. count «— O
8. repeat
9. while pary (bz) = 0 do
10. b [b/2]n

{gcd([az|n, [bz]n) = ged(21,22)}
11. Bef—1

22 RSA BIT SECURITY

12. count « count-+1
13. if count> 6n + 3 then go to 3
14. od
15. if B < a then swap (a,b), swap(a,)
16. if parN("’—”'j'b—‘”) =0
b

17. then b« [%]N
18. else b« [“%]N

{gcd([az]n, [bz]n) = gcd(21,22)}
19. count « count+1
20. if count> 6n + 3 then go to 3
21. until =10
; Inverting

22. if En(az) # (—1)° then go to 3
23. T+ [(-1)% !N
24. return z.

The test in line 22 of the code makes sure that the algorithm never errs. The
assertions in the braces guarantee that if the parity subroutine does not err, then
the ged of the current [az]n, [bz|y is invariant. Combining this with the claims
in the previous section, we can conclude that if the original pair [az|y, [bz]n is
relatively prime and the parity subroutine answered correctly on all queries, the
algorithm will retrieve z. To analyze the expected run time we need to know the
probability that two randomly chosen integers with absolute value not exceeding
N are relatively prime. A famous theorem of Dirichlet [29, p. 324] states that
this probability converges to ;6; as N tends to co. This can be intuitively (but
not rigorously) seen if we notice that for two numbers to be relatively prime, they
should not be divisible by the same prime. For any prime p, the probability that
p divides both numbers is ;1;. If these probabilities are independent for different
primes, then the probability that no prime divides both numbers is H(— p%)
The inverse of this infinite product is

21 n?
HI—_IIW=H(1+—+—+ ‘;—3=

b p?

Returning to the gcd inversion, the variable count guarantees that even if
the parity subroutine occasionally errs, we will not run into an infinite loop in a
single gcd iteration. We saw that if the parity subroutine gives correct answers,
then 6n + 3 is an absolute upper bound on the number of parity checks. Thus

INVERTING WITH RELIABLE PARITY ROUTINE 23

if this bound is exceeded, something must have gone wrong and we better start
again.

The probability that = will be retrieved in any single gcd attempt is thus

=z Pr(az and bz are small)

- Pr(all answers of the parity subroutine were correct) .

In the next section we’ll show that if the least significant bit oracle Op queried

by the parity subroutine is a %+ plel—(;; oracle, the later probability can be made

to be greater than %, with only polynomially many oracle queries.

4.4 Reliable Parity Subroutine with 1 + m Oracle

The parity subroutine of section 3.2 was analyzed under the assumption that
Op is a % oracle. If, instead, it is just a % + e(n) oracle, the analysis becomes

somewhat different (but the code is not changed).

The parity subroutine is called with Ey(dz), where d is given. Let us re-
define “small” and say that dz is small if absy(dz) < N -€(n). We will show
that the parity subroutine determines pary(dz) correctly (with overwhelming
probability), provided dz is small. Recall that Oz(En(y)) is the oracle’s guess
for Ly (y), the least significant bit of [y]n. If no wraparound occurs, and the
oracle is correct on both [rz]y and [rz + dz]y (i.e. Og(En(rz)) = Ln(rz) and
Or(En(rz + dz)) = Ly(rz + dz)), then the outcome of this dz-measurement
is correct. Since dr is small, the probability of wraparound is at most &(n).
Wraparounds are not likely for small dz and so the main source of errors in the
parity subroutine is the errors of the oracle. A dz-measurement may be wrong if
the oracle errs on either end points ([rz|n, [rz+dz]n). As both [rz]y, [rz+dz]N
are uniformly distributed in Zp, the error probability of a dz-measurement is at
most twice the error probability of the oracle. The error probability of the oracle
is % — g(n), so the probability that the oracle’s answer on one or both points
is wrong is at most 1 — 2¢(n). (It is not true that the correctness of the oracle
answers on [rz|y and [rz + dz|y are independent. Thus we only bound the error

24 RSA BIT SECURITY

in any of these two events by the sum of the two error probabilities.) Account-
ing for both sources of possible errors, this implies that, for small dz, the error
1

probability in a single dz-measurement is at most 7 — 2¢(n) + €(n) = 1 — (n).

The above estimate holds for any single dz measurment. Picking mutually
independent r; (¢ = 1,2,...m), the m dz measurments are independent events.
The majority of all measurments will indicate the correct parity of dz with better
probability than the individual experiments. In order to estimate the probability
that the majority of these k£ measurments will give the wrong answer, we use the
Chernoff Bound [41, ch. VII, sec. 4, Th. 2]: Let ¢1, ¢2,..., ¢m be independent
zero-one random variables with Pr(¢; = 1) = p, where p < 1/2. Then for all
0 < 6§ < p(1 — p) we have

Pr(—l—-
m

In our case, we define ¢; = 1 if the ¢-th measurement gives a wrong answer, so
p < % — €(n). The majority points to the wrong direction iff (# Y > %)
Since Pr (L Y7 > 1) < L. (¢ —p) > e(n), it suffices to bound this
last expression. In our case, the right-hand side of the inequality (%) is < 2 -
e——m62/2-

mé?

2p(1 —p) (1 + ﬁ:—,s)z

()

Z(G—P)

26) <2-exp |—

Substituting m = 2e~2(n) - log, 26n, the error probability is no more
than 2-e"™5"/2 < 1/13n .

If dz is small and the parity subroutine returns the correct pary(dz), then
the next d’z will also be small. Thus if the original [az]y and [bz]y were small
to begin with, and the parity subroutine does not err, then it is only called
with small arguments during the the gcd computation. The probability that
[az|n, [bz]n are both small and relatively prime is at least €2(n)/2. Under these
conditions, the probability of no error in all 6n + 3 calls of the parity subroutine
is at least 1 — % > % Thus the overall probability that z is recovered in a
single ged iteration is at least €2(n)/4. The number of oracle queries in a single
iteration is at most (6n + 3) - m = 2¢72(n) - (6n + 3) - log, 26n. The expected
running time to invert z is dominated by the number of oracle queries. Thus it is
bounded above by 8¢~4(n)-(6n+3)-log, 26n = © (¢7*(n) - nlogn). Substituting
e(n) = 1/poly(n), the overall run time is polynomial in n.

INVERTING WITH RELIABLE PARITY ROUTINE 25

To summerize, we have demonstrated a probabilistic polynomial-time inver-

sion algorithm for RSA using any % + m oracle Oy . In other words

Theorem 4.4.1: RSA least significant bit is % + secure.

1
poly(n

CHAPTER 5

1
THE LEAST SIGNIFICANT BIT IS Poly(R) SECURE

We start this chapter by discussing the phenomena of error doubling which
restricted the usefulness of the parity subroutine to %+ mn—) oracles. We briefly
describe the attempts to overcome this restriction by Vazirani and Vazirani [47],
and by Goldreich [23]. We then sketch the very important idea of Schnorr and
Alexi [43]. With their method as a new starting point, we introduce the notion
of two points based sampling. This proves to be a strong enough tool to yield
the desired m security result.

5.1 Error Doubling and Attempts to Overcome it

The main source of errors in the parity subroutine is the errors of the oracle.
A dz-measurement may be wrong if the oracle errs on either [rz|y or [rz +
dz]n. Thus the error probability of a dz-measurement might be twice the error
probability of the oracle. It is indeed possible to construct an oracle whose error
probability is %, such that when it is used by the parity subroutine, it will cause
an error in each dr measurement with probability %

Vazirani and Vazirani suggested that the way to overcome the error doubling
phenomena in the dz measurement is by using the information supplied by Op
more carefully. They used the fact that a dz measurement is correct not only if
the oracle answers correctly on both queries, but also if Op is wrong on both. To
determine the parity of dz they performed not only dz measurements, but also
measurements of other quantities, whose relation to dz is known. Incorporating
their new oracle sampling technique into the gcd inversion, they proved better
than % security result. Their analysis gave a 0.232 security result for the least
significant bit. Goldreich used better combinatorial analysis to show that the
Vazirani and Vazirani algorithm actually yields a 0.225 result.

SECURITY OF LEAST-SIGNIFICANT BIT 27

On the other hand, Goldreich also pointed out some limitations of the Vazi-
rani and Vazirani and similar proof techniques. In particular, he showed that
such techniques could at best yield % security result — still a long way from the

desired m security.

5.2 Schnorr and Alexi Improvement

Schnorr and Alexi suggested the following brilliant idea to overcome error dou-
bling: Instead of querying the oracle for the least significant bit of both points,
query the oracle only for the least significant bit of one point. The least sig-
nificant bit of the other point should be known beforehand. This way the oracle
is queried only about one point in each measurement and the error is caused by
single position queries rather than by pairs of positions. This enables the er-
ror probability per a single measurement to be approximately the oracle’s error,
rather than twice this quantity as before.

Schnorr and Alexi [43] implementation of this idea is based on trying all
possibilities for the least significant bit of L = #(logn) random, mutually inde-
pendent positions w; = r;z. These L positions are used as “end points” when
trying to determine the parity of dz in all O(n) dz-measurements of the gcd
algorithm. Using the fact that the L positions are independent, Chernoff bound
implies that the error probability in deciding the parity of dz by the majority of
L dz-measurements is 2~ (L") < #—HS (here € is a constant). This guarantees
that the accumulated error probability in deciding the parity of all 6n + 3 dz’s
in the modified binary gcd algorithm is < %, small enough to put the algorithm
in random polynomial time.

Note that the running time of Schnorr and Alexi’s algorithm is exponential in
L. On the other hand, the probabilistic analysis requires that L = Q(logn/e?).
Thus, € can not be replaced by any function of N which tends to 0 with N — oo.

28 RSA BIT SECURITY

5.3 Two Points Based Sampling

In this section, we introduce a new method for generating many points (multiples
of z) with known least-significant bits. These points are generated in a way
which guarantees that they are “random” enough to be used as a good sample
of the oracle. Specifically, these points will be generated such that the following
properties hold:

1) Each point is uniformly distributed in Zy.
2) The points are pairwise independent.

3) The least significant bit of each point is known.

The m points [r;z|y are generated by picking two random independent elements
k,l € Zy with uniform distribution, and computing [r;z]y = [(k + il)z|n, for
1 <7 < m. Define the random variables y,z € Zy by y = [kz|n, 2 = [lz]n. The
least-significant bits of the [r;z]n’s are found as follows: We try all possibilities
for the least-significant bit of y, z, and for their approximate magnitude in one
of the intervals [iRIY—.E, (+ 1);n—1¥,—g), where 0 < 7 < m!5 (see figure 5.1).

o

Y+22z

y
Fig. 5.1 — The points y, z and y + 22

There are (2 - m!5)

2 = 4m? possibilities altogether, and exactly one of them is
correct. Let us now assume that we are dealing with the correct choice, i.e. both
least-significant bit and approximate magnitude of y,z are known. Since the

location of both y and z are known up to m—’}’.g, the integer w; = y + 12 is known

SECURITY OF LEAST-SIGNIFICANT BIT 29
up to m]:’-" + ';zlvs < "2‘(1,\,’5 (1 <7 < m). Notice that [w;]n is a random element
in Zx with uniform probability distribution. Therefore, the probability that the
integer w; falls in an interval of length ;29'-5- containing an integral multiple of N
is exactly ;%—5- If w; is not in such an interval, then the integral quotient of Ff is
determined by ¢ and the approximate locations of y and 2. This in turn, together
with the least-significant bits of y and z, determines the least significant bit of

[wiln = [riz]n.

The generation of [r;z]n’s is performed once per each gcd invocation, as part
of step 1 (the randomization step) in the inversion procedure of section 4.3. The
choice of k and ! (y = [kz]n, z = [lz]n) is independent of the choice of a,b.

The original parity subroutine makes use of random independent r;’s, and
queries the oracle for the least-significant bits of [r;z] and [r;z + dz]y. We
modify it by using the r;z’s generated above, and querying the oracle only for
the least significant bit of [r;z + dz|ny. The least significant bit of [r;z]n is
known beforehand (with very high probability).

5.4 Probability Analysis

In this section we analyze the success probability of the inversion algorithm. We
show that given O , an g(n) = m oracle for RSA least-significant bit, the
inversion algorithm is in random polynomial-time.

Consider one run of the gcd procedure. Let us modify again the definition
of “small’, and say that h is small if absy (k) < iez(—") Suppose that [az]y and
[bz]ny are both small and are relatively prime. This happens with probability

e(n)?- 5. . Recall that a gcd run consists of at most 6n +3 calls to the parity sub-

w2
routine. Then the run is successful (yields z) if all calls to the parity subroutine

return correct answers.

From this point on, probabilities are taken over all choices of y, z with uniform
probability distribution (z and d are fixed). There is a certain probability that
the parity subroutine will err. We will bound this error probability from above,
so that even when multiplied by 6n + 3 it is still small (< 3). Recall that on
input d the parity subroutine conducts m dz-measurements. Each measurement

30 RSA BIT SECURITY

“supports” either pary(dz) = 0 or parn(dz) = 1. The subroutine returns the
majority decision.

For every 1 < ¢ < m, the ¢-th individual dz-measurement consists of compar-
ing the precomputed least significant bit of [r;z]y to the answer of the oracle for

the least significant bit of [r;z + dz|y. Such measurement has three potential
sources of error:

1) The oracle errs on the least significant bit of [r;z + dz]n.
2) There is a wraparound 0 when [dz]y is added to [r;z|n.
3) The precomputed least significant bit of [r;z]n is wrong. This may happen

only if absy(riz) < rﬁﬁvs

Note that [r;z+ dz]y is uniformly distributed in Zy. Therefore type 1 error has
probability 3 — e(n). Since absy (dz) < e—%, type 2 error has probability at

2
5(2"). Type 3 error has probability at most —2+. For m > (%) , the

mOo.5

most

overall error probability is bounded above by % — E—(‘;—‘—).

Define the random variable

{ 1 if the i-th dz-measurement is wrong
$i =

0 if the 7-th dz-measurement is correct

Clearly, Ezp(¢;) = Pr(¢: =1) < % - ﬂ:_) and

Var(¢) = Ezp(;‘,-z) — Ezp? (¢:)
= Ezp(s;) — Ezp*(¢:)

= Ezp(¢) (1 — Ezp(si)) <

| -

Since Exzp(¢;) < 3 — @, we have

1 1
PT(EZGZE) <Pr(

1=1

m

Z — Ezp(s:)

SECURITY OF LEAST-SIGNIFICANT BIT 31

By Chebyshev’s inequality [21, p. 219]

1 m
r (- Y ¢ — Ezp(s:)
i=1

() VarAEr)
2 4)3 EOE

In order to bound the variance, we will now show that the ¢; are pairwise inde-
pendent. First, we prove that if ¢ # j then [r;z]n and [r;z]§ are two independent
random variables (1 < ¢,7 < m). This follows from the fact that ¢ — j has a
multiplicative inverse modulo N, and so for every ¢;,cy € Zp, the equations

y+iz=c; (mod N)
y+jz=cz (mod N)

have a unique solution in terms of y,z € Zn. Thus, for every ¢1,¢c2 € Zn,

1
N2
= Pr([riz]y = e1) - Pr([rjz]n = ¢2) .

Pr([riz]n = ¢1 and [rjz]n = ¢2) =

Since ¢; is a function of r;z, we conclude that ¢; and ¢; are also independent
random variables with identical distribution. (Whenever the same function is
applied to two independent random variables, the two results are independent
random variables.) Let & = ¢;— Ezp(¢;). By pairwise independence Ezp(g;-¢;) =
Ezp($;) - Ezp(3). Hence,

vor(£556) - S e

i=1

=#(i &)+ Y EBop(s) Eap(s)

1<i#j<m

= -— -m-Ezp(&°)

<__

Substituting this bound in (x), we get Pr (L1 Y7 ¢ > 1) < 7n

me2(n

32 RSA BIT SECURITY

Finally, we analyze the expected running time to invert with an &(n)-oracle.
The parity subroutine is invoked by the gcd at most 6n + 3 times. Assume that
[az]n and [bz] Ny are small, and that the locations of y, z and their least significant
bits are correctly known. Under these conditions, the error probability for the
ged is bounded above by

(6n + 3) - Pr(error for a single parity call) < (6n + 3) -

me2(n)

Substituting m = 8¢~2(n) - (6n + 3), the error probability for one binary ged is
bounded above by % For this value of m, the running time of the ged procedure
is O(m-n) = O(e~%(n) -n?). To satisfy the condition on y and z, we run O(m?)
copies of the gcd procedure, so the running time per choice of @ and b is O(m*-n).
The expected number of a,b pairs we have to try is O(e~%(n)), so that overall,
the expected running time of the inverting algorithm is

O(e~2%(n)m*n) = O(e™°(n)n®) .

For e(n) = m we can thus recover the original message in random polyno-
mial time, as desired. This implies

Theorem 5.4.1: RSA least-significant bit is m-secure.

CHAPTER 6

EXTENSIONS AND APPLICATIONS

In the first section of this chapter we extend the bit security result to simulta-
neous security of logn least-significant bits. The second section deals with an
extension in a different direction — secure bits for Rabin’s encryption function
(squaring modulo a composite number). Yet another direction is explored in the
third section — bit security for RSA over multi-prime composites, with known
partial factorization. We conclude with applications of the bit security results to
Blum-Micali type pseudo random bits generators to and to Goldwasser-Micali
type probabilistic encryptions. In particular, we show that Rabin/RSA encryp-
tion can be directly applied in both cases, without using Yao’s exclusive-or tech-
nique [50].

6.1 Simultaneous Security

Definition 6.1.1: We say that the 7 least-significant bits are simultaneously se-
cure if inverting Ey is polynomial-time reducible to distinguishing, given Eyn(z),
between the string of j least-significant bits of £ and a randomly selected j-bit
string.

We defined the notion of simultaneous security in terms of an indistinguisha-
bility test. It is also possible to define simultaneous security in terms of an
unpredictability test: Given En(z) and the j — 1 least-significant bits of z, the
j-th least significant bit of z is still m secure.

Yao [50] has shown that the indistinguishability test is equivalent to the
unpredictability test. It turns out that our proof technique easily extends to
show that logn least-significant bits pass the unpredictability test. By Yao’s
result, this implies simultaneous security for the log n RSA least-significant bits.

34 RSA BIT SECURITY

Theorem 6.1.2: Let j = O(log n).

a) The j-th least significant bit in the binary expansion of the plaintext is

1
——— Secure.
poly(n)

b) The j least-significant bits of the plaintext are simultaneously secure.

Proof.

a) First note that in the two point based sampling, it is possible to guess not
only the 1-st least-significant bit of y and 2, but all j least-significant bits of
y and z. The overhead for trying all possibilities is 27, which is polynomial in
n. Together with the locations of y and 2, these bits will determine all j least-
significant bits of each [r;z]y. Similarly, we can assume that the gcd of [az|n
and [bz]y is 277! (instead of 1). This way all [dz]n’s in the gcd calculation will
have zeros in all j — 1 least-significant bits. Finally, we replace all references
to the least-significant bit in the inverting algorithm, by references to the j-th
least-significant bit. This can be done since we now have access to an oracle for
the j-th least-significant bit.

(This method of transforming certain inverting algorithms which use an oracle
for the 1-st least significant bit into inverting algorithms which use an oracle for
the j-th least significant bit originates from Vazirani and Vazirani [47].)

b) Going through the proof of part (a), notice that when querying the oracle
about the j-th least significant bit of [r;z + dz]y we can give it the j — 1
previous bits of [r;z + dz|n. This is the case since if no wraparound occurs,
these j — 1 bits are the same as the j — 1 least-significant bits of [r;z]n, which
we know. Therefore the j bit of z is unpredictable, given the previous j — 1 bits
and En(z). Using Yao’s theorem, the proof is complete. O

Remark: Vazirani and Vazirani [48] had previously shown that certain inverting
algorithms which use a €(n)-oracle for RSA least-significant bit, can be trans-
formed into inverting algorithms which use a &(n)-oracle for predicting z; (given
Tj—1,...,1). It turns out that the inverting algorithm of chapter 5 falls into

the above category; this yields an alternative (but much harder) way of proving
Theorem 6.1.2(b).

EXTENSIONS AND APPLICATIONS 35

6.2 Secure Bits in Rabin’s Encryption Function

The Rabin encryption function is operating on the message space Zpy, where
N = pq is the product of two large primes (which are kept secret). The en-
cryption of z is En(z) = [z%]n. The ciphertext space is Qn = {y| Iz y = 2?
(mod N)}. Rabin [39] has shown that extracting square roots (“inverting En”)
is polynomially equivalent to factoring N.

The function En defined above is four-to-one rather than being one-to-one (as
is the case in the RSA). Blum [4] has pointed out the cryptographic importance
of the fact that for p = ¢ =3 (mod 4), Ex induces a permutation over Qn.
Composite numbers of this form will be called Blum integers.

Goldwasser, Micali and Tong [26] have presented a predicate whose evaluation
is as hard as factoring. Specifically, they showed that if p = 3 (mod 4) and
p = ¢ (mod 8) then factoring N is polynomially reducible to guessing their
predicate with success probability 1 — %

Using the techniques of chapter 5, we show that the least significant bit in
a variant of Rabin’s encryption function is also m secure. Our proof uses
only elementary number theory, and holds for all Blum integers.

Throughout this section we make use of the Jacob: symbol. Let us review the
definition and some properties of the Jacobi symbol (for further details, see [36,
ch. 3]). Let p be an odd prime number, and h an integer relatively prime to p.
The Legendre symbol %) is defined to be 1 if h is a quadratic residue modulo
p, and -1 otherwise. For N = pq, a product of two odd primes, and h relatively
prime to N, the Jacobi symbol (7{}—) is defined to be (%) . (%) Even though
the definition of the Jacobi symbol uses the factorization of N, it can be easily
computed even if N’s factorization is not given. Another fact which is used in
this section is that (hThl) = (Wh—) . (hﬁ')

Let N be a Blum integer. Define

N
SNdéf{x|0S$<?}

MNdéf{x|0§a:<%/\(%)=1} .

36 RSA BIT SECURITY

Redefine En for £ € My as

[mZ]N, if [:B2]N < %;
En(e) =
[N — z?]y, otherwise.

This makes En a 1 — 1 mapping from My onto itself. The intractability result
of Rabin still holds. That is, factoring N is polynomially reducible to inverting
Ex. Let Ly(z) denote the least-significant bit of z.

We’d like to show that given Op , an €(n) = Wl(n) oracle for Ey least-
significant bit, we can invert E (and thus factor N) in random polynomial-time.
The basic idea in the reduction is similar to the RSA case. Given Ey(z), map z
at random by computing Ey (az), En(bz), and try to retrieve gcd([az]n, [bz]N)-
To do that, we pick m random, pairwise independent points [r;z]y which are
uniformly distributed in Sy, such that their least-significant bits are known. We
want to determine the parity of [dz]y for small [dz]y € Zn (not necessarily
in My or even Sy). To this end, we would have liked to query the oracle
for the least significant bit of [r;z + dz]y, as in the RSA case. However, if
[riz + dz]y ¢ My, the oracle’s answer does not correspond to [r;z + dz|n
(but rather to the square root of [(r;z + dz)%|y which resides in My). This
([riz + dz]nv ¢ My) may happen if either [r;z + dz]y ¢ Sy or (1’%‘1’5) = —1.
The first case occurs with very low probability (since [dz]y is small and [r;z]n
is uniformly distributed in Sy). In the second case, which is easy to detect, we
do not query the oracle, but flip a coin instead.

More formally, given the original encryption En(z), pick y = kz and 2z = Iz,
two random multiples of z. By exhausting all possibilities, the approximate
magnitude in Zy of y and 2, and their least-significant bits are known. Let
v; = [y + t2]n, 1 < ¢ < m. Define

Vs, if v; < %;
w; =
N —v;, otherwise.
We have w; = [r;z|n, where r; is either k + il or —(k + ¢l). If w; = [riz]n

is not in a r:TN interval around O or %, then we can determine which of the

EXTENSIONS AND APPLICATIONS 37

two alternatives for r; holds, and can compute the least significant bit of w;.
Therefore we get

4

Pr(least-significant bit of w; is unknown) < —— .
mo-

It will be convenient to slightly change the definition of “small” here. In this
section h is small means absy (h) < Mssﬁ (instead of absy (k) < Mz&l as in
chapter 5). This will restrict all [dz]n’s in the ged calculation to be small. Doing
this, the probability that a wraparound either 0 or % occurs when [dz]y is added
to [riz|n is no greater than 54").

The remaining step is to determine the parity of [dz]y by comparing the
known least-significant bit of [r;z]x with the least-significant bit of [r;z + dz|x.
If (r—;d) = 1, we feed the oracle Op with En(r;z + dz), and take its answer
as our guess for the least significant bit of [r;z + dz]y. If, on the other hand,
(1‘1;,"—d) = —1, we use the outcome of a coin flip as our guess for the least
significant bit of [r;z + dz|y. To analyze this procedure, notice first that the
number of elements in Sy with Jacobi symbol 1 equals the number of elements in
Sn with Jacobi symbol —1 (since these are equal in Zy, —1 has Jacobi symbol 1,
and Zy = Sy U —1-Sn). As [r;z+dz|y is (almost) uniformly distributed in Sy,
the probability that (%) = 11is (almost) 1/2. In this case, [r;z+dz|y € My, so
that Op guess for Ly (r;z+dz) is correct with probability > %—i—e(n). Otherwise,
our guess is correct with probability exactly 1/2. Averaging over the two cases,
our guess is correct with probability (almost exactly) % + @ Accounting for
all the error terms, the above procedure makes the correct guess for the least
significant bit of [r;z + dz]y with probability at least

1 en) 4 &n)
2 2 m0-8 4

>

N =

The rest of the analysis is similar to the analysis presented in chapter 5. This
implies

38 RSA BIT SECURITY

Theorem 6.2.1: The least-significant bit for the modified Rabin encryption
function is m-secure. That is, inverting En(-) is probabilistic polynomial-
time reducible to the following: Given En(z) (for £ € My), guess the least

significant bit of x with success probability % + po,;(n .

Corollary 6.2.2: Factoring a Blum integer, N, is polynomially reducible to
guessing Ly (z) with success probability % + m when given Ey(z), for z €
My,

The proofs from the previous chapter about simultaneous security of logn
least significant bits hold here just as well.

6.3 Multi-Prime Moduli with Partial Factorization

The results about bit security for the RSA function were described with respect
to composite numbers N which are the product of two large primes. However,
the same proofs hold for the case of multi-prime composite N = pi1ps... Dk,
where the exponent e is relatively prime to p(N).

It is more surprising that bit security holds even if partial factorization of N
1s known. In fact, the least-significant bit is secure even if all but one pair of
primes are known. That means that we can reduce the problem inverting Eps
(M = p1p2) to the bit security of Ey (N = p1p2ps...pk), where all primes but
p1, P2 are known. More formally

Theorem 6.3.1: Let N = p1p2p3...pk, M = p1p2, and n = log, N be the
length of N. Let e be relatively prime to ¢(N), Eap(z) = z¢ (mod M), and
En(z) = z¢ (mod N). Then the following three tasks are computationally
equivalent, (each is poly(n) time reducible to the other).

1) Invert Eps.
2) Invert Ey.

3) Given M, ps, pa,..., pi (a partial factorization of N = Mpsps---pi) and

En(z) € Zn, guess Ly (z) with success probability exceeding % + po,;(n .

Proof. The hard part, the equivalence of (2) and (3) is proved in exactly the same
way as theorem 5.4.1. To show that (1) is reducible to (2) we use the Chinese

EXTENSIONS AND APPLICATIONS 39

remainder theorem [36, p. 30]. Given a = Ep(z) € Zp, we first find b =
En(2) € Zy so that z € Zy and En(2) = Epm(z) (mod M). To do that, find
a number 0 < b < N which satisfies b =a (mod M) andb=1 (mod N/M).
With an oracle for (2), z = Ex'(b) can be recovered. But z° = 2° (mod M)
implies £ = 2z (mod M). Thus £ mod M is the desired answer. Similarly, (2)
is reducible to (1) using the partial factorization of N. (In fact, only this last
reduction requires the partial factorization.) O

The bit security of RSA for multi-prime composites with known partial fac-
torization was used in the cryptographic protocol of [16] for verifiable secret
sharing. A more complicated argument holds for bit security of Rabin’s function
under similar circumstances, as was recently shown in [15].

6.4 Direct Construction of Pseudo-Random Bit Generators

A pseudo-random bit generator is a device which “expands randomness.” Given
a truly random bit string s (the seed), it expands it to a longer pseudo-random
sequence. The question of “how random” this pseudo-random sequence is, de-
pends on the definition of randomness we use. A strong requirement is indis-
tinguishability — the expanded sequence will pass all polynomial time statistical
tests. Namely, given a pseudo-random and a truly random sequences of equal
length, no probabilistic polynomial time algorithm can tell which is which with
success probability significantly greater than % (as we’ve mentioned in section
1, Yao [50] showed that this requirement is equivalent to the unpredictability of

the next bit).

Blum and Micali (7] presented a general scheme for constructing such strong
pseudo-random generators. Let ¢ : M — M be a 1 — 1 one-way function, and
B(z) be a W;GIMIT secure predicate for g. Starting with a rapdom SEM,
the sequence obtained by iterating ¢ and outputting b; = B (g‘(s)) for each
iteration is strongly pseudo-_ra.ndom. Using their Wm security result for
the half, bit in discrete exponentiation modulo a prime p, Blum and Micali
gave a concrete implementation of the scheme, based on the intractability as-
sumption of computing discrete logarithm. More generally, if B;(z),..., Bk(z)

are simultaneously secure bits for g, then the sequence obtained by iterating ¢

40 RSA BIT SECURITY

and outputting the string (b} ...b5) = (B1 (¢°(s)) ... Bk (¢°(s))) for each itera-
tion, is strongly pseudo-random. Long and Wigderson [33] have shown that the
discrete exponentiation function has loglogp simultaneous secure bits. Their
result implies that the Blum—Micali generator can be used to produces loglogp
pseudo-random bits per each iteration of the discrete exponentiation.

Using our results, we get an efficient implementation of strong pseudo-random
generators, based on the intractability assumption of inverting RSA /factoring.
For the RSA case, the random seed s € Zy is raised to the power e at every
iteration. In the ¢-th iteration the generator outputs the logn least significant
bits of s¢ mod N. For the factoring case, the modified Rabin function Ey is
iteratively applied to the random seed s € My. In the i-th iteration, the gen-
erator outputs the logn least-significant bits of E} (s) = +s2 mod N. Thus it
outputs log n pseudo-random bits at the cost of one squaring and one subtraction
modulo N, and is substantially more efficient than the discrete exponentiation
generator. Previous strong pseudo-random generators based on factoring ([26],

[3], [47]) required the use of the exclusive-or construction of Yao [50] and were
less efficient.

Another efficient pseudo-random generator was previously constructed by
Blum, Blum and Shub [5]. Their generator outputs one pseudo-random bit per
one modular squaring. Blum, Blum and Shub proved that their generator is a
strong pseudo-random generator if the problem of deciding quadratic residuosity
modulo a composite number is intractable. Using our techniques, Vazirani and
Vazirani [48] have pointed out that the Blum, Blum and Shub generator is strong
also with respect to the problem of factoring Blum integers.

6.5 Application to Probabilistic Encryption

A probabilistic encryption scheme is said to leak no partial information if the
following holds: Whatever is efficiently computable about the plaintext given the
ciphertext, is also efficiently computable without the ciphertext [25]. Goldwasser
and Micali presented a general scheme for constructing public-key probabilistic
encryption schemes which leak no partial information, using a “secure trap-door
predicate”. A secure trap-door predicate is a predicate which is easy to evaluate

EXTENSIONS AND APPLICATIONS 41

given some “trap-door” information, but infeasible to guess with the slightest
advantage without the “trap-door” information. Goldwasser and Micali also gave
a concrete implementation of their scheme, under the intractability assumption
of deciding quadratic residuosity modulo a composite number. A drawback of
their implementation is that it expands each plaintext bit into a ciphertext block
(of length equal to that of the composite modulus), and thus its information rate
is low.

Using our results, we get an implementation of a probabilistic public-key en-
cryption scheme which leaks no partial information, based on the intractability
assumption of inverting RSA /factoring. For example, we describe the factoring
case. To encrypt O, choose z at random among all numbers in My with least-
significant bit 0, and send En(z). To encrypt 1, choose z at random among
all numbers in My with least-significant bit 1, and send En(z). This imple-
mentation is more efficient that the one in Goldwasser [24] which is also based
on factoring. However, our implementation still suffers from a large bandwidth
expansion.

Recently, Blum and Goldwasser [6] used our result to introduce a new im-
plementation of probabilistic encryption, equivalent to factoring, in which the
plaintext is only expanded by an additive factor of n bits. Blum and Gold-
wasser’s scheme is approximately as efficient as the deterministic RSA while

provably leaking no partial information, provided that factoring is intractable.

PART II

A NEW KNAPSACK-TYPE CRYPTOSYSTEM

CHAPTER 7

THE NEW CRYPTOSYSTEM

7.1 Background

After Diffie and Hellman introduced the idea of public-key cryptography by [20],
a number of implementations have been proposed. Most of these implementa-
tionst can be put into two categories:

a) PKC based on hard number-theoretic problems (e.g. RSA [42], Rabin [39],
Williams [49], Goldwasser—Micali [25]).

b) PKC related to the knapsack problem (e.g. Merkle-Hellman [35], Shamir
[46], Brickell [10]).

While no efficient attacks against number theoretic PKC are known, several
knapsack-type PKC have been shown to be insecure. Most of those systems
have a concealed “superincreasing” sequence. Shamir made the first successful
attack on the basic Merkle-Hellman system [45]. Following his attack, other
attacks against more complicated systems were proposed. In particular, Brickell
[12] found a way to break the general Merkle-Hellman scheme. A different
attack is the “low density” attack of Lagarias and Odlyzko [31]. The most
interesting point about this last attack is that it does not make any assumption
about how the system was constructed, and thus might be applicable to any
knapsack-type cryptosystem (unlike, say, Shamir’s attack which relies heavily on
the superincreasing underlying sequence). As a result of these attacks, knapsack-
type PKC, which are either based on superincreasing sequences or have very low
density, seem to be vulnerable.

t with the exception of the McEliece system [34], which is based on error cor-
recting codes

44 A KNAPSACK-TYPE CRYPTOSYSTEM

Here we propose a new knapsack-type PKC which has high density and a
completely different basis. The underlying construction makes use of a result
due to Bose and Chowla [8] about unique representation of sums in “dense” finite
sequences. To create the encryption-decryption keys in this construction, discrete
logarithms in finite fields are to be computed. Once this is done, encryption is
very fast (linear time) and decryption is reasonably fast (comparable to RSA).
Hence creating the keys is the hard part. While there are no polynomial time
algorithms known for taking discrete logarithms, there are practical algorithms
(most notably the ones due to Pohlig and Hellman [38] and Coppersmith [18])
in some special cases. To demonstrate the feasibility of such cases, we have
constructed a real life instance of our cryptosystem. The construction is over
the finite field GF(19724). We believe that a system of that size will foil both
low-density and exhaustive search attacks. The running-time for constructing
the system was a couple of hours on a minicomputer. This time consuming task

is done only once by each user, so it is acceptable from a practical point of view.

We’d like to remark that all known number theoretic PKC are at most as
hard as factoring and hence are all reducible to the problem of taking discrete
logarithms in composite moduli (see appendix 1). Should this discrete logarithm
problem become tractable (thus rendering all “number-theoretic” PKC insecure),
our system will become easier to create for even larger size knapsacks.

7.2 Knapsack-Type Cryptosystems

The 0 — 1 knapsack problem is the following NP-complete [22] decision problem:
Given a set A = { a; | 0 < 7 < n — 1} of non-negative integers and a non-
negative integer S, is there an integer solution to) z;a; = S where all z; are
0 or 1? A different variant of the problem is to remove the 0 — 1 restriction on
the z; (but insisting they remain non-negative integers) and bounding their total
weight Y z; < h.

Knapsack-type public-key cryptosystems are based on the intractability of
finding a solution to S =)_ z;a; even when a solution is known to exist. In
such systems, each user publishes a set A of a; and a bound h. A plaintext

THE NEW SYSTEM 45

message consisting of an integer vector M = (2o, Z1,...,Zn—1) With weight < h

= E r;a; .

The knapsack elements a; are chosen in such way that the equation is easily

is encrypted by setting

solved if certain secret trapdoor information is known. The exact nature of this
information depends on the particular system in question. A general property
of knapsack-type PKC is that encryption is easy — all you have to do is to add.

7.3 Bose-Chowla Theorem

In 1936, Sidon raised the question of whether there exist “dense” sequences
whose h-fold sums are unique. Given n and h, non-negative integers, is there a
sequence A = {a;|0 < 17 < n — 1} of non-negative integers, such that all sums
of exactly h elements (repetitions allowed) out of A are distinct? It is easy to
construct such sequences if the a; are growing exponentially in n: For example,
the sequence {1, h,hZ%,..., A" "1} has the above property (but does not work even
for h+ 1 element sums, since h2+h-1 = (h+1)-h). But can one construct such
sequence with the a; growing only polynomially fast in n? Bose and Chowla (8]
found a very elegant way of constructing such sequences with 1 < a; < nh —1
for all 0 < ¢ < n—1. (See Halberstram and Roth [27,ch.2] for an overview of the
subject.) Here, we’ll present a slightly modified version of Bose-Chowla theorem,
which will fit well with our cryptographic application.

Bose-Chowla Theorem: Let p be a prime, h > 2 an integer. Then there exists
a sequence A = {a;|0 <1 < p— 1} of integers such that

1.1<a;<p*-1 (1=0,1,...,p—1).

2. If (zo,Z1,...2Zp—1) and (Yo,¥1,-- yp 1) are two distinct vectors with non-
negatwe integral coordinates and Y '_, z,,z ._o yi < h, then -__; T;a; #

Z —o yia;.

Proof. The construction takes place in the finite field GF(p) and in its h-degree
extension, GF(p"). Let t € GF(p") be algebraic of degree h over GF(p) (i.e.
the minimal polynomial in GF(p)[z] having ¢ as its root is of degree k). Let g

46 A KNAPSACK-TYPE CRYPTOSYSTEM

be a multiplicative generator (primitive element) of GF(p*) (that is GF(p*)* =
{ge |0<e<ph— 1}) Look at an additive shift by ¢ of the base field, GF(p),
namely at the set

t+GF(p) ={t+i|i=0,1,...,p— 1} C GF(p") .
Let a; = logy(t +14) ({ = 0,1...,p — 1) the logarithm of ¢ + ¢ to the base g
in GF(p"). Then the a; are all integers in the interval [1,p* — 1] and they
satisfy the distinctness of h-fold sums: For suppose there are two vectors Z, ¥ of

non-negative integers satisfying (), (**), and (% * x).

(o, Z1,...Tp—1) # (Y0,¥Y15---Yp—1) (*)

p—1 p—1
Yoz,) wi<h (++)
1=0 1=0
r—1 p—1
inai = Zyiai (% %)
1=0 1=0

Then the following equality holds in GF (p*)

g P mia _ g ::01 yia;
and so

p—1 p—1

H(ga.')z.- — H(ga.)y.

1=0 1=0

Using the equality g* =t + 7, and considering only the non-zero z;, y;, we get
(E+k)® (k) ...t+ k)™ =0 +7)"(E+ 7). .+ 76)Y,

where {k1,ks2,...,ki} and {J1,J2,...,Jk} are two different non-empty subsets of
{0,1,...,p— 1}, with at most h elements each. Both sides of the last equation
are thus distinct monic polynomials of degree < h with coefficients in GF(p), so
by subtracting them we get:

t is a root of a non-zero polynomial, with coefficients in GF(p), of degree < h—1.

THE NEW SYSTEM 47

This contradicts the fact that ¢ is algebraic of degree h over GF(p). 0

Remarks:

1. From the above proof it is clear that £ sums (£ < h) of A are distinct not only
over Z, but also modulo p* — 1.

2. The requirement “p is a prime” can be replaced by “p is a prime power” with
no change in the claim or its proof.

7.4 How the Cryptosystem is Constructed and Used

In this section we describe how the new cryptosystem is created and used. We
start with an informal (and slightly simplified) description. Next, a step-by-
step recipe for generating the cryptosystem, encrypting messages and decrypting
ciphertexts is given.

The first step is to pick a prime (or a prime power) p and h such that GF(p")
is amenable for discrete logarithm computations. We leave p and h as unspecified
parameters in this section, and elaborate more on their exact choice in section
7 (the approximate magnitudes will be p ~ 200, h ~ 25). Once p and h are
chosen, we pick ¢ € GF(p") of algebraic degree h over the base field, and a
primitive element ¢ € GF(p") (both ¢t and g are picked at random from the
many possible candidates). Following Bose and Chowla, logarithms (to base
g) of the p elements in GF (p) + t are computed. These p integers are then
scrambled, using a randomly chosen permutation. The scrambled integers are
published. Together with p and h, they constitute the public encryption key,
while the elements ¢, g and the unscrambling permutation constitute the secret
decryption key. In order to encrypt a binary message of length p and weight h, a
user adds the knapsack elements with 1 in the corresponding message location,
and sends the sum. (Section 6 deals with the question of transforming “regular”,
unconstrained binary strings to those of the above form.) When the legitimate
receiver gets a sum, he first raises the generator g to it, and expresses the result as
a degree h polynomial in t over GF(p). The h roots of this polynomial are found
by successive substitutions. Applying the inverse of the original permutation,
the indices of the plaintext having the bit 1 are recovered.

48

A KNAPSACK-TYPE CRYPTOSYSTEM

a. System Generation

7.

8.

. Let p be a prime power, h < p an integer such that discrete logarithms in

GF(p") can be efficiently computed.

. Pick a random t € GF(p") that is algebraic of degree h over GF(p). This will

be done by finding f(t), a random irreducible monic polynomial of degree h in
GF(p)[t], and representing GF(p"*) arithmetic by GF(p)(t]/ < f(t) >. (That
is, elements of GF(p") are polynomials of degree < h — 1 with coefficients in
GF(p), and addition/multiplication operations are done modulo p and f(t).)

. Pick g € GF(p"), g a multiplicative generator of GF (p") at random. This will

be done by picking a random r € GF(p*) until one which satisfies r(P"—=1)/s #
1 (for all prime factors s of p* — 1) is found. It should be noted that in our
system, p* — 1 will have only small prime divisors, and so it is easy to verify
that a given r passes the above test. Since the density of such generators is
relatively high in all cases (regardless of any special properties of p and h),
the above procedure is indeed feasible.

. Construction following Bose-Chowla theorem: Compute a; = log,(t + 7) for

1=0,1,2,...,p—1.

. Scramble the a;’s: Let 7 : {0,1,...,p— 1} — {0,1,...,p — 1} be a randomly

chosen permutation. Set b; = ar ;).

. Add some noise: Pick 0 < d < ph — 2 at random. Set ¢; = b; + d.

Public key - to be published: co,c¢y,...,¢p—1; P, h.

Private key - to be kept secret: ¢,g,771,d.

Remark: Every user can use the same p and h. The probability of collisions (two
users having the same keys) is negligible.

THE NEW SYSTEM 49

. Encryption

To encrypt a binary message M of length p and weight (number of 1’s) ezactly
h, add the ¢;’s whose corresponding bit is 1. Send

E(M)=¢;, +¢i+...+¢;, (modph—1).

. Decryption

. Let 7(t) = t* mod f(t), 2 polynomial of degree < h — 1 (computed once at
system generation).

. Given s = E(M), compute s’ = s —hd (mod p* — 1).

. Compute ¢(t) = ¢* mod f(t), a polynomial of degree A — 1 in the formal
variable ¢.

. Add th —r(t) to q(t) to get s(t) = t* + ¢(t) — r(t), a polynomial of degree h
in GF(p)t].

. We now have
s(t)=(t+11)-(t+722)...(t+14p)

namely s(t) factors to linear terms over GF(p). By successive substitutions,
we find the h roots ¢;’s (at most p substitutions needed). Apply 7! to
recover the coordinates of the original M having the bit 1.

50 A KNAPSACK-TYPE CRYPTOSYSTEM

7.5 System Performance: Time, Space and Information Rate

In this section we analyze three basic parameters of the cryptosystem: The time
needed for encrypting and decrypting a message, the size of the keys, and the
information rate in terms of cleartext bits per ciphertext bits. The complexity
of key generation is discussed in section 7.

Given a binary message length p and weight h, encrypting it amounts to
adding h integers ¢;, each smaller than p®. The run time for decryption is much
longer. It is dominated by the modular exponentiation: To raise a polynomial
g to a power in the range [l,ph — 1] takes at most 2hlog p modular multipli-
cations. The modulus is f(t), a polynomial of degree h, with coefficients in
GF(p). Using the naive polynomial multiplication algorithm, 2h% operations
(in GF(p)) per modular multiplication will suffice. So overall, 43 log p oper-
ations in GF(p) are required. For the proposed parameters p =~ 200, h =~ 25
this gives about 500,000 GF(p) operations, and compares favorably with RSA
encryption-decryption time.

The size of the keys, and especially of the public key, is an important factor
in the design of any public key system. In our system, the size of the public
key is that of p numbers, each in the range [1,ph —1]. In terms of bits, this is
plog, p" = ph log, p bits. For p &~ 200, h =~ 25, the key takes less than 40,000
bits. While this number is about 35 times larger than the currently proposed
size for the RSA public key (600 bits for the modulus and 600 for the exponent),
it is still within practical bounds.

The information rate R of a block code is defined as R = %, where |M |
is the size of the message space, and N is the number of bits in a ciphertext.
Letting M range over all binary vectors of length p and welght h, |IM| = ()
N =log, p", so the information rate is

_ log (§)
k= log p*

For the proposed parameters p = 197, h = 24, R = 0.556 (data expansion 1.798).

THE NEW SYSTEM 51

7.6 Transforming Unconstrained Bit Strings

We have assumed until now that the message space M contains binary vectors
of length p and weight h. However, regular binary text does not have this form.
This section contains a simple procedure for translating unconstrained binary
text into the above form.

Given a binary text, we first break it into blocks of |log, (?)] bits each. Each
such block is viewed as the binary representation of a number n, 0 < n < (ﬁ)
To map these numbers into weight h binary vectors, we use the order preserving
mapping induced by the lexicographic order of the vectors and the natural order
of the integers. If n is larger than (‘;L:i) , the first bit in the corresponding vector
is set to 1. Otherwise, the first bit is set to 0. We then update p and h, and

iterate p times, until all p bits are determined.

Code for transforming a number n into a binary vector ¥
Input: n,p, h; Output:

1. fori<1topdo

2. if n > (P,") then
3. Yy — 1 .
4. ne—n-— (,’z:;
5. h—h-1

6. else y; — 0

7. returny

The inverse transformation, which is the last step in decryption, is just as simple:

Code for transforming a binary vector ¥ into a number n
Input: ¥, p, h; Output: n

1 ? «—.0

2 or:+ 1topdo

3 if y; = 1 then ‘

4. ne—n+ (7"

5 h—h-1

6. returnn

For efficient implementation, the P‘;—h binomial coefficients preceding (Z) (in the
Pascal triangle) will be precomputed and permanently stored.

Remark: The above indexing scheme is well known in the literature (see, e.g.
(19]).

52 A KNAPSACK-TYPE CRYPTOSYSTEM

7.7 Proposed Parameters

As mentioned before, the main difficulty in implementing our cryptosystem is
the computation of discrete logarithms in large finite fields GF (p"). This compu-
tational problem is considered quite hard in general. However, for some special
cases, the algorithms of Coppersmith [18] and Pohlig and Hellman [38] work well
in practice. Coppersmith’s algorithm is appropriate for fields of small character-
istic, and performs best in characteristic 2. Letting p* = 2", the run time of the

algorithm is eo(Vinlog? "). For n < 200, implementation of the Coppersmith
algorithm will terminate in a few hours on a mainframe computer. The Pohlig—
Hellman algorithm works for any characteristic, provided p* — 1 has only small
prime factors. It turns out that the Pohlig—Hellman algorithm is preferable for
our specific application, due to two properties: The nice factorization of several
numbers p* — 1 of appropriate magnitude, and the simplicity of the algorithm.

The Pohlig-Hellman algorithm has a T - S (time-space) complexity propor-
tional to the largest factor of p* — 1. While in general numbers whose order
of magnitude is ~ 20025 do not have ‘small’ largest factors (the expected size
of the largest factor of a random number m is about m®® — see Knuth and
Pardo [30]), things are much better when the number has the form z* — 1, since
we can first factor this expression as a polynomial in z, and then factor each
term as a number after substituting z « p. Numbers h’s with “good” factoriza-
tion are especially effective. For example, £24 — 1 has the factors z® — z% + 1,
z4 — 22 + 1, z* 4+ 1, and other terms of degree not exceeding 2. Substituting
p = 197, the largest prime factor of 19724 — 1 is 10,316,017 ~ 107 . The square
root of this is 3-103, so the Pohlig—Hellman algorithm can easily be implemented
on a minicomputer within a few CPU hours for all the 197 logarithms.

Other possible values are (the last two values are from [13]):

e p =211, h = 24 (largest prime factor of 21124 — 1 is 216,330,241 ~ 2 - 108)
e p =243 = 3% h = 24 (largest prime factor of 3120 —1 is 47,763,361 ~ 5-107).

e p =256 = 28 h = 25 (largest prime factor of 22°° — 1 is 3,173,389,601 =~
3-10°). This candidate has the advantage that the field is of characteristic
2. Thus binary arithmetic can be used for key generation and decryption

THE NEW SYSTEM 53

calculations. In addition, binary arithmetic offers easier implementation in
special-purpose hardware.

7.8 Implementation Details

The key generation step was implemented on a Symbolics 3600 Lisp Machine.
Polynomials were represented as arrays, and some preprocessing was done to
speed-up the field arithmetic. In the implementation of the Pohlig—Hellman
algorithm, instead of sorting the pre-computed powers, they were hashed in
a 197-by-197 array according to the free term and the coefficient of ¢ in the
polynomial. This way the matching trials were simplified. However, one simple
computation was not done in the preprocessing stage — computing successive
squares of the generator g,¢2,¢% ,¢%,...,92 (182 = |log, 197%4]).

The overall run time for finding all 197 logarithms in GF(197%4) was about
8 hours. With some simple modifications, we expect that the above time can
be reduced by 30 percent. It seems that even for GF(2562%) the computation
should be feasible, taking advantage of the binary operations in the polynomial
arithmetic. All these estimates can be drastically reduced if the computation
is to be carried out on a faster, larger computer using a programming language
more suitable for numerical calculations (e.g. Fortran).

CHAPTER 8

POSSIBLE ATTACKS

In this chapter we examine some possible attacks on the cryptosystem. We start
with specialized attacks on the cryptosystem, where the cryptanalyst is trying
to reconstruct the secret key (possibly with some partial knowledge of it). We
proceed by considering low density and brute force attacks with no prior secret
information, where the goal is not to reconstruct the secret key but rather to
decipher a given ciphertext.

8.1 Specialized Attacks
a. Known ¢ and d.

Given d, compute {bg, by,...,bp—1} = {co—d,c1—d,...,cp_1—d}. Lett' = gbo.
Since g% —gb =t—t' € GF(p), the sets {t+i|i € GF(p)} and {t' +i|i € GF(p)}
are identical. Thus, for every : € GF(p) there is a unique o(z) € GF(p) so that
gty = t' + 4. Using t',g,0 and d, the cryptanalyst can perform the same
decryption algorithm as the legitimate reciever.

b. Known ¢t and d.

Pick arbitrary generator g’. Compute a; = log (t +1) . As sets, we have

{Co—d,cl —d,...,cp_l —d} = {ao,al,...,ap_l}

= L{ag,a},...,ap_1}

where equality is modulo p* — 1, the numbers L, p* — 1 are relatively prime, and
L satisfies ¢ = ¢’ L. Once L is recovered, we are done, for then g = ¢’ £, and we
can reconstruct 7 and have all the pieces of the private key.

If one of the a! (a{, say) is relatively prime to p* —1, then L is one of ajag -1

(mod p"* — 1) for some 0 < j < p — 1. Otherwise, the cryptanalyst can compute

POSSIBLE ATTACKS 55

L modulo each of the prime power factors of p* — 1 (which, by the choice of p
and h, are all small and therefore easy to find), and then combine them together
using the Chinese remainder theorem.

c. Known t (attack due to Oded Goldreich).
Pick arbitrary generator g’. Compute a} = logg,(t + 1) . As sets, we have
{co —co,e1 — Coy.-+yCp—1 — Co} = {ao —@g,a@1 — AQy.--50p—1 — ao}
= L{ag — ap,a} — ag,...,a,_; — ap}

and now it is possible to proceed as in (b).

d. Known permutation 7 and d (attack due to Andrew Odlyzko).

Since the knapsack is dense, there are small integral coefficients z; (some of
which may be negative) such that

p—1
E r,a; = 0
1=0

(see appendix 2 and (e) for a justification to this claim). The z;’s can be effi-
ciently found by applying the Lenstra-Lenstra-Lovasz basis reduction algorithm
[32] to a the truncated Lagarias-Odlyzko lattice (see appendix 2, and [37] for a
similar attack on other knapsack schemes). Raising g to both sides of the last
equality, we get

QZ::; Tidi _ 1
i.e.
r—1
[He+9==1.
1=0

The left hand side of the last equality is a rational function of ¢t. The generator
g, which is still unknown, is not a part of the equality. If m; = |Z :z:;"| (me =
|Za::|) denotes the sum of positive (negative) z;’s, and m = max (m,,m2),
then we get a polynomial equation of degree m — 1 in ¢, with coefficients from
GF(p). Since the z;’s are small, m is also not too large. All roots (in GF(p")) of

56 A KNAPSACK-TYPE CRYPTOSYSTEM

this polynomial can be found using a fast probabilistic algorithm. The element
t is necessarily one of these roots, so attack (c) can now be used.

The most efficient way for root finding which we know of (Rabin [40]) re-
quires finding the gecd of g(t) and tP"=1 where g(t) = [I5=o (t +4)% — 1. With
p" — 1 > m, this polynomial gcd computation is performed by raising ¢ to the
power p"* — 1 and reducing modulo g(t). So we basically have to perform klog, p
multiplications of m degree polynomials with coefficients in GF(p), and reducing
modulo ¢(t) each time. Assuming standard arithmetic, each polynomial multi-
plication will take m? GF(p) operations (FFT arithmetic [see, e.g. 1, ch. 7] will
introduce a large constant and will probably be less efficient in practice). Thus
the root finding algorithm will require at least m2h log, p operations in GF(p)
(assuming that a single root is found).

Remark: If 7 is not known, this attack does not seem to work since, even though
the z; can be found, they give rise to an ‘unknown’ polynomial. If m; + mq
is very small then one can try all (mximz) possibilities even without knowing
m. However, with m# unknown and m, + my exceeding 10, this brute force ap-
proach becomes infeasible. A more refined method for dealing with unknown 7
is presented next.

e. Nothing Known (attack due to Ernest Brickell).

This attack is a continuation to Odlyzko’s attack. The goal is again to find a
small degree equation satisfied by ¢g. Using a carefully designed lattice, it is
possible to find integer coefficients z;, many of them 0, such that both equations

p—1
Z zic; =0 (mod p" —1)
=

p—1
Zzi =0 (mod " -1)
—

hold. The second equality guarantees that

G s _ S mslbita)
Lol p—1 .
= g4~i=o zibi -gd i=0 T
Pl b

=g i=0

POSSIBLE ATTACKS 57

and thus, by the first equality,

p—1
that is gzi=o T =1,
With the permutation # unknown, this equality now means

p—1

[e+=@)==1.

1=0

Let gr(t) = [1%Za(t + 7(3))* — 1, and £ be the number of non-zero z;'s. Every
one-to-one mapping from the set {z | z; # 0} into {0,1,...,p— 1} gives rise to a
different polynomial in g.(t). Only the “correct” polynomial will have the right
t as one of its roots. Thus on the average we have to try %(_p%ﬁ mappings to
come up with the right polynomial. (In fact it suffices to consider the mappings
of only £—1 elements, since having t+ j for some 7 € GF(p) is as good as having
t itself, and so %(p—_é%)—! mappings are to be checked).

For every such mapping, the cryptanalyst should find the roots in GF(p*) of
g=(t), an m degree polynomial with coefficients from GF(p) (m denotes here the
same quantity as in (d)). Combining the calculations above with the running-
time estimates for polynomial arithmetic, the expected running-time for recover-
ing t will thus be %Zp_—’éi-_l)—! -m2hlog, p (GF(p) operations). There is a trade-off
between £ and m. Consider the £ non-zero z;’s. How large do they have to be in
order to have a non-zero solution to 3 z;a; =0 (mod p* — 1)? If the z,’s are
bound in the range % <z < % then this gives us B¢ combinations of _ z;a;.
If B¢ > p" — 1, then two of these combinations must be the same modulo p” — 1.
In fact, if B¢ > p"/2 then by the birthday paradox two of the B sums are going
to be equal modulo p* — 1 with probability no less than % Assuming the later
bound, B =~ p"/?¢. To get a non zero combination }_ z;a; =0 (mod p* — 1),
we subtract two combinations with the same sum. The average absolute value

58 A KNAPSACK-TYPE CRYPTOSYSTEM

k/

of the resulting z; is about B/2 = ”2—u, and about half (£/2) of them are neg-

ative. Thus the the sum of negative (positive) z;’s is m ~ #. The total

runnning-time for finding ¢ is thus

2
1 p! 2 1 p! 2ph/2t
2oLl ™ Mo P~ sy hlog; p

£—1ph/£e2
32

_p hlog, p

The above expression is optimized with £ = 8(+v/h), resulting in O(pz‘/ih,2 log, p)
algorithm for retrieving t. While this expression is asymptotically superior to
all other methods mentioned above, it seems quite prohibitive in practice. For
example, taking p = 197 and h = 24, £—1+h/Lis optimized at £ = 5, yielding 8.8.
But 19788 > 260 5o the attack is impractical. (Even assuming FFT arithmetic
and complexity O(m) for the root finding algorithm, the resulting expression
pt~1+h/284p Jog, p is optimized at £ = 3 yielding about 252. The extra log factors
of the FFT and the hidden constant will drive the expression up to at least 2%8)

8.2 Low Density Attacks

In appendix 2 we give a description of the Lagarias—Odlyzko low density attack.
The density d(A) of a knapsack system A = {a;| 0 <7 < p— 1}, is defined to be

p
d(4) = log, (max a;)

Given a knapsack system A = {a;| 0 < ¢ < p— 1} and a sum instance (cipher-
text) S = f;ol z;a;, they construct a p + 1 dimensional lattice. The lattice
construction uses the p knapsack elements and the given ciphertext. A certain
vector in this lattice (which we call here the special vector) is defined. This vector
corresponds to the solution of the given ciphertext (yields the coefficients z; in
the sum), and the goal of the cryptanalyst is to find it. Lagarias and Odlyzko
have shown that if d(A) is low, this special vector is the shortest one in their
lattice.

POSSIBLE ATTACKS 59

Using the last observation, what Lagarias and Odlyzko are trying to do is to
find the shortest vector in the lattice. The tool they use is the basis reduction
algorithm of Lenstra, Lenstra and Lovasz. While this algorithm usually succeeds
if the shortest vector in the lattice is much shorter than all other vectors, it does
not do so well if the shortest vector is relatively close in length to other vectors.

In our specific case, the knapsack has high density. The length (square of
Euclidean norm) of the special vector will not be much shorter than the length
of many other vectors (24 vs. 40 for p = 197, h = 24 — see appendix 2).
Therefore the LLL algorithm, applied to the Lagarias—Odlyzko lattice, cannot
be expected to find the special vector. Experiments, done by Andrew Odlyzko,
on a smaller knapsack created by us support this claim. For the test case we’ve
generated an instance of the knapsack with parameters p = 103 and h = 12. For
these parameters the density is 1.271. Using the calculations of [31], the length
of the shortest non-special vector in the constructed lattice should be at least
17. However, the LLL algorithm did not find the special vector even when its
length was only 5 (i.e. when only 5 knapsack elements were added together in
the sum). So, it seems that for the Lagarias—Odlyzko attack to be successful
against our system, it must use a better shortest vector algorithm. Currently,
the best (exact) shortest vector algorithm known is the one of Kannan [28],
and its performance is no better, in our application, than the brute force attack
sketched in section 4.

In the following section we point out that it is possible to make the spe-
cial vector which solves a given ciphertext longer than the shortest vector in
the Lagarias—Odlyzko lattice. However, with the current state of shortest vec-
tor algorithms, it looks like such modification to the cryptosystem is not really
needed.

8.3 Countermeasures Against Shortest Vector Attacks

Let Z be the special vector which yields the decryption of a specific ciphertext.
In the previous section we argued that with the proposed parameters, the special
vector Z will not be much shorter than many other lattice vectors. In this section
we suggest a slight change in the encryption procedure. This change will have the

60 A KNAPSACK-TYPE CRYPTOSYSTEM

effect of making Z longer than many other lattice vectors. The change will also
reduce the information rate of the system, but its density will not be changed.

To demonstrate this idea, let us first ignore the restrictions in the choice of
h and p. Suppose we handle n-dimensional knapsacks with o = n/log, n. By
taking n/(2log, n) elements with multiplicity 1, and ﬁ{;{ with multiplicity
log, n, £ will have length

n nlog n _n
2logon 2 logg n 2log,n

+n,
2

The density of such knapsack will be

n

10g2 nn/logz n =1

By the heuristic argument of Lagarias and Odlyzko [31], n-dimensional lattices
with density 1 will contain many vectors of length shorter than n/4. Since the
length of the special vector Z is more than twice n/4, the Lagarias—Odlyzko
method will not find Z.

The idea of increasing the length of the special vector by using several knap-
sack items with repetitions is applicable for the proposed parameters of the
actual system. For n = 197, h = 24, the following encryption method can be
used: Take 8 knapsack elements with multiplicity 1, and 8 knapsack elements
with multiplicity 2. The length of the special vector Z is then 1-8+22.8 = 40. We
substitute these arguments in the formulae of [31]. The critical density is 1.073
(see appendix 2). This means that (for large enough n), n-dimensional Lagarias—
Odlyzko lattices with density exceeding 1.073 are expected to have many vectors
of length < 40n/197. The density of our lattice is

197 197

= =1.077
log, 19724 24 -log, 197

and so is strictly greater than the critical density. We expect the lattice to
contain many vectors of length < 40 (provided 197 is “large enough” and our
lattice behaves “normally”). Thus the Lagarias—Odlyzko attack is not expected
to find Z even with an exact shortest vector algorithm at its disposal.

POSSIBLE ATTACKS 61

Of course, countermeasures can also be countered. Other lattices which are
tailored to our scheme (rather than the general Lagarias—Odlyzko lattice) can
be constructed and have better performance. For example, Don Coppersmith
suggested to modify the Lagarias-Odlyzko lattice so that short vectors also satisfy
Y- z; = h (see appendix 2). For the parameters p = 197, h = 24, it is more likely
that the shortest vector in the modified lattice will be the special vector which
solves the ciphertext. In addition, for these specific parameters, our modified
encryption might cause brute-force algorithms to have better chance of success.
It is possible that by working in larger fields (e.g. GF(256%5)) we may remedy
these problems, but we did not pursue this issue any further.

8.4 Brute Force Attacks

Despite the sophistication of the previous attacks, none of them outperforms a
careful brute-force attack (unless the cryptanalyst is supplied with some part of
the secret decryption key). The most efficient method we know of for solving
knapsack instances with h out of p items, given a specific ciphertext, is the
following: There are (Z) ways of choosing h out of p elements. Take a random
subset S containing p/2 elements. The probability that a given sum contains
exactly h/2 out of these p/2 elements is

Assuming that this is indeed the case, we generate all h/2 sums of S and of its
complement, and sort them. The goal is to find a pair of sums from the two lists
whose sum matches the desired target. This can be achieved by keeping two
pointers to the two lists, and marching linearly through each (one in increasing
order, and the other in decreasing order). If the two lists are exhausted but no
matching sum was found, then another random S is tried. The run time per one
choice of S is dominated by sorting all /2 sums of both S and its complement.

62 A KNAPSACK-TYPE CRYPTOSYSTEM

This will require 2 - (Zﬁ) In (%g) operations. On the average, about v/A choices
of S have to be made. The overall expected running time will thus be

() G -

h/2

For the proposed parameters p = 197, h = 24, the expected number of operations
is 3.466 - 107 > 258 s0 such brute force attack is impractical. The knapsack
algorithm of Schroeppel and Shamir [44] might be used here for space efficiency.
However, its run time behavior is no better than the above algorithm.

8.5 A Word of Caution

Even though none of these attacks seems to produce a serious threat to the
system security, other attacks might be successful. We urge the reader to examine
our proposal for as yet undiscovered weaknesses.

APPENDIX 1

ON DISCRETE LOGARITHMS AND FACTORIZATION

We’ll show here how the problem of factoring “paired primes modulus” N =
p - ¢ (where p, ¢ primes) is polynomially reducible to that of finding indices
(“logarithms”) in Zy. Let a € Z} be chosen at random. Since a?(M) = 1
(mod N), we have

aV = gV =P(N) = gpa=(P—1)(a=1) — gp+a=1 (64 N) .

The index of a?*9~1 to base a is defined as the minimal exponent e which satisfies
a® = a?PT97! (mod N). With reasonable probability, e equals p+ ¢ — 1. In such
case, a discrete logarithm subroutine will output p+¢—1 when given a”¥ mod N
as input. Having N =p-qand p+ ¢ — 1, p and ¢ can easily be determined.

The “reasonable probability” is bounded below by the probability that a mod
p is a multiplicative generator of Z;, and a mod ¢ is a multiplicative generator
of Z;. These two events are independent, and each of them individually has
reasonable probability to happen. Thus both happen with “reasonable prob-
ability”. Let ¢ denote the gcd of p — 1 and ¢ — 1. Assume, without loss of
generality, that ¢ < p. Furthermore, assume that ¢ < ¢ — 1 (this is “usually” the
case, and in particular holds for RSA moduli, where both p — 1 and ¢ — 1 have
large random prime factors). The congruence a® = a?*9~! (mod N) implies
a® = a?*?"! (mod p) and a® = a?*?"! (mod g¢), so from the fact that a is a
generator modulo both p and ¢, we get

e=p+g—1 (modp-1)
e=p+g—1 (modg—1)
and thuse— (p+¢—1)=0 (mod (p—1)(¢g—1)/¢c) (*).
Since ¢ = ged(p—1,¢9—1) < (¢g—1)/2, we have (p—1)(¢—1)/c > 2(p—1) > p+q—1.

Combining the last inequality with (x), we get e—(p+¢g—1) =0,0re=p+q—1,
as desired.

APPENDIX 2

THE LAGARIAS—ODLYZKO LOW DENSITY ATTACK

In this appendix we give a brief description of the Lagarias—Odlyzko “low-
density” attack, which is based on finding short vectors in lattices. (A different
“low density” attack was proposed by Brickell [11].) Given a knapsack system
A ={a;] 0 <7< n-1} and a sum instance S = Z::ol z;a;, the algorithm
proceeds as follows:

a) Construct an n + 1 dimensional integer lattice with basis vectors

7 = (1,0,0,...,0,a0)
171 = (0,1,0,...,0,0,1)
72 = (0,0,1,...,0,a3)

Un—l = (0’0’0,- LR] lvan—l)
, = (0,0,0,...,0,—-5)

b) Look for the shortest non-zero vector @ in this lattice. This step is using the
LLL basis reduction algorithm which finds a relatively short vector in the
lattice (even though no proof that the shortest vector will be produced by
the LLL algorithm is known, and in fact this need not be the case).

c) Check if & = Z, where £ = (29,1, Z2,...,Zn—1,0) is the special vector which
deciphers S.

We’ll call the lattice spanned by the n + 1 basis vectors the full Lagarias-
Odlyzko lattice, and the sublattice spanned by the first n basis vectors the trun-
cated Lagarias—Odlyzko lattice. The truncated lattice does not depend on the
actual sum S. The basic idea behind the algorithm is that since S =)_ z;a;,

APPENDICES 65

T is always a vector in the space spanned by the basis vectors. The Euclidean

norm of £ is 4/ Z::ol z?. Lagarias and Odlyzko show that for almost all sets A4
(in an appropriate probability space) whose density is less than 0.645, there will
be a unique vector in the lattice spanned by vo, v},....U, with Euclidean norm

not exceeding \/n/2.

More precisely, let

(o0]
0(z) = 1+2Z:zi2
i=1

6(c,) = az + log, 0 (e~ %)

6(a,zq) = r:lZiI&&(a,)
d;' = (logy €) - 6(t, z4)

Then for n — oo, for almost all n-dimensional knapsacks of density d(A4) < dq,
all the non-zero vectors in the truncated lattice have length > o - n. Thus if the
special vector Z is of length < a-n, it will be the shortest vector in the full lattice.
Plugging in o = 1/2, one gets £/, = 0.9979 and log, e- 6(1/2,z,/;) = 1.547. So
dyj2 = 1.5477! = 0.645. Similarly, dy/4 = 0.94. Thus if ||£]|> <n/2 and d(4) <
0.645, a shortest vector algorithm will find Z (similarly if ||Z]|2 < n/4 and d(A) <
0.94). Lagarias and Odlyzko conjectured that the above densities are “cut-off”
densities in the following sense: Almost all knapsacks A with d(A) > d, will
have exponentially many vectors with Euclidean norm < y/a - n in the truncated
lattice. These short vectors correspond to small linear dependencies among the
a;’s — solutions to 5:(: r;a; = 0 with small integral z;’s (not necessarily +1 or
0).

For 0 — 1 knapsack problems, the Euclidean norm of Z is not too big since
each coordinate contributes at most 1 to the sum. However, if the same item is
taken more than once, the norm of Z grows substantially. This is the basis for
the modification in section 8.3. For the parameter @ = 40/197 (corresponding
to a special vector of length 40 in a 197-dimensional lattice), we compute

min 6(e, =) = 6(c,2.070)

= 0.646

66 A KNAPSACK-TYPE CRYPTOSYSTEM

so the critical density is

do = (logy e -0.646) !
= 1.073 .

To make use of the additional information that in our ciphertexts f;g T; =
h, Coppersmith suggested to add one more column to the basis elements in the
Lagarias—Odlyzko lattice. For 7 = 0,1...n — 1, ¥; will have a large constant s
in this additional entry, while v, will contain —hs in this entry (s &~ 10 suffices
for our application). To be shorter than the special vector, a vector § in the

truncated lattice must now satisfy both p_ol y; = 0 and Zf;ol y;a; = 0.

1=

APPENDIX 3

A SPECIFIC PUBLIC KEY

This appendix contain an example of the public key computed in GF(197%4).
The knapsack elements are listed below. This is a full version of the cryptosys-
tem, with the elements permuted and d # 0. It is proposed as a test case for
cryptanalytic attacks against our system. A file which contains these numbers
can be electronically transferred by request from the author of this thesis.

1659180553888618810504703054503015381147959990091683345
8904603573746442392122316418539622167698584754920500491
6869422890982038830651733321094064860476545049050510236
8843501816703199478474638606256249374472315838723212687
273085211853095557657927451499434236517420912511363175
1917134838000328541666886720116408048827058989097482718
3710482402923868329802249464555949282143927715492775668
2987207664726531171245320036282297295342865267307398577
3887766664449467567372554463948010759028487612467438655
53295759894750084050664157419026121502392768584477558
9450435426980876499150545526460484603741606922696650876
450557525840744842996537290250219903294557697178457172
2879947550335332983092976037422343775448034197189536263
10118401764646482252533378620087392630382663988258662425
5494533851370365805818161805328505558389637338362842733
6600511363740724297182660667862078139071221307196797217
459378260963144816109734442229407083191352920821647999
1705293133211177679251001186853606474316296372665577463
5296932257683835868455769703640373839916223660776724226
46606416342981536379692473737055047656933463736664421
5317170287021611977612579593835995509895960938066874694
9547007036257021978810774792444348863045083467030422164
8739918729777318805220074697958442973444864667313867167
1218935459706800608824007632450929423384817014214187036
6435792922447600458767854034029328970334047495041741504
4082033101634830806921141273737483005778876997382379570

68

A KNAPSACK-TYPE CRYPTOSYSTEM

347684011782249838445379760835224945226175555749464367
10775143624182084460146514690774520411115991214477052529
7363672187196151096263068583933635874162043800628565542
6132911186848723392017074802347613026512261764800254957
4621452836237129572668766922737559587573084329705006138
3080212245061335648175456777189565846347127068099687309
10069246528922443795255777058208916058073016982095660663
1239188873372458722449930677483901206097805669939533233
8290927400902143008887128916044001178904661328310569128
5714432420745902617149738940321959487572283803340465152
4338432111441836091889594082303270707084733947396101241
5321610236079748192040737134454717995542276347795910409
4937367917163847304913811853806699997767089532519223065
6610823000041678448002462502266524169680630816638103863
7262818004742619896833158988336732204289317194153575691
2502947348371780914313064990139029216175066263151770147
11173086303025926239030264366116370033184982505819451681
347855699762789824971720959599896291936845681303774138
3984202202810239637041527156629398387293462547124656184
9568120289176334697968798749514649180114650583753072227
1301300995092594924016761451746735550321678103621738066
5699235330321470828600612638889384069110659050284600816
8878620549807995478768677230741624150433622110531693925
3463049994770925147816582669932423724431599459976702144
1634420533780126860220986928711573687757577853822370501
4131920160915650780822086028657914715776446242012691750
1362047942896581988244999836237461442735494739210489808
943025072807527578127474328698472221329065255368446582
628014138800159362395944890085617198701521244580625056
11491125444022241790822112012573377118856762205722233709
3519675004644133101803802941360148055171987581452853803
7820667368140962900282720639234452600820532123646041563
10966435819929206141327566402354838045634233861554943404
9941933529523876933598787307173548868167610719273363866
3876101494866729880497511938408978211301061936560811675
8892609699120851133917917081822704959500863733032967229
7092060679521818036621321555550639594833422393607231579
4400804658324132179154935594022157397198137892043978814
2003567532995305455043180101111935807943047847306518004
10725725557356448374840014894889392569662615165033256241
4718681518838132526024557001023842008895466881040494467
978271458794092956312794590327659487424005968101163698
7221487726451204266080463876115882926947703571776633959
8340628407032059861351234625548370525044335145545866216

APPENDICES 69

10697186315110563324293407333965300526490994463025514775
764831671305040636403199740318516131562634544238770730
4877371313118525718723001941924183104010156114403210943
5589167316283568606129155217561700479871310473114861372
5760402190079478977290241903948209566796300584036560255
1634411808714080726184580764205667427902839668755864462
5907910869801091261412645323152027028520288365282022791
10331038587940102685121128504609262772340293128223506833
5726415482433956594359412389836949778632041875348423101
10397842526836530713589437056977511941286325611927173291
8895691040425936992777342471671529548200259456511018046
11476697198084608347001085696021116568979308201540223885
45176885062053273325238708224128072407897952981849221
3352012245700734672081260723310760737822516780523298120
8448095379814261721865913318970612680524722775636710182
9304846500755370930242795004077115623784842481207934659
3583585055570862715050630893179485332324110487026183317
8838041417964550046718098446150246948741987995971562145
613625586487004049072791514102769043061635606484 5644806
6906854996418798890349161039361910485018946066994352581
10170413544474167073889406955767321697221405994911185878
9640515119641254017426717267086022522336390072365317157
303810945739793683698481701127083784749048426783921481
6595394452686045516270899791232502186687143237195304272
1589841566708571416941757089542126654006520146797425083
11085664727759733005620644294861047610034453223469425035
7535059677031399209005475415380401582638380900556770350
8200142154158181355609624773559960188275448476606684965
2009712690062434102685675955022332702560145707970224453
10568688041667857314452197491559730299422286309282738674
10611062465304524980929993681615844572408243557152223554
9521261533526205226628100312792084120326225910490203709
8582530382502214492455601771140984971065360535492264971
6501332581204346303079515153727904938680325788582329269
3317714276679126649148548910548958947496376669739111369
4874132911512928652066674814138195818597893983416956618
8500122852698273360723855251080571427978581296443300871
4655888032389886437701348306812016653964940518822403803
3819686006827237874893857522607575704706424928748135743
2445506181510543348091946860139420847496156311402317416
4971567016091082232483266770328863197597172222551033762
1262609648879270536338278637672178311503639378316762898
10880314738320559788385102529426564253426264142547211799
3888688203218439354717328230724587759633625940750536816

70

A KNAPSACK-TYPE CRYPTOSYSTEM

10860128816246376835396650892423492833238996106962188108
937015345161745308557155376907542479090922419179647454
503282478660902598216077760177782599503793987267246479
7951682246278723195457177501681939589674822136739853974
5463500835616440109490581965761882164871292581416770541
2954540015836809838923994897090519106458324851302017933
9104861272595347035407604442082821339674724178236829843
4276004090546060553469690096659082633166104531677031316
8920549264928769763742925160432454320437900897897145620
11618630840955246608355771374831822847853081125184373290
3823867726368698856614979064702978458012600631274415877
8671737361545103697852647258515398947803516638145273291
499166921011730697434945051278016702024221484712594454
5915598711080735606129613661456327944406858964435154667
8173498654318327586943649747916018347200281212689047290
7275595429446182302879669944077095261926983310050621817
8200988174711899297550763593522027263904422925378960992
11259346252873044495915049754437393362171010088512550082
2002368795089233775442710203575437096591528513855693285
9273646744933903888135623428241819858280355170938205124
10928596465390575301307994873245167040059050147403733262
11507588820870116335321813443702739933780393408655812377
10785501785425425687964232314342101054761852867034564690
8937011647607496047515341562814494889237585386748941847
4394604991486329175708242631515782649023799357464726926
8409235957266821788960831580264731332474188602137707600
3728643452352018700840852096041193711402328567048040022
8272326742062489089809029789407534709776378835911312941
7013779352377117267808321986311149338381571173881097663
4217271510299422316513539263935119232604857080751496559
8780957254540706500170750823867567401772539267267905370
170059311803762518939184815879698865087119140633996907
3864583323966915577606862257189742149210357433211871552
8473537958074036950094577844741929015845100045286152185
536459022346820368385578548808352992733402170168236436
11184499462288968070754455605229210932516750553409455798
1207951324289711166036697717046456099940468532934008002
1620207483168538885285524176342342715115767110103890963
9419113975870798390150760064851666450072819106900418278
5047061323668627906678255313661984091040986771426248661
4455715808568444126463792240767530160024239783146027287
2055708583094748127433520562049415256330509144335677370
822142663443212777645857532426265323721039040163355885
6327660152172723221702320871134172541113116074530751289

APPENDICES 71

11618204073945974532179474758922329395766922934183885373
2681284829731657909799375030584463351722802694145504145
6049349233223855032140569250300226010438472844901345207
5653188878279392627297817877052771841176800457209818460
8746971498576924580862790073519261903224815996766650636
7707851868801266859527003522562026900874057533615974848
3379208175720838995972371245424813264780695540329883333
4191411226738609897786638402978981306173058319645577920
102117081651048540572020955946377645254890137485503697 14
6980278166263928822410341894296642109825545586477476070
1847955825021785896447787560851214349928735795947671125
2734203200200558271382358178082463795634346967137177307
10870273011521969326371585453679235262035154573071869456
7220668587256604649775201135599337026837426113444289998
2805584377506127501253310897603956581444682504722824588
7617604224852838099708238920029691931830181900119468485
4852828442927974331206739154786746857916171958420537633
5597325117167958891635340527133426280020727951618666449
5058448763337068787757309487214319452724492848947048850
4836045376818476982118583337126970966350793318872412198
28384921980099939783085306169956748421141178457159722
75218309086100658244072900970005077169477960324859032
4627571935515247312390461614141587908124435970220360645
3548316079628564518391086386772280206468827682110383051
2082005476582188454956618747601842210928057329483120854
10197835149284056654355645785916753903204456668088015126
4636092812212026895621740261870820526242448468160600010
3125818616334663903640293286981232105491162115909170351
11344216728568351184089587878818944273058182403607066582
1123871123105629776096812032755453064495838161676788187
5794050479015248291325502007300813968634856736211580022
4494655107601102037208333662312535245041777695947383166
9119204763142813562838438103855186160266236020445373601
2252273840245809422997790979417862651953946579056544432
7699136983782470018675579966330989232306312887731069424
5298532149479734331583109594640198858682133562901258825
8904753708068623153941993185049726417000501976266416274
1322575616024132593704279643926904588928166184734844702
4550372378328108483134988805410345946065058615431133258

REFERENCES

(1]

2]

3]

4]

(5]

(6]

[7]

8]

9]

[10]

11]

Aho, A., J. Hopcroft, and J. Ullman, The design and analysis of com-
puter algorithms, Addison-Wesley, Reading, 1974.

Alexi, W., B. Chor, O. Goldreich, and C. P. Schnorr, “RSA and Rabin
functions: Certain parts are as hard as the whole”, to appear in SIAM
Jour. on Computing, extended abstract in Proc. of the 25th IEEE
Symp. on Foundation of Computer Science, 1984, pp. 449-457.

Ben-Or, M., B. Chor, and A. Shamir, “On the Cryptographic Security
of Single RSA Bits”, 15th ACM Symp. on Theory of Computation,
April 1983, pp. 421-430.

Blum, M., “Coin flipping by telephone: A protocol for solving impos-
sible problems”, IEEE Spring COMCON, pp. 133-137, 1982.

Blum, L., M. Blum, and M. Shub, “Comparison of Two Pseudo- Ran-
dom Number Generators”, Advances in Cryptology: Proceedings of
Crypto82, Chaum,D., et al. eds., Plenum Press, 1983, pp. 61-79.

Blum,M. and S. Goldwasser, “An Efficient Probabilistic PKCS as Se-
cure as Factoring”, Advances in Cryptology: Proceedings of Crypto84,
G.R. Blakely and D. Chaum. eds., Springer—Verlag, 1985, pp. 288—299.

Blum,M. and S. Micali, “How to Generate Cryptographically Strong
Sequences of Pseudo-Random Bits”, SIAM Jour. on Computing, vol.
13 no. 4, pp. 850-864, November 1984.

Bose, R.C. and S. Chowla, “Theorems in the additive theory of num-
bers”, Comment. Math. Helvet., vol. 37, pp. 141-147, 1962.

Brent, R.P. and H.T. Kung, “Systolic VLSI arrays for linear time ged
computation”, VLSI 83, IFIP, F. Anceau and E.J. Aas (eds.), pp.
145-154, Elsevier Science Publishers B.V., 1983.

Brickell, E.F., “A new knapsack based cryptosystem”, Presented in
Crypto83 rump session.

Brickell, E.F., “Are most low density knapsacks solvable in polyno-
mial time?”, Proceedings of the Fourteenth Southeastern Conference

[12]

[13]

(14]

(18]

[16]

[17]

(18]

(19]

[20]

REFERENCES 73

on Combinatorics, Graph Theory and Computing, 1983, Congressus
Numerantium, Vol. 39, pp. 145-156.

Brickell, E.F., “Breaking iterated knapsacks”, Advances in Cryptology:
Proceedings of Crypto84, G.R. Blakely and D. Chaum. eds., Springer—
Verlag, 1985, pp. 342-358.

Brillhart, J., D.H. Lehmer, J.L. Selfridge, B. Tuckerman and S.S.
Wagstaff, Jr., Factorization of b™ + 1, in Contemporary Mathematics,
vol. 22, AMS, Providence, 1983.

Chor, B. and O. Goldreich,“RSA /Rabin least significant bits are % +
m secure”, Advances in Cryptology: Proceedings of Crypto84, G.R.
Blakely and D. Chaum. eds., Springer—Verlag, 1985, pp. 303-313. (Also
available as Technical memo TM-260, Laboratory for Computer Sci-
ence, MIT, May 1984.)

Chor, B., O. Goldreich, and S. Goldwasser, “The bit security of mod-
ular squaring given a partial factorization of the modulus”, to appear
in the proceedings of Crypto85.

Chor, B., S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable secret
sharing and achieving simultaneity in the presence of faults”, Proc. of
the 26th IEEE Symp. on Foundation of Computer Science, 1985, pp.
383-395.

Chor, B. and R.L. Rivest, “A knapsack type public key cryptosystem
based on arithmetic in finite fields” Advances in Cryptology: Proceed-
ings of Crypto84, G.R. Blakely and D. Chaum. eds., Springer—Verlag,
1985, pp. 54-65.

Coppersmith, D., “Fast Evaluation of Logarithms in Fields of Char-
acteristic Two” ,JEEFE Trans. Inform. Theory, vol. IT-30, pp. 587-594,
1984.

Cover, T.M., “Enumerative Source Encoding”, IEEE Trans. Inform.
Theory, vol I1T-19, pp. 73-77, 1973.

Diffie, W. and M. Hellman, “New directions in cryptography”, IEEE
Trans. Inform. Theory, vol. IT-22, pp. 644-654, 1976.

74
[21)
(22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

30)

31)

32)

ISSUES IN PUBLIC-KEY CRYPTOGRAPHY

Feller, W., An Introduction to Probability Theory and its Applications,
John Wiley and Sons, Vol. I, 1962,

Garey, M. and D. Johnson, Computers and intractability, W. H. Free-
man and Company, New York, 1979.

Goldreich, O., “On the Number of Close-and-Equal Pairs of Bits in
a String (with Implications on the Security of RSA’s L.s.b.)”, Ad-
vances in Cryptology: Proceedings of EuroCrypt84, T. Beth et al., eds.,
Springer—Verlag, 1985, pp. 127-141. (Also available as Technical memo
TM-256, Laboratory for Computer Science, MIT, March 1984.)

Goldwasser, S., “Probabilistic Encryption: Theory and Applications”,
Ph.D. dissertation, University of California at Berkeley, 1984.

Goldwasser, S. and S. Micali, “Probabilistic Encryption”, Jour. of
Computer and System Science, Vol. 28, No. 2, 1984, pp. 270-299.

Goldwasser, S., S. Micali, and P. Tong, “Why and How to Establish
a Private Code on a Public Network”, Proc. of the 23rd IEEE Symp.
on Foundation of Computer Science, 1982, pp. 134-144.

Halberstram, H. and K.F. Roth, Sequences, Springer-Verlag, New York,
1983.

Kannan, R., “Improved algorithms for integer programming and re-
lated lattice problems”, Proceedings of the Fifteenth Annual Sympo-
stum on Theory of Computing, ACM, pp. 193-206, 1983.

Knuth, D.E. The art of computer programming, Vol. 2, Seminumerical
algorithms, second edition, Addison-Wesley, Reading, 1981.

Knuth, D.E. and L.T. Pardo, “Analysis of a simple factorization algo-
rithm”, Theoretical Computer Science 3 (no. 3), 1976, pp. 321-348.

Lagarias, J.C. and A.M. Odlyzko, “Solving low-density subset sum
problems” ,Jour. of the ACM, Vol. 32 no. 1, January 1985, pp. 229-
246.

Lenstra A.K., H.W. Lenstra Jr., and L. Lovasz, “Factoring polynomi-
als with rational coefficients”, Math. Ann. 261, pp. 515-534, 1982.

[33]
[34]

[35]

36)
37)

38)

[39]

[40]

[41]
[42]

[43]

[44]

REFERENCES 75

Long, D.L. and A. Wigderson, “How Discreet is Discrete Log ?”, 15th
ACM Symp. on theory of Computation, April 1983, pp. 413-420.

McEliece, R.J., “A public-key cryptosystem based on algebraic coding
theory”, DSN Progress Report 42-44, pp. 114-116, 1978.

Merkle, R.C. and M. Hellman, “Hiding information and signatures
in trap-door knapsacks” ,IEEE Trans. Inform. Theory, vol. IT-24, pp.
525-530, 1978.

Niven I. and H.S. Zuckerman, An introduction to the theory of num-
bers, third edition, John Wiley and Sons, New York, 1972.

Odlyzko, M.O., “Cryptanalytic attacks on the multiplicative knapsack
cryptosystem and on Shamir’s fast signature scheme”, preprint, 1983.

Pohlig, R.C. and M. Hellman, “An improved algorithm for comput-
ing logarithms over GF(p) and its cryptographic significance”, IEEE
Trans. Inform. Theory, vol. IT-24, pp. 106-110, 1978.

Rabin, M.O., “Digitalized signatures and public-key functions as in-
tractable as factorization”, Technical report TR-212, Laboratory for
Computer Science, MIT, 1979.

Rabin, M.O., “Probabilistic Algorithms in Finite Fields” SIAM J.
Comput., vol. 9, No. 2, pp. 273-280, 1980.

Renyi, A., Probability theory, North-Holland, 1970.

Rivest, R.L., A. Shamir, and L. Adelman, “On digital signatures and
public key cryptosystems”, Commun. ACM, vol. 21, pp. 120-126, 1978.

Schnorr,C.P. and W. Alexi, “RSA bits are 0.5+ ¢ secure”, Advances in
Cryptology: Proceedings of EuroCrypt84, T. Beth et al., eds., Springer—
Verlag, 1985, pp. 113-126.

Schroeppel, R. and A. Shamir, “A T = 0(2"/?), § = O(2"/*) algo-
rithm for certain NP-complete problems”,SIAM J. Comput., vol. 10,
No. 3, pp. 456-464, 1981.

76

[45]

[46]

[47]

[47)

48]

[49]

[50]

ISSUES IN PUBLIC-KEY CRYPTOGRAPHY

Shamir, A., “A polynomial time algorithm for breaking the basic
Merkle-Hellman cryptosystem”,Proceedings of the Twenty-Third An-
nual Symposium on Foundations of Computer Science, IEEE, pp. 145—
152, 1982.

Shamir, A., “Embedding cryptographic trapdoors in arbitrary knap-
sack systems”, Technical memo TM-230, Laboratory for Computer
Science, MIT, September 1982.

Shannon, C.E., “Communication theory of secrecy systems”, Bell Sys-
tem Tech. J. 28, 1949, pp. 656-715.

Vazirani,U.V. and V.V. Vazirani, “RSA Bits are .732 + ¢ Secure”, Ad-

vances in Cryptology: Proceedings of Crypto83, Chaum,D. ed., Plenum
Press, 1984, pp. 369-375.

Vazirani,U.V. and V.V. Vazirani, “Efficient and Secure Pseudo Ran-
dom Number Generation”, Proc. of the 25th IEEE Symp. on Founda-
tion of Computer Science, 1984, pp. 458-463.

Williams, H.C., “A Modification of the RSA Public-Key Encryption
Procedure”, IEEE Trans. Inform. Theory, vol. IT-26, 1980, pp. 726-
729.

Yao, A.C., “Theory and Applications of Trapdoor Functions”, Proc.
of the 28rd IEEE Symp. on Foundation of Computer Science, 1982,
pp. 80-91.

INDEX

approximate magnitude 28,36

basis reduction algorithm 59,64

binary search

bit security
Bose-Chowla theorem
brute force attack

Chernoff bound
Chebyshev inequality

discrete logarithm
density of knapsack

Euclidean norm
error doubling

exponentiation

exclusive-or thechnique

factoring

finite field

ged of integers
gcd of polynomials

indistinguishability
information rate
irreducible polynomial

Jacobi symbol

knapsack problem
knapsack-type systems

lattice

14
10,32
45
61

24,27
31

39,52,63

58,64

59,65
26

8,39,50

40
2,35

45,5257

20
56

33,39
41,50
48

3,35

44
4,43

55,64

least-significant bit 4,16,32
Legendre symbol 35
low density attack 43,58,64

multiplicative properties 8
multiplicative generator 46,48
mutual independence 24,27
NP complete 44
oracle 3,10,23,32,36
parity bit 12
pairwise independence 28,31
partial factorization 38
prime factors 48,52

probabilistic encryption 2,40

pseudo-random generators 39

quadratic residuosity 2,40
Rabin’s encryption 35
Rabin’s encryption, modified 36
relatively prime integers 22
RSA encryption 8
RSA reducible 11
superincreasing sequence 43
simultaneous security 33,39
special vector 58,64
successive squaring 8,53

two-points based sampling 28

unpredictability 33,39

78

wraparound 16
zero-one knapsack 65
[~ 8
(%) (Jacobi symbol) 35
absy (*) 12
d(A) (knapsack density) 58
do (critical density) 65
dz-measurement 17,23
E(-) (knapsack) 45
En() (RSA) 8
En(-) (Rabin) 36
e(n)-oracle 10
e(n)-secure 10
halfn () 13
GF(p) 45
Ln() 12
My 35
Oy 13
Or 13
parn(+) 12
7 (scrambling permutation) 48
»(N) 8
R (information rate) 50
SN 35
ZN

Zy

The MIT Press, with Peter Denning as consulting editor, publishes com-
puter science books in the following series:

ACM Doctoral Dissertation Award and Distinguished Dissertation Series
Artificial Intelligence, Patrick Winston and Michael Brady, editors

Charles Babbage Institute Reprint Series for the History of Computing,
Martin Campbell-Kelly, editor

Computer Systems, Herb Schwetman, editor

Foundations of Computing, Michael Garey, editor

History of Computing, I. Bernard Cohen and William Aspray, editors
Information Systems, Michael Lesk, editor

Logic Programming, Ehud Shapiro, editor

The MIT Electrical Engineering and Computer Science Series

Scientific Computation, Dennis Gannon, editor

The MIT Press
Massachusetts Institute of Technology
Cambridge, Massachusetts 02142

Two Issues in Public Key Cryptography
RSA Bit Security and a New Knapsack
Type System

by Ben-Zion Chor

This book explores public key crypto-
graphic systems, first investigating the
question of cryptographic security of
bits in the RSA encryption and then
constructing a new knapsack type pub-
lic key cryptosystem, based on arithme-
tic in finite fields.

In Part I, two problems involving the
RSA encryption of a message are
proved to be equivalent. These are the
problem of decrypting, and the problem
of guessing the least-significant bits of
encrypted messages with any non-neg-
ligible success. This equivalence implies
that an adversary, given the encrypted
message, can’t do better in determining
the least-significant bits of the message
than guessing at random, unless s’he
can break the RSA code. These results
yield efficient pseudo random bit gener-
ators based on the intractability of fac-
toring/inverting RSA.

A new knapsack type public key cryp-
tosystem is introduced in Part Il, along
with a detailed description of its imple-
mentation. The system is based on a
novel application of arithmetic in finite
fields, following a construction by Bose
and Chowla. By choosing appropriate
parameters, the density of the resulting
knapsack can be controlled. In particu-

Ben-Zion Chor

lar, the density can be made high
enough to foil low-density attacks
against this new system. At present
there are no known attacks capable of
breaking the system in a reasonable
amount of time.

Ben-Zion Chor received his doctorate
from MIT where he is currently a Post
Doctoral Fellow in the Computer Sci-
ence Laboratory. Two /ssues in Public
Key Cryptography: RSA Bit Security and
a New Knapsack Type System is a 1985
ACM Distinguished Dissertation.

CHOTH
0-262-03121-3

