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ABSTRACT

This paper studies the representation of linear and nonlinear Boolean functions by
matrices, and presents the thesis that the circuit complexity of Boolean functions
is robust in the sense that simple combinatorial or geometrical transformations to
the matrix do not significantly change the complexity of the represented function.
It is hypothesized that this fact may explain the difficulty of a long-standing open

‘problem in complexity theory: the exhxbxtxon of concrete functions with nonlinear
circuit complexity.

The complexity of 'a matrix with respect ts a vectorial addition chain is shown to
be equal to that of its transpose, and this result used to obtain bounds on the
complexity of lopsided matrices. Measuring the complexity of Boolean functions over
{B} or {V} is shown to be NP-hard. Asymptotically tight bounds are obtained
on the circuit complexity of the hardest quadratic monotone functions and on the
complexity of functions with respect to circuits whose width is equal to that of

_the input. Notions of conditional circuit complexity and Boolean line integrals are

defined and characterized. The number and nature of Boolean _polynomials whose
functional values are identical to their coefficients is determined. It is shown that
the complexity of a Boolean function equals that of its gradient if and only the
complexity of the function f(zy,...;Z4,91,-..,9%) equals that of the set of functions
o {f(zi,.';.,:c",;)}yl",...",_,‘k; and that either property implies that the truth table of a
Boolean function can be manipulated in various ways without substantially changing
the function’s circuit complexity. A function whose complexity differs from that of its
inverse is demonstrated, and one-way functions are shown not to exist if the circuit
~ complexity of a Boolean polynomial equals that of its coefficients.

In addition, the nonlinear lower bound problem is reduced to the question of whether
certain simple monotone functions have nonlinear monotone complexity, and to the
question of whether certain sets of subsets of an n-element set have:complexity
> 2n + O(logn). Lower bounds of 2n — O(logn) are presented for these same sets.

Thesis SupervxsorDr Ronald L. Rivest
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CPREFACL

Th:s paper reports various resulLs concernmg the cxrcult, complemty of' Boolean
functions defined by matrices, and mvestxgatcs ‘the thesis that circuit complomty is a
- robust complexity measure — i.e., that it is insensitive to simple perturbations of the

- problem whose complexity is measured.: = -

Chapter 1 reviews the basic facts about finite Boolean riﬁgs and algebraé neéeSsary

for the rest of the papér. It includes tests for determining when elements of a finite -

'Boqlean algebra genérate the entire algebra and for when they are é!gebraically
~ independent. Chubter 2 defines the circuit complexity model of computation, and
establishes upper and lower bounds on -the circuit complexity of various sihgle and
multiple-output Boolean functions. Conditional circuit co-mplezitJ is defined and
ch.n’artcnzed, and problems related to optimizing circuits over {®} and {V} are

shown to be N P-complete or N P-hard.

In Chapter 3 it is shown that the compléxity of a linear Boolean function over
the basis {{D} is equal to that of its transpose. The resulting construction is applied
to vectorial addition chains and to circuit synthesis problems, and is used to obtain

sharp bounds on the compleiity of functions with many inputs. The basic result is

extended from linear functions to functions over arbitrary commutative associative

operators and is used to produce 2 tight estimate of the complexity of the hardest
quadratic monotone Boolean functions. In Chapter 4 asymptotically tight upper and
lower bounds arc obtained on the complexity of coniputing the hardest n-input Boolean

function with a circuit of width n.

Chapter 5 starts by reviewing the calculation of Bbo]ean derivatives and the
P y g

Boolean analog of Taylotr’s Theorem. Boolean line integrals are then defined, and a
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characterization of functions whose integrals are path-independent is obtained that
is similar to the ‘analogous result for real functions. In:Chapter 6 the terminology of

Boolean ‘derivatives is used to define the A-transform and A-convolution of a Boolean

function. Calculating the ‘A-transform-is equivalent both to the problem of Boolean

polynomial interpolation and the problem of Boolean polynomial evaluation. Those

functions that are invariant under the A-transform are counted and characterized. It

is demonstrated that computmg the A-transform is complete w1th respect to Vahant’

, _class #oP and the hypothesxs that the circuit complemty of a Boolean function is

| approx1mately equal to that of 1ts A transform is dlscussed

- Chapter 7 deﬁne’s the notion' of the set complezity of a set-of subsets of a finite
set, and relates it to other measures of combinatorial complexity. The set complexity
of a set of subsets is equivalent to the complexity of a Boolean matrix with respect
to row operations and to the circuit complexity of the easiest membe% of a particular
set of Boolean functions. Using set complexity as a tool, the important open problem
of displaying a concrete Boolean function‘ with nonlinear circuit complexity is shown
to be as easy as démonstrating nonlinear monotone complexity within a narrow class
of monotone functions or demonstrating set complexity > 2n + O(logn). Concrete
functions with set complexity equal to 2n — O(log n) are presented in the same chapter,
showing that the gap that must be closed to show Anonlinearity is numerically quite
small. In addition, it ivs shown that polynomial set complexity corresponds to ezponential
circuit complexity, so that a relatively small nonlinearity in one model corresponds
to a very 'l‘arge'nonlinearity in the other. Finally, it is shown that matrices with
nonlinear set complexity are likely to be very difficult to describe. In Chapter 8, the
following two hypotheses concerning circuit complexity are shown to be equivalent: the
complexity of f(z1,...,Zn,¥1,--,¥%) and that of {f(zl, ,:z:n)}y1 e 2TE equal up
to a constant factor and the complexxty of the gradient of a Boolean function and that
of the function itself are the same up to a constant factor. In addition, it is shown
that if either of these hypothesés ‘are true, then the set complexity of a matrix has
the same order as the set complexity of its transpose. Whether the hypotheses hold
for arbitrary Boolean functions remains an open question, although in 1983 Baur and
Strassen showed that the algebraic complexity of a real polynomial is within a constant

factor of the algebrai'c complexity of its gradient.



~In Chapter 9 a function whose circuit complexity differs from that of its inverse
. is constructed, and it is shown that the existence of small circtits for the A-transform

. of functions with small circuit complexity implies that one-way functions do not exist.

Counting arguments are used to show that random sequences of functions are not

_one-way, and the set of all functions B® — B® is examined exhaustively for one-way

. functions.

Chapter 10 the ﬁnal chapter of the paper summanzes xts basm thESIS that circuit
| complexxty may be robust in' the sense that sunple geometncal and combmatonal
transformations of a finite function do not change the function’s complex1ty If true,
-this would place strong constraints on the structure of functions with nonlinear circuit

- complexity. Open problems related to topics addressed earlier are alss listed.
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-~ Chapter One' —

BOOLEAN RINGS AND ALGEBRAS

The purpose of this chapter is to establish’ notational conventions and to review
some fundamental facts about finite Boolean rings and Boolean polynomlals which
- will be used throughout the paper. All of the results in this chapter are elementary

.+ consequences of the definition of a Boolean ring.

- Proposition 1.1

Given any Boolean algebra (S, A, V, ’ 0,1), ’,‘the opefntions zAY and 2@y -

‘ (:z:/\y) (1:/\ y) define a ring structure on S
: Proof:

A is associative and commutatwe wﬂ:h 1dent|ty 1 GB is assocmtlve and commutative
with 1dent1ty 0 and every element is 1ts own inverse. A 1s dlstnbutwe over P,
ie., for any a, b, CGS aNb D)= (a/\b)@(a/\c).

‘ Identifying A with multiplication ‘and P with addition, the resulting ring is a
‘Boolean ring, i.e., a ring with 1 in which every element is idempotent (a? = a). Every
Boolean ring is commutative and involutoric (z + z= 0), and the ring generated by a

Boolean algebra clearly has both of these properties.

Proposition 1.2

Each Boolean ring corresponds to a Boolcan algebra.



Proof;

The lattice operations A, V, and complementation can be reconstructed from

addition and multiplicationt by the rules

x/\y-———x/\y” :
zVy=zAyPzDy
T=zO1. g

To emphasxze that it represents a ring multlphcatlon z Ay will normally be written
Ty. In what follows, we will primarily be concerned with the two-valued Boolean ring

{0, 1} denoted B. B" will denote the direct sum of n copies of B.

" Proposition 1.3

Any function f : B® — B can be exjjressed un"iquely as a Boolean polynomial with

coefficients in B.
Proof:

For any f: B" - B,

flz,. ., z0) = @ [(zl@cl@) (zn Ben P )]fc,, c,,)

all ntuples

et
where (9:1, :c,,) E B and ¢ E B Note that in cvalmtmg thns sum at (:cl, .y Zn)
all of the terms vamsh e*(cept the one correspondmg to cl = zl,c; = Z9,...Cp =
':z:,,, whlch takes exactlv the va]ue f(zl, ,:z,,) When multlphod out the sum

becomes a polynomnal in zl, ,a:,,, of degree < n

: Thxa representation” of f asa polynomml is unique. Smce z; Nz; = z;, there
are just 27 p0551ble monomials of n variables, and 2*" pol) nomials, since each
monomial may either appear or not appear. [lowever, there are Just 22" dlstmct ‘

.- functions from B" t6 B. g -

. Boolean polynomials can be writien like ordinary -polynomials in 'n variables,

except that because B is idempotent,” it is never necessary -to’ write ‘any exponent



greater than one, and because [} is involutoric, it is never necessary to write any

- cocflicient greater than one.

. AT oo ' ) e ] o A .
Since there are 2= distinet functiotis froth B" = 13, every Boolean polynomial

can be expressed uniquely in the form

5

\ y Xy (41
: @ : aﬂ(ml T znm)’

alln—tuplen .
a=(ayiman)

where a, and o; are € B, z? = 1, and z! -——"z‘;- ‘An expression i’,"z?’- -y is a
" Boolean monomml it has degree & if exactiy K of the a; are 1 The dmree of a

polynomlal is the highcst degree of any of the monomials which it comprises.

A function f:B* - B is linear if f(zi,...,z.) @ fly1s..9m) = flz1
yl, a:,, &b y,,) for all (:1:1, ,:z:,,) zmd (J[, Sy Yn) € B,

Proposition 1.4

‘A linear function is repfesénted by a polynomial each term of wh’ikchm}}ias degree

one.
Proof: | / T PR T i
I f=azi @ ... ® anze, then fz0 @ vty 20 @ 1) = a(er B 1) B
o @ 0ulen @ %) = [(z1,.,22) © Syt ). On the other hand, if f
is lmear f(zl, ,:r:,,)‘—— f(zl, )@f(o 33’: )EB @f( 0, Zqa).

Now f( ,a:,, ,O)' is a functlon of a smglc vana.ble and must thcrefore be
' /—represented by a polynomlal of deo‘ree < 1 (1.e.', z;, I @1, 0, or 1).V,Hence,

f(:c;,...,, Zn) = ag @@,-:la,a for a, E B. Tlowever, ay cannot be 1; otherwise

f(0,...,0) = ap == 1-and f(z;@o GInD0) =@ ,_la z,#f(a:l, ,z,,)——— |

a contradiction: g

An affine function B® — B is one whose polynomial representation has degree
< 1. Every affine function can be expressed as the sum of a linear function and a
~constant. A-function B" — B™ is linear if ‘each of its coordinate functions is linear,

and an function B® = B™ is affine il each of its coordinate functions is affine.

<



In" the literature of switching theory the polynomial representation of a function
[ :B" —= B is known as the ring-sum expansion-of f or as'the Reed-Muller canonie

expansion of f (of polarity 0).

If F: B® — B™ one can associate with F the m coord‘vivrﬁa"tqer Hf{u{ﬁfctions
. fi :B" =B, defined by fi(zi,.s.yz,) = Lﬂi(F(xl;’. .+yZn)), where 7,0 B™ — B is the
projection taking B™ onto the algcbra generated by its ¢ atom. For F': B" — B™,
the coordinate functions will be denoted fi,fo,oo, fin. In general Roman letters will
denote multxple-output Boolean functions (f'unctlons from B" to B™), V:md lower-case

letters single-output functions (funictions from B™ ’toB).

Definitions 1.5 - V
Let £ bo o function from 5" t0 B.
The complement of f is the fuh'ctwién g B - B t"tkmg:z»—-»l @f(z)
The dual of fiis the function g :B* > B tdking z r—,->-l b f(L D z).
The contradual of f is the function g: B" = B taking z — f(z @ 1).

. The dual of zAy is zVy, of sz iszAy,of z@yiszPyDlyandof 2P 1
is 2D 1. The dual of 0is 1, and of 1 is 0. For every theorem or tautology in'Boolean
algebra, there is a corresponding dual theorem produced by rcplacmg 1 wnth 0 0 with
1, A with V, V with A, and @ with (Dl in each prcdxcate
Definition 1.6

‘An atom of a Boolean algebra S is an element a such th'xt for all s L. S either

‘a/\s—~aor a/\s—-O
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A hom()morphmm between Boolean algebras (Boolean’ rmgs] S and Sy is a
mapping which preserves {0, LAV, =}H{0,1,H, A}]. An Homorphmn 1«'\ Bijective

homomorplnsm, and an auiomorphmm is an isomorphism from S, to itself.

Theorem 1.8

© Let S be a finite Boolean 'ﬂgebra w:th at least one element. Then S is 1somorphxc .

" to B" for some mteger n.

' st'oof:
(a) S has some finite non-zero number of atoms. -

The relation p<qge(pAqg= p) establishes a partial order on S, and since S
is finite, each totally ordered chain in S has finite length. Consider the smallest

non-zero element a in some chain of maximal length. If s 54 0'is some element in

this cham then a A s = a. If sSES s not in the chain, then a A s < a. In thls last

case, a A s = 0, for otherwise a would not be mmlmal Therefore a is an atom.

Let {a;,..ﬁ.,’a,,} be Lv‘h‘e qetof atoms of S

{‘b}’ Bach %)a,ir of ato’m‘s’ ore orthogonal, i.e., a;a; = 0.

If‘ @,- énd’ "’;‘z,-“;ré diseinet}’nton;s,’La;-aj;# a,orO (smce ’a,-:is an atom) o;aj also
eqtlais oj or 0, since a; is an atom, x}vhe’nce,,a,-aj = for all 4,5,

(c) The atoms are linearly' independent.

- Suppose @ a; = 0 for some subset of the a;. If a is one of the atoms ‘appeering in
7 thesum, 0 =aA0 ‘=‘=“d/\‘®a, = @am = a@@ #aaa, = aEBO -*-a
(d) The sum of the atoms s ;1.
Suppose not. Then 1@ GB,-__I a;=a30. Consider the sct of s € S for which
s < a. This set is finite and non-empty (smee it contains a), so it must contam
a minimal non-zero element w1Lh respect to <. Call this element b. ’\Iow for

any sES (b/\s)/\b-—- b/\s, S0 b/\s < b. This means bAs < aq, whence bAs

either equals 0 or b; or else b would not be minimal. 'l herefore b is an atom,

’1'2

v

J

W



and is equal to a; for some j. Thus, a; < a. But this is 4 cotitradiction, for
a]-—aj/\a—aj(l@ L_zla)_aj({—)aa @@/, jal—aj@ 0 = 0.
‘ "J'Pherefore A '

@ a; = 1.
1=
(e) The atom&sspdn S.

Forany s€ S, s =sAl=sA®'_ |a; = @7 sa;. Since for each 1, sa;'=q; or

sa; =0,

= @ a-

some aet
of atoms

(f) S is a vector space over B with basis {a;}.

Every s € 8 ‘has a unique represcntation as @_; z;a;, for z; € B, and can be

thought of as an n-tuple (zy,...,z,).
(9) S is isomorphic to B*.

It needs only to be checked that the bijection taking (z1,-. z,,) to @, z;a;
preserves 1,0, A, and @P. EE
_(0,...‘,0))—»0 o

g(x‘l:"'\)zf’l)/\(ylyﬁ‘ Yn ) (zlal @ @xnaﬂ) ( 10.1@ @Jnan)
‘ “ (Il/\Jl)al@ @(In/\yn)am o

since a;a; = 0.

(1, 20) D (Y1, ¥n) = (200 B .. D 2n) D (w10 EB éBynan) |
: ,fﬁ=(¢1€9y1)a1695..@(¢n EB‘y-n)an. T

Thus the structure of finite Boolean algebras is relatively simple. Infinite Boolean
algebras can be much more comphcated although every Boolean algebra is 1somorph1c '
to a set of subsets of some set, the algebra need not be nomorphlc to the set of all ‘

subsets of a set; nor need it have any atoms at all [HAL].

K



Definition £L.9.0 00 00 0 e e e o L | :

H“(Sl,(),yl,/\ V, ) is a Boolcan algobra and Syisa subsot of S’l contammg 0 and , \‘j
1 which is also a Boolean \lg,obm with respect to A and Vv, then S, is a subalgebra

of Si.

The intersection of subalgebras of S| is a subalgebra of Sj. |

-Definition 1.9.2

If £ is a subset S, the subalgebra generated by E is the intersection of all
subalgebras of S| containing E. |
Definition 1.9.3

1P (Ry,0,1,6p, ) is'a Boolean ring, Ry C Ry is"4d subring of R1 if 1t contmns 0,1
“and is itself a Boolean ring with respect to @ and A, T :

‘The intersection of subrings of R is a subrmg of R.

Deﬁnition 1.94
IfRisa Booleanring and E is a subset of R, then the skubr"ing generated by

E is the intersection of the subrings of R which contain L.

The subrmg generated by E and the subalgebra generated by E represent the

same set, which we will denote (E) i

Proposition 1.10
Let R be a Boolean ‘ring and E = {elk, ., em} be a subset of R. The subrmg of
R generated by E consists of all elements of the form
, @ g A e
:zil(’:—tup‘l.ec o g=1:

w
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e

where a € {0, 1}, ¢! =1, and ¢! = e,.
Proof:

The set deseribed in tho Lhcorvm is generated by finite combinations of « . <o it s

contained in any qubrmg contammg E. On the other hand, the same set is closed

under (D and A, and contains 0 and 1, s0 it compnses a subrmg which contains
h m

0 A el =0e(E)

1=

1/\e =1€(E).

=1

=1

(@ Aer)e ®(@t A &) =@t | e

(@0 ) (@0 & )=o) R )

=1 1=1 a3 1= =1
m
“@ (eahag) A eV
=1
—@(27 A 8’7‘ ;
E l"'i ¢
€ (E>‘ 1

Example 1.10.1

If the atoms of B6 are sy, 83, §3, 64, 55, and sg, the subring generated by e; = s, @ ss

~andes =5 P s P sy consists of the elements in B6 of the form

ao[l]@al[sl@&,]@aa[sl@s) Sg]@d’;[sl]

There are 16 distinct such elements, namely:

15
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S| . J®S|
51 (D sa€D sy LD s P s2(Dsy
se(Dsy o psDsy

§5 [ Qo5
i@ 1DsiDsy

526D 53D s5 1D s2Ds3Dss
s1Ds2Dsy3Dss 1P s P2 Ps3Pss.

Corollary 1.10.2

- ITE={ey,...,em}, then (E) has at most 22" distinct clements.

Proposition 1.11 :

K E= {el,...,e,,.}, then the atoms of (E) consist of those elements of the form

AT €, where e} € {e;, &}

’P‘roof:

m

;!
/\ €€
m

=Aé or 0,

so AL, ¢\ is an atom in (£). On the other hand, these are the only atoms. For

suppose b is an atom in (F) not of the form AL, e}. Since the product of two

distinct atoms is 0,

16



/k.,,,f'

g C(j)':rol'la'.ryw 1.11.1

If E={e,...,

b=0bAl

=+( Ava)

N ~'=1

m—tuples

m
all posasbie =1
m—tuples

= V (0
all possible
m-~tuples

em}, every element of (E) can be exp‘ressed‘ in the form

V(e A )

a 1=1

where ¢} € {e;, 2}, and a, € {0, 1}.

Let S be a ﬁmte Boolean rmg I is an ideal of s 1f and only 1f I = ({a;}), where

d; are atoms of S.

Proof:

By Theorem 1.8, kS ’ié’isomorp‘hfic to B" for some n. Let {a;} be the atoms of S.
Now, for s € 5, s @ biai = (O i[O, oy05] = B, ox(aja,) € ({as});
hence ({at}) is an ideal. On the other hand suppose that I is an 1deal and that
{b } are all the atoms of S such that b < ¢ for some ¢ 6 1 b_,,c = b;, s0 b; e 1,
whence ({b }) <, and .r = ({5 }) S

_Theorem 1.12

Let S be a finite Boolean algebra with atoms {a1,...,a,} and let E = {el, s em}

be a set of elements from S with the atomic representations

’e,- = @ a,-,-a,-. o

=1

17



Then the following conditions are equivalent: ' .

Al - N *
(a) IV generates S, o | ; ; (2
(b) the column vectors (o), ceajy .. ;,(x,,,j)’ are distinet for 1 < j . n.

(c) for every 1 < J' < j" < n, there exists some 7 such a;jr 3% a;jn.

Proof:
(c = b) Immediate.

(a = c) Suppose there are some ;' and j" such that a;; = azj for every <. Let

S| be the subset of S whose 7'

t} gyt .
*‘and ;7" coordinates are cqual, i.c., the set of

elements s € S for which
’ n
§= @ a,a, = o = a;n.
J-“‘l

S| is a subalgebra of S, since it is evide’nﬂy closed under @ and A, and contains 0

and 1. Now, (E) C Sy, but ajs, which is equal to 1 Aa;y @0 Aa;, is not contained J
in S, whence (E) 5% S, a contradiction. 4

(b = a) To show that K generates S, it suffices to show that E generates an

arbitrary atom in S, say aj.'Consider

f%@%@#

_ where the ﬁrst product is taken over all & wlth a,e‘ =a; and the second over all
e; with aje; = 0. Now a]:z: = aJ By (b) on the other hand for any k # 7 there
exists some e € E with either aje = ¢; and ake =0, or aje = 0 and age = a;. In

either case, az = 0. Thus, z is equal to a;. 4
Examplé 1121
Suppose akl, as, ..., as are the elements of B5. The elements

18



e ‘“(0/\01)@(1/\02)69 (1/\03) (0/\04)6-) (0/\a5)
er =(LAar) B(1Aa2) B (1Aas) D(1Aas) B (0 as)
e3 =(0Aa1)B(1Aax) B (0Aas) BOAay) D @ (0 A as)
er =(1Aa1) BUAw) D (1Aa) B(LAa1) D (1A as)

)P )& ) )

es =(0 A a;) B0 ay (1/\0;)@(1/\04 P (Aas

enerate B%, but the elements
g

. e1r=(0Aa) (ll\az)EB(lAa;)@(O/\m)@(O/\as)
2 =(1Aa))B(1Aa) D (1Aa2) B(1Aa)) D (0Aas) -
e =(0/\al)€B(1 Aa2)® (0Aa3) B(0OAa)D (0Aas),
et =(1Aa))B(1Aa2) D (1Aa3) S(1Aa) D )
€5 =(0/\Gl)®(0/\az) B (1Aa)BOANa) D

@ (0Aas
@ (LAas)

do not, since in the latter case the coefficients of a; and a4 are identical for each e;.

Definition 1.13

" Let S| be a Boolean algebra and el,. ,em be elements of 31 = {ey,..., em}

is free on Sy if for any ‘Boolean’ algebra 52, any’ mappmg g: E - S can be extended

to a homomorphism f : S) < S, 'such that f (e;) = g(e;) for all ¢; € E.

The set of all functions B® - B"' isa Boolean algebra, w1th the constant functions |

f(z)=0and f (z) =1 representmg 0 and 1 respectxvely, and meet and join glven by
fAg(z) = f(z)A g(l‘) and f V g(zl fz)v 9(2)

e Exarnple 1.13.1

The set of functions {f(zj, ,z,,)‘-— z1,. cos (215000, 2Zn) = 2} is a free set of

generators for the Boolean algebra A,,, of all functions from B" to B. For any Boolean
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algebra S and map taking z; — ¢(x ) the h()momorphlsm f A,, — 8 takes
(. P Zy) @a" /\ .z:"‘ S )
to

1=1"

@q'u A g Iz

Proposition 1.14

If S, is'a finite Boolean algebra and E = {e[, /e,},} is a set of elements in Sy,
then F is free if and only if the elements ef,. .. em are algebrmcally independent in

Sl, ie., if and on’ly if a, E {0, 1} and

@;;Ae'—ﬂ

L=l
'~ implies ag = 0.
Proof:
K_Suvpp'ose E is free on §i. For any Boqlean algebra Sy and any function g : £ — S,

there must be a unique homomorphism f : S| — Ss such that g(e;) = f(e;). But

suppose there is also some algebraic relation between the e, say -

P(el; em @an /\ ea. = (.

‘ z-'l
Let A;ep ei be a term of maximal degree iri the polynomial P. Now,

= (0)

I
~y
8
[~

m

I! >.=1 Ii >3

N
\...:../\_/

@f(aa
=D f(a

a
(¢4
¢

II

R
e
\

I
\__/

€Baa
@an

—
"‘h

~

n‘>s [=F
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However, if g'is sc‘lv( ted so lh.lt _}( ) =1 for's €D and g((’,):: 0 for 1 £D, then

this last quanhty 15 _jllbt

e

This is a contradiction.

Conversely, sdppose that el, ..., em arc algebraically independent. Every element

in £ must have a unique reprcsentation of the form

@an/\e

=1

Uvery element in E certamly has at least one representation in this form. However

S 1t has two representatlonb say |

m
eaan A =@ f
=1 a A=l

| tyhey must be identical since by Proposition 1.3

m

a e 1==1

mxphes an EB b,x = 0 and Ay = b

Ne*(t let Sz be an arbltrary Boolean al«rebra and g be any Functlon E — 85, The
function f : (F) — S defined by ... ... Tj ST

@a,,/\e"' Ly @au/\g e,

1=1 1=1

is a homorphism of Boolean algebras, since



(@ an N\ e @@b“ A "‘) :" (@ ay (Db,, A e"‘) ,g'

2~—| 1= ; s
’ ot \\J
“"@(1,,@6” /\ g™ el)

ey

=(@e Ao (@ f )

"f(@ani/_\l e,)@(@ L/_\:_l) |
and . ,
f(?(a,. 1/31 é?‘)/\?(ba )-_;_-f a(./\b(, l:{ mVﬁ;)
= &l ’\b'j /=\ ‘M'}"V""( e:)
=(?“§_' )@ A )
i34

In addition, f agrees with g on the set E. Now extend the domain of f from E to | ; J
S;. Since S is fnite, it is atomic. Denote the atoms of S by {a{, ,a,} and the ot
atomic representation of e; by

i LT
;= @ Q;5a;.

=l

~ Consider the set of vectors {(ayj,.. a,,u)})_l If Lhcse are all dlstmct (E) =S,
.. and the proof is done. If not, let'T :{1,.’ ,n} =1, ,n} be the map which
takes each integer j to T'(5), the smallest integer such that R

(@1t Gmr() = (@t imj).
Next, define P : S; — (E) by

@O‘JGJ*"’ @O‘T

J‘_l
P is constant on E, since

n ’ L
@ (YUGJ = @ C!t/(J)(l @ a;say. \J

j=1



P therefore preserves 0 and 1. P also preserves sums and products, c.g.,

P(@ aja{/\@ﬂj J)—' (@( f/\ﬂf)“f) :

J=1

3 ?@(017 NN Br()e )

Therefore P is a homomorphlsm and f extends g to 5'1 1

Corollary 1.14.1

If E = {e|,...,en} frecly generates Sj, then every element in' S has a unique
representation as a polynomlal in E. In addltlon any map from E to Sy has a unique

extension to a homomorphxsm frorn 51 to Sg

Example 1.13. 1 shows that for every n, there exists a freely-generated Boolean
algebra with 2% elements The converse is also true: every ﬁmte freely-generated
Boolean algebra has 2%° elements for some- integer n, smce every finite algebra is
ﬁmtely gencrated and evcry polynomlal in the gener: wors must bc (llstmct Thus, up

to 1somorph|bm the only ﬁmte free Boolean algebra is BZ

Theorem 1:15

Suppose ey, . ,em are elements of B™, where ¢; has atomic representatxon

@ ajja;.

Then {er,...,em} is free if and only 1l‘ every possxble Boolean m- tuple appears as

(a1jyee vy amy) for some 7.
Proof:
Suppose there exists some Boolean m-tuple (ci,...,¢m) which is not equal to

(a,,~, i«+y ;) for any j. Consider the function P, : B™ — B given by

o3



L (o za) = () .
Pl(I[,...,I",):{ : - ) .
: L0, otherwise. o { j
By Proposition 1.3, Py(zy, .. .‘,":u,,,u) can be expressed as a polynomial
fon
@ p; Il I Im
genm ,
where pp G{O 1}."P1 Tl ,‘z,,‘,)'is not uniformly zero, and since each function
D" - Bis represented by a umque polynomxal, ps 75 0 for some ﬂ E B" Consldcr
the expressxon o
s
@ p;e/,'eé ?,;" = Py(er,...,em).
genm
- For any atom a; € B"™
‘P_)(‘el,.'..,em)aj='® pae! ajelf*a, ﬂ"‘a,
Bepm . '
=ay GB Ppay 0{3;2 : f’n",‘
. pep™ :
\—aJPl(aU,aoJ, ,am])', |

=0.
' Since @P,(,ﬁ, . e,,,) = 0 for a non- trmal polynomtal P», €ly...,en are not

algebraically mdependent and by Proposmon 1. 14 are not free.

Conversely, suppose every possxble Boolean m- tuple appears as (au, iy Oy5) for
some 7. If
Qilet, ... em) = D qﬂe”‘e”’ : efn“
. peBm .
%

for q € {0,1}, then for any atom a; € B"

I
Qiler, ... em)a; = @ qge‘?‘ajc/,’za] £n aj -

pgepm
—q- ﬂ Bm
=a; @ qﬂalJ az; Qg
ﬂeum

=ay Qg(a]j, Qv eny amj)
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‘2km

That is, the polynomial Qg(mj,ag]-,...,amj) equals 0 for every one of the 2™
p0551b1e values of 1ts arguments By Proposmon 1.3, &2 is the zero polynomial,
3 =10 for all ﬂ G B™. Therefore Q,(el, em) =0 and the €1,-..,Em are
algebralcally independent. By Proposxtxon 1.14, {el, ...,em} is free. 1
Example 1.15.1
er = (1,0,0,1,0,1) and e; = (1,1,0,1,1,0) are free. e3 = (1,0,0,1,0,0) and
es =(1,1,0,1,1,1) are not. (Note that ezes G ey =0.)
Corollary 1.15.2

Suppose {el, ,em} is a free set of elements from B" and that e; has atomic

' representatlon

@ aiJ aJ

. ;)—1

{e1,...,em} can be extended to a free set of generators for B” if and only if n = 2* for

some mteger k and if (alj, ,amj)AequaIs each possible Boolean m-tuple for exactly

values of _7

Example 1.15.2.1

{e1 = (1,0,0, 1,1, 0,1,0),e9 (1 1,1,0,1,0,0, 0)} can be extended to a free
set of generators for B® by adJommg e3 = (0 1, 0 0, 1 1, 1 0) By contrast {e; =
(1,0,0,1,1,0,1,1),e2 =(1,1,1,0,1,0,0,1)} cannot be so extended.

Proposition 1.16 -
An automorphism on a finite Boolean algebra takes atoms to atoms,

Proof:

Let ¢ be an automorphlsm on some ﬁmte Boolean algebra S By Theorem 1. 8,
S has at least one atom a. Since S is ﬁmte ¢ is invertible, and ¢(a)Az =
| d(a) A $(¢~1(z)) = qS(a/\d: , (z)) Since ¢'is an atom, ¢ A ¢ 1(z) is equal either to
aor to 0, and ¢(a A ¢~!(z)) is equal to either ¢(a) or ¢(0 ) =0. ]
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- Proposition 1.17

Let A,, bc the Boolean .1lg,cbm of d” functtons from B” ¥—> B. There is a one-to-one J

“corres pondome belween:

(:1) automorphisrrls on A,,

(b) free sequences of generators for A,,
{c) bérmutations‘"bf ‘the atoms of ‘A, and

(d) invertible functions B" — B".

Proof:

I‘mt note that A,, is rsoxnorphxc to B“ and to any free Boolezm algebra onn

generators The atoms of A, are the functxons {%};en" for which

a.(:cl z );-{1’ if(xl""izn):j
J\Tlyee ey Zn) =

0, otherwise.

"(ch) Every automorphlsm on A,1 permutes atoms, and every permutatlon of \_’j

atoms 7 : {a;} — {a '} defines an automorphism:

@ aja; — @ ajm(a;).

jenn jEBn
(ce+b)  Given a free sequence of generators

= D ey,

jenn

one can associate with any permutation 7 : {a;} — {a;} a new frce sequence of
‘generators T s
i) = @ aij(a;).

jEBn
Conversely, if {h;} is a frec set of generators with atomic representations

= :@.,Bijaj,, |

gent

the vectors {(,311, o ﬂm))}J(“ are distinct, whence



— @ (&¢U)“J s

; jﬁl’"
= D aija ¢“'U)

L”‘ .

for some invertible function ¢ : B" = B", a; ag-15) defines a pernatation
r: {aj} = {az}.

(d+b) Given a free séq'uence ,6f generators ,

(}9 ‘“1“!’;%’

JEn™

with each invertible function ¢ : B" — B™ one can associate a new sequence of

generators

= @ a9

J€”" .

Since the column vectors (a,-¢(]-),...,a,,,¢(j))T are distinct, the g; are free.

Conversely, for cach sequence of [ree generators

@ ﬂu“}

)tn"

the map (Byj,...;Baj) = (@15, .., @) defines an invertible function on B™. y

Example 1.17.1

B*, which consists of the 16 elements whose atomic representations are -

(0000) (0001) (0010) ~(0011)
(0100) (o101)  (0110) ~(0111)
(1000) (1001) (1010)  (1011)
(1100) (1101) (1110) (1111),

is generated by the free set {(0011),(0101)}. B" also has 23 other free sets of generators,

namely:
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0011
0110)}
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- There are 24 automorphisms on B?, including the identity, and under composition

they form a group that is isomorphic to the symmetric group on four letters. A typical

Pate B s e T e T e T e N Py

AN AT AT AN TN et e

N et Nt e N el el N

- automorphism is

o i [ v o fan (o] i
(=] [l — i [on] o ~— L
oo 0 O \sa —{ - v .
N T I U e
TN TN TN TN N e e
f o) [ [l << o] b — i
o O i Lawr) o —t hans)
o o o (=] fan ) o o ()
O —{ o R =4 i (=g o i
R v N N I sl ¢
T Lo T s TR swn TR atnn T st
=i L) —{ o -y o S an
o —t — (] o i han]
o O O v e

‘There ’éré“23'mor‘e‘. R
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 — Chapter Two —-

CIRCUIT COMPLEXITY

Tho mode! of comple‘uty with which this paper is pnmarxly concernod is ctreudt
compfemty, also known in the literature as nefwork comp!erzty ot combinatorial
'complemty [SAV] [TOP], et al). This model measures the complexity of a finite
Boolean function by the minimum number of logical operations (“gates”) that are

required for an idealized electronic circuit to compute it.

This chapter gives a formal definition of circuit complexity and demonstrates

fundamental upper and lower bounds on the complexity of sets of Boolean functions.

Definition 2.1

Let'S and T be sets, and let 0 be a basis of functions T XT-»T.LetG:S—T*
and F' : § — T™ have coordinate functions {0:}:S~>Tand {f;}: S - T. A
combinatorial cireuit computing F from G consists of a set of input vertices, a set
of output vertices, a set of gates, and 4 set of wires. Each input vertex is associated
with a function g;, as are all wires leaving that vertex. Wires are directed edzes which
lead from input vertices or from the outputs of gates to output vertices or the inputs
of other gates. Each gate has two inputs, each of which has at most ore incoming wire,
Iiach gate also has one output. Every gate is associated with some operation w € 2
such that if 2; and Ay are the functions belonging to the wires feeding into the gate,
then the function w(hj, hy) is associated with all of the wires leaving the output of the
gate. An output vertex has at most one incoming wire, and is associated with the same
- function as that wire. As a convention, if T contains 0, a vertex or gate which has no

incoming wires at all is assumed to be associated with the function which maps all of

-



S (o 0. Finally, a circuit is asswmed to be df:yclic in the sense that no closed loops
~are formed by the gates and wires. This conditidn ensures that the function associated
with ecach wire is well-defined, since .its value can be calculated uniquely by tracing
through the circuit starting from the input terminals and following the wires towaed

the output terminals.

The circuit complexity of I 6ver Q1 given G, Cy(F | G), is the minimum
number of nodes in a circuit with inputs {g;} and outputs {f;}, if such a circuit exists.
‘When no circuit with nodes from  computes I from G, then Cy(F | G) = co. When
T is the 2-element Doolean algcbfa B, S is the 2"-clement Boolean algebra B", and 2
is the set of all sixteen functions B> — B, C(F | G) denotes the conditional circuit
) 'c'orr'l.plexity of I giv'cn G. When G is the identity function B" — B", so that {g:}
is the set of functions {a:l,x-_»,...,:cn},‘ C(F | C) is the circuit complexity of F,
"~ denoted C(F). |

Proposition 2.2
Conditional circuit complexity satisfies the “triangle” inequality

Co(F | G) < Co(F | H)+ Co(H | G).

Pr.b.of .

A combinatorial circuit which computes H from G, connected with a circuit which

computes F from H, forms a circuit which computes F from G. &

) Propositibn 2.2.1 |
If G generates F, then

Co(F|G)= _min Ca(FC).
Qi imagG)=5

Proof:

GG'G = G if and only if G’ has the property that GG'(z1,...,7x) = (z1,. .., Zk)
for all z € Image(C). If G generates F, there exists a'circuit N| which computes

3o



I given {g1,¢2,...,gx}. Let X be the function computed by N, when given inpuls
{z1,24,...,74}. XG = F, and since G is surjective as a function from S to the
image of G, there exists at least one function G' with GGY = 1 on the tmaee of
(. For any such ¢,

X =XC0 =r¢

on any z € Image(G).

Conversely, if for some G, Ny computes FG' when given inputs z;,zo,..., 2
Y, y N2 p g p b Ly ’

then when Ny is given inputs ¢|,gv, ..., gx it computes

FG'G=XGG'G=XG=F.}

Note that the fact that G generates /7 is an essential condition in Theorem 2.2.1.
Some procedures for checking if one set of functions generates another are described

in chapter 7.

Corollary 2.2.1.1

If (7 is injective, and if G generates F', then

Ca(F}1G) = [‘1}1‘1_1.' C(](FG’).
G':l;u;:l_(:)—s

Proof:

Since G is injective, it has at least one left inverse G*. G’ can have only one value

for each z € Image(G). G' = G' on Image(G). 1

Corollary 2.2.1.2

If G is surjective, and if G generates'F, then

CalF | G) = Ca(FG")

for any G™ : T% — § such that GG = I.

3t



(6) Use CIRCUIT COMPLEXITY OVER {V} to check if there is a circuit of
complexity < W which computes F. If so, ther by Lemma 2.6.2

Proposition 2.7.1

There exists a linear function F ;: B™ — B" such that

Ca(F®) < kCg(F).

Proof;

By Corollary 2.5.5, there exists a linear function F : B® — B" with CalF) ~
n?/2log n. Thus, for k = n, kCq{F) ~ %. On the other hand, evaluating an
n X n linear function is equivalent to multiplying a column vector of indeterminates
by a n X n matrix of constants; evaluating the same function on n disjoint sets
of variables is equivalent to multiplying an n X n matrix of indeterminates by the
same matrix of constants. The recursive Strassen matrix multiplication algorithm
[STA] gives a circuit for this computation [Appe'ndix C] that has O(n'°8 ™) additions
and no multiplications, so C@(F(k)) = O(n2308),

The fact that savings can accrue when computing identical or similar functions on
disjoint sets of variables over the complexity measures C(F) and Cg(F), but cannot
over the measures Cronotone(F) or Ciyy(F), is an important one and suggests that
Cg(F) models C(F) much more accurately than does Cononotane(F'). Concrete examples
of finite Boolean functions B® — B"™ with nonlinear monotone complexity are well
known: O(n log n) [NE3]; O(n*/?) [PIP]; O(n?~) [WEG]. However, other than functions
whose proof of complexity is based on diagonalization arguments, no concrete example
of a finite Boolean function with either non-linear C(F) or nonlinear Cg(F) is known,

despite efforts by a variety of researchers over many years. The demonstrations of



~ Chapter Three —-

TRANSPOSE THEOREM AND APPLICATIONS

This chapter beginé with a useful. new result - that t.hc number of additions
necessary to compute a matrix is, with an a.djustment for the dimensions, equal to the
number of additions to compute the transpose of the matrix. This result complements
but is distinct from that of Hoperoft and Musinski [HOM], which relates the number
of nonscalar multiplications required to compute a matrix product. with the number
required for the transposed product. This theorem provides a good example of a
combinatorially simple transformation to the matrix representation for a function

which makes a non-trivial change to the function but dees not change its complexity.

Theorem 3.1 (Transpose Theorem)

Let F be an m-input, ‘m-output linear Boolean function represented in the usual

way by a matrix, i.e.,

. F(SE[; . °;21n) = (flt(zly veny 2;71);.- . :fn(xl: . -;ir}lj)

"f:'(xh Im) = @ QijTy
.[FJ = [a;4].

Assume (F] has no tnvxal columns, i.e., for every j there is some ¢ <uch that a;; #£ 0.

Lct FT be the n- input, m-output lincar function w how matrix is the transpose of [#].

: Then

14



C@([f"r) = Cp(f) + n—m.
Proof:

A circuit for F over {(B} can be associated with a straight-line program; at the
it step of the computation, the program calculates g; = ¢, o, where 7 and
k are less than ¢, and g = 2|, g2 = 22, ..+, Gm = T If an optimal program
requires ¢ steps, its computation can be simulated by the construction of a lower
triangular (¢ +m) X (c +m) B-valued matrix. Starting with a (¢ +m) X (¢ + m)
identity matrix, each operation g, = ¢, © gr is simulated by adding the pt* and
™ rows of the matrix to the s'* row. Denote the resulting matrix by [¥]. Since
the existence of the operation g, = g, €D g, implies that p < s and r < s, (7] is

lower triangular. In general, [#] has the form

I 0
intermediates garbage|.

F . garbage

Since each new row can be cornpl.xtea'w'it,h two additions, C@(?’) < 2e.

Fivery step in the synthesis of 7 corresponds to multiplication on the left. by a

lower-ttiangular matrix that is equal to the identity matrix except that in one of

its rows there are two extra 1's. The columns of the matrix which contain the
extra U's correspond to the rows of [#] which have been added to cach other. For
example, the operation g; = g, § g, corresponds to multiplication on the left by
“a (¢ +m) X (c +m) matrix whose sp" element, sr'' element, and each principal
diagonal element are 1 and whose other entries are 0. Thus in synthesizing 7, the
matrix [7] has been decomposed into a product (Terml[Term—t]" - -[Tm41], where
each [T}] is 2 matrix with (s cverywhere, except for 1’s on the principal diagonal

and two additional 1's on the same row somewhere below tlie diagonal.

If [-::] = [Tc+m][7::+m—l]'"[Tm-!»l] then [?]T - ([Tc+m]["c+m--l]‘"[Tm-l-ll)T =
[T,,,.i.l]TITm.,Ng]T- -'-[T,.,.}.,,,]T. But note that the transpose of a matrix of the form
[TJ]I is an upper triangular matrix equal to the identity except that it has two

extra {'s in one of its columns. That is, it is a matrix representing the addition of

50
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one row to two others. Two such additisns cun be done by a straight-line program

in two steps or by a network with 1wo sates. Thus,

. - : T
7 T I intermediates F
] e
0 garbage garbage

and Cg(77) < 2.

Finally, note that since the (c +m) X (¢ + m) matrix [#]7 contains the m X n
submatrix [F]7, a circuit for FT can be obtained from a circuit for 77 biy ignoring
the last ¢ outputs, assigning the variables T{y.. Zn to the desired inputs, and
setting the remaining variables to 72ro. Consider what happens when the first
¢+ m —n inputs are set to 0 in tu. q. [7]T has ¢+ m columns, and 7 depends
on all its variables; so the first input vertex is connected directly to at least one
B gate. If this input is set to equal to 0 and the gate to which it is connected is
removed from the circuit, then the circuit that remains computes a linear function
of the remaining inputs. The matrix of this new function is identical to [#]T
except for the deletion of the leftmost column. Since 77 i linear, the new function
also depends on all of its variables. Continuing to set variables one by one to 0
eventually results in the deletion of ¢ +m —n €D gates, leaving a circuit for #7.

Therefore Cg(FT) < Cg(FT) —(c +m — n=c+n-m= C@(F) +n—m,
To complete the proof, exchange the roles of F and FT, and repeat the argument
above to obtain Cg(F) < Cg(FT) ~n+m. g

Corollary 3.1.1

If [F| is square,

Co(F) = Cg(FT)."

Since in the proof of Theorem 3.1 the circuit for F7 really comes from the circuit
for F and not from the straight-line program, it is possible to construct a circuit for the
transpose functton directly from the original circuit thhout ha‘.rmtr to use straight-line

programs at all



Fanout nodes

“Theorem 3.2

.. .Consider a circuit of -gates which computes a linear Boolean function F:B™
B™. The fa;n-in of each gate is either one or two, while there may be no limit to the
fanout of a gate. As a convention, assume that the circuit is redrawn in such a way
that no more than three wires join at a single point, i.e., replace the fanout wires of

_each node of the circuit that has outdegree k > 2 by a binary tree with k — 1 vertices.
. Call the anxiliarjr vertices, each of which has indegree 1 and outdegree 2, fanout nodes.
- The two descendants of each fanout node are associated with the same function as the
node itself, and a fanout node is assumed to have zero cost, i.e., it is not counted in

computing Cgy.
Suppose the following modifications are made to the circuit for F:
- (a) change inputs to outputs;
(b) change outputs to inputs;
(¢) reverse the direction of all wires;
(d) change € gates to fanout nodes;

(e) ch.a.n'g‘e fanout nodes to &) gates.
Then the resulting circuit computes 77 and has Cq(F)+n —m gates.
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Transpose Circuits

Proof:
The proof proceeds by induction 6n the size of the éircuit for F.

First note that inputs whiéh are notrcon'nected to any outputs cofrespond, in both
the transpose matrix and the ti'anspose circuit, to outputs that are not connected
to any inputs. Therefore, one may as well assume that every input is connected
to some output. Nex.t, observe that, for any integer m, the thesrem holds (in a
trivial way) for the gateless circuit which computes the identity function on m
inputs. '

Now stppdse the ﬁhea;’esrﬁ hloids?‘for'.a. cir.cu'if: J\(o, two of whose outputs are
designated y; and yo. Then the theorem must also hold for the circuit N{ which is

identical to No'except that y; and yy are added to each other at the very bottom

of the circuit.

- The matrix for N is identical ‘to that for My, except that two of the fows of No

- have been removed and replaced by a single row equal to the vector sum of the
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two missing rows. The transpose of the matrix for Ay is identical to that of Ny,
except that two columns have been removed and replaced by a single column equal

to the vector sum of the two missing columns.

The corresponding network N " has one input where .:V“;r h":ls two {corresponding
to ¥, and y2), and whose projection on each of the output vectors is 1 if and only
il exactly one of the projections of y; and y2 in N " is 1. That is, the projection of
the common input to y; and y; in N7 is the sum of the projections corresponding
to y, and y», and the matrix representing N7 is the transpose of the matrix

representing Nj.

Next, suppose the theorem holds for a circuit M» and a new circuit My is formed

" by fanning out y3, one of the outputs of Na, into two outputs yy-and ys.

The matrix Tor N3 is identical to that for Ay, except that where No's matrix has
a row corresponding to y3, Ny's has two rows, corresponding to y and y5. Each
of these rows are identical to Ny's row for y3. The function computed by NT acts
on inputs y, and ys exactly like N-I acts on input yj, so N3T's matrix has two
identical columns, each identical to the column vector for y3 in NQT. Again, the

matrix for N;gT is the transpose of the matrix for Ny.

Finally, note that since any acyelic network can be ranked, every network observing
the fanout conventions previously described can be formed from a smaller network

" which observes the conventions, either by adding a gate or adding a fanout.

An optimal network for an m-inpu.lt, n-output function has Cg(F) gates. If f is
_the number of fanout nodes, then the network has m + Cg(F) + 2f sources and
n+2Cg(F) + f sinks. Since these two quantities must be equal to cach other, the

number of fanout nodes must equal Cgy(F)+n —m. But under the transformation

specified in Theorem 3.2, the number of gates in the circuit for FT is exactly
equal to the number of fanout nodes in the qircﬁit for F'. Since converting an
arbitrary network to one which observes the fanout conventions does not increase

the number of gates, we have-C@(FT) = C‘@(F) +n—m. 1

The adjacency matriz of a directed graph is the matrix [ai;], where a;; = L if

and only if an edge runs from node 7 to to node j. Considering a circuit computing

By
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{£1, . fn} over {©} as a directed graph whose vertices correspond to the gates,
the transpose of the adjacency matrix of the circuit is the adjacency matrix of the

transpose circuit.

Next, observe that the transpoée theorem has a more general application thap

Just to circuits over the basis {&} — it holds equally for multiple-output functions

over a basis cofisisting of any single two-input function that is both associative and
commutative, including min, maz, A, V, U, M, real addition, real multiplication, or

convolution. Thus, Theorems 3.1 and 3.2 can be géneralized as follows:

Proposition 3.3

Suppose there exists a circuit in the basis {+} .(c.n&inary éddition of integers) which
observes the fanout conventions in Theorem 3.2, has C gates, and which computes
a function F : §y™ = §*. F is associated naturally with the matrix of nonnegative
integers F' = {a,.], where a;; is the number of times the 5t input is added to the 5tk

output. If the circuit is transformed by the rules

A A
Y-

inputs = outputs,

then the transformed circuit has C +n—m gates and computes a linear function whose

matrix representation is the transpose of the matrix for F,
Proof:
The inductive proof of Theorem 3.9 épplies. Note that a,; is equal to the number

of distinct paths from input 7 to output ¢ along the wires of the circuit. 1

Let o denote a commutative, associative binary operation. The cyclic monoid

generated by a single indeterminate z under the operation o is a homomorphic

““image of the cyclic monoid (N, +,0). More precisely, ((z),0,1) is either isomorphic
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Lo (-,N',-F,()), or it i cqual to {1, z,4%, ..., 2""? 1Y for some integers 7 and p, where
{7,z .., z 7"~ 1} is a cyclic group of order p. The quantity r is called the tnder,

and p the period. If o is (P, then p =2 and r = 0.

Denote the homomorphism taking (¥, +,0) to ({z},, 1) by é.. The commutative
monoid generated by the independent indcterminates z1,2y,...,2, is isomorphic to
"the direct sum of n copies of {(z),0,1), and any function of z|,zs,...,Zn computed
by means of the o operation can be represented by an n-tuple of nonncgative integers

“under the map

ta[,ag, B B x‘{)"(“'} o a:g"(“ﬂ] 0...0 I‘i"(“").

Thercfore any m-output function over o can be represented either by an m X n matrix
of non-negative integers, which need not be unique, or by an m X n matrix of elements

:"f.rom ({z},0,1).

Theorem 3.4

Subpose that S = ({z),0,1) is a cyclic monoid. Let F be a function §™ — S™
generated by o and represented by n X m matrix of coefficients [a;;]. Consider a circuit
| for F in the basis {o} that has € gates. Then the circuit created by the transformation
in Proposition 3.3 has C +n —m gates and the function computed by the transformed

circuit is represented by the matrix [a;;]7.
Proof:

Denote by b;; the number of times that the 5t input is o'd to the 7% output in
the original circuit, by ¢;; the number of times that the 7t* input is o’d to the b
output in the transformed circuit, and by ¢, the homomorphism taking (N,+,0) to
({z),0,1). Since [a;;] represents I, o(as;) = éc(b;;). By Propesition 3.3, b;; = ¢;;.
“This gives ¢.{a;;) = do(c;i), or by reversing indices, ¢o(aj',-) = @,(cij). That is,

[ﬂt‘j]T represents the function computed by the transpose circuit. g

Theorem 3.1 has many applications. It can be directly interpreted as a powerful

theorem about addition chains, or it can be used to study both upper and lower



bounds on circuit complexity (or straight-line program complexity) whenever the basis
for computation consists of a commutative, associative operation. Every circuit in this
model has a “transpose,” which solves a “transposed” problem; and every lower bound

or upper bound corresponds to a lower or an upper bound on a “transposed” circuit.

These applications will be discussed in turn, starting with addition chains

[KNUJ(P12].

Consider the following problem: given a set of indcterminates {z),z3,...,2,},

generate the following set of monomials

¢4 e T
t _’I cee tn

_xl Zy no
a1 aag a2
X T Z T,
a a
Ilml I2m2. . 2:::mn,

using only the operation of multiplication. Formally, this is identical to the problem
of synthesizing the integer matrix [a,-j] from the set of elementary row vectors
{(1,0,0, I...,O), (0, 1,0,...,0),...,(0,0,0,...,1)} using ordinary vector addition. The
number of steps in this computation is called the length of the addition chain for
the sct of monomials or the matrix [q;;].

For cxample, there is an addition chain of length 9 which computes the set of

. b 4 4
monomials {z?z2z,, z}'2}?2]23, zjzizdz,}, namely

zf (1)
7373 (2)
z3 (3)
atadzy (4)
®)
rlzdadz, (6)
affeied (7)
zizyafc} (8)
zi' 2§zl (9)



Since every addition chain can be implemented as a circuit in the basis {+} and
every circuit in {+} corresponds to an addition chain, the transpose theorem can be

applied: -

.Corollary 3.5

If a set of n monomials in {zi,...,Zm} with exponents [a;;] can be generated
by an-addition chain of length {, then the set of m monomials in {zy,...,z,} with

exponents [a;j]T can be generated by an addition chain of length [ + n —m.

For example, according to the corollary, there is some addition chain of length

8 = 9 + 3 — 4 which computes the set {z32%z}, 2723%28, 7,21 22 1225},

The transpose theorem does more than simply show the existence of an addition
chain for the transpose set of monomials — it also shows how to construct this chain.

A direct application of the theorem yields

z1 B ¢Y
T2 : (2)
z3 (3)
T1Z2 - (4)
ToT3 _ (5)
z313 (6)
zizy (7)
2§73 (8)
 2y2}a3 (9)
z3zdtzd (10)
2,124 (11).

Ilﬂ'.'g 9:3

In 1981, J. Olivos published a lengthy proof of Corollary 3.5 for the special case
m = 1. Using an example from his paper [OLI], the length of the shortest addition

chain computing {z7,2'%,2%} is 7, e.g,,
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From this, one can conclude that the length of the shortest addition chain for the

monomial 23324727 is 7+ 3~ 1 = 9. Again, Theorem 3.1 [or 3.2 gives the construction

=

zizy (1)
ziozy  (2)
231y 3
.z‘?xgz:;; - (4)
zizizs (5)
ofada} (6)
i ()
R I )
P 2}] (9)

Because the transpose thesrem holds for the operations V and U, as well as for +,
Corollary 3.5 holds with equal validity for addition chains of Boolean variables, whose
monomials obey the multiplication law

(&l ot afe) = 2t VI e Vi,

Corollary 3.5 can be also be generalized in a siighfly different way. Define an
addition — scalar multiplication chain to be a chain of operations on monomials
in which the m.ultipI.ication of two monomials has cost ¢ and the exponentiation of a
monomial to the power X has cost &{\). Then the following resuit holds, regardless of

“the relative costs ¢ and k.

M



Corollary 3.6

If a set of 7 monomials in {z,...,Zm} With exponents [a;;] can be generated by an
addition - scalar multiplication chain with total cost [, then the set of m monomials in

{z1,...,2n} With exponents [a,—,—]T can be generated by a chain with cost { +¢{n —m).
Proof:

The computations of the ‘chain can be thought of as being performed by a
 circuit whose inputs are the elementary vectors (1,0,0,...,0),(0,1,0,...,0), ...,
: (0, 0,0,...,1) and whdsegates compute vector addition and scalar multiplication.
' 1f {ay;] is the matrix associated with such a circuit then a;; equals the sum over all

directed paths from input j to output £ of the product of the scalars encountered

along the path. Reversing the direction of all wires in the network computes a

function represented by a matrix whose 77* element is the sum over all directed

paths from input ¢ to output j of the product of scalars encountered along the path.

That is, the matrix computed by the ‘transposed’ circuit is laj:] = {ai;]T. If the

original circuit has C additions and S scalar multiplications then the transposed

circuit has C + n — m additions and S multiplications. Each multiplication by X

in the original circuit corresponds to one multiplication by A in the transpoéed

circuit. §

An addition-subtraction chain is a series of operations on monomials in which

. two monomials can be multiplied or divided at unit cost.

Theorem 3.7

Let 14([a;;]) denote the length of the shortest addition-subtraction chain for

the set of monomials with coefficients [a;;]. Then

L (laif)T) < La(laif]) +n— m+ min{n, m}.

Proof: .

An addition-subtraction chain can be viewed as a circuit whose gates compute

addition or subtraction. Each subtraction operation can in turn be viewed as an
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addition operation in which one of the two inputs has been multiplied by the
scalar —1. By Corollary 3.6, the set of monomtals with coeflicients [a,jj-]"" can
be computed with n — m additions plus the number of additions necessary to
synthesize the set of monﬁmials with cocllicients [a;;] plus a certain number of

multiplications by —1.

By repeated use of the idenlities

every multiplication by {—1) cin be either be absorbed into 2 (+) or (—) gate
or be pushed lower in the circuit. After a finite number of applications of these
identities, all scalar multiplications which have not becn absorbed have arrived
at the bottom of the circuit. Since the circuit for [ai_,-]T has only m oulputs, at
most m such operations can remain unabsorbed. If we adopt the convention that a
subtraction gate whose positive input is missing computes multiplication by (—1),

then m subtraction gates suflice to perform the required multiplications.

Similarly, using the identities

(—)(~=Dhi=hi
(=1)(h; + hi) = hj(—1) + he(-1)
(=1)(h; — he) =hi - h;',

each scalar multiplication can be moved higher in the cireuit until it is either
absorbed into a gate or until it reaches the very top. Since the circuit for [a;j]T
has only n inputs, at most n multiplications remain when each multiplication has
been moved as far up as it can go, n subtraction gates suffice to compute these n

multiplications. §

_Next, the transpose thcorem is used to analyze the complexity of some sets of

“linear functions.
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Proposition 3.8.1 __— . o . i

et Fo B — B have coordinate functions fr= @] a2, and assume that T \.)

dépends’on all its variables. Then

n—3< Cy(F) < n+l.

Proof:

FT is a linear function .1.5'3. — B", none of whose coordinate functions is constantly
zero. All seven non-zero linear functions B% < 53 can be computed from {xy, z2, 74}

- with just four gates, so Cq(FT) < 4. By Theorem 3.1, Co(F} < n+ 1. On the
other hand, 0 < Cg(FT), whence = -3L CglF). 1

Examples of functions attaining' these upper and lower bounds follow:

‘Examples 3.8.1.1

n=4 and Cglf)=5: . ' |
- . . . : S ' . . . |

fit=21Q 22Dy . |

fi=z. D z3P x4 - | i

: u‘

i

= ®nGn.

ﬁ=63nd0®(f)=3:-_..-: S .
h=z@z

| fz = I:!.@ T4

f3 =25 @ z4. ' ' i

This result can be generalized to functions with an arbitrary number of outputs.
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Theorem 3.8.2

Let I : B® — B™ have coordinate functions f; = @3’ .14z, and suppose that

I depends on all its variables. Then

n—-m< Cq(Ff) <n+2"-2m -1

Proof:

FT is a linear function B™ — B", none of whose coordinate functions are 0. By
Lemma 2.5.2, Cg(FT) < 2" —m—1. By Theorem 3.1, Cgy(F) < n+2" —2m—1.
On the other hand, 0 < Cg(FT), so by Theorem 3.1, n —m < Cg(F). ¥

Thereflore the hardest linear function B™ — B™ requires just one gate per input in the

limit as n — oc for fixed m.

Definition 3.9

Let m > 2. Fully, : B¥ ™! - B™ is the lincar function whose matrix contains
as column vectors all possible m-tuples with weight > 2, arranged in lexicographic

order.

Example 3.9.1
Fully :
h=zB 5Dz
4 .‘f2=11@$3@.$4
fi=21D 220D z4

Example 3.9.2

Fully : o
f1=$5®$s@37®13@29@1m@111
fo=22P 3Dz O D19Dz10 Bz
 fi=210 Q2R ParBzodru -
SR ’f4=.21€BIQEBI4€B$5(D$7@$9®IH

T



Theorem 3.10

Suppose m > 2 and n > 2™ —m — 1, and let G be a linear function /3" — 3,

Then

Copl@) < Co(Fully) +n—2" +m + 1.

Proof:

By Lemma 2.5.2, Cgy(Fulll) = 2™ —m — 1. A circuit for G can be synthesized
. from a circuit for ?ullf,; by ignoring coordinate functions which are not coordinate
functions of G7, and duplicating (fanning out) coordinate functions which appear

more than once in G7. Applying Theorem 3.1 gives the result. g
Corollary 3.10.1
Fully is maximally hard with respect to Cgy among all Boolean functions

B?"~m=l _, B™ and has complexity 2"*! — 3m — 2.

~ Corollary 3.10.2

max Co(F) =2n—2logn - 1.
[i13n s log o(F) og

This maximum is attained if and only if [F] contains [Fulliog ) as a submatrix
and [F] has no columnns consisting cntircly of zeros. Note that the upper bound in
Theorem 3.8.2 is tight for m < logn, i.e., there exist linear functions F - B" - B™m

with Cq(F) equal to n + 2™ —2m — 1. The lower bound in Theorem 3.8.2 is tight for

all » and m.

Now, let us look at how the transpose construction in Theorem 3.2 transforms
a combinatorial algorithm, using as an example the Four Russians’ procedure [ADK]

from the proof of Lemma 2.5.3.

Recall that transposing a circuit takes additions (gates) to fanouts and fanouts to

additions (gates). The Four Russians’ algorithm subdivides the sct of input variables,

il

R
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Inputsi o
I T A 3 A
synthesis ' ‘
of all
possible
k-input
functions

Irlrlvtlv TVY
ll’l'll"l’l LA DA M
ll"rllvlv Y

"l’l'l" LA A

7
5
;

: ; >; : L . ) 3
& —- —o——
Outputs

Four Russians’ Algorithm

computes all possible functions within each subset of the inputs, and then combines
the resulting functions to get the final result. The transpose of a circuit implementing
the Four Russians’ algorithm would:

(a) have one input for each output of the original circuit;

(b) have one output for each input in the original circuit;

(c) fanout & copies of each input;

(d) using each complete set of inputs’"infdAe'péledently, synthesize & different m-input,
n-output functions. o

Such a procedure could be called “band synthesis” since it computes horizontal bands
of the mattix independently. '
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Inputs

This fundamental result has several applications. or example:
Theorem 3.14

If F: B" - B is a quadratic monotone function, then

; oo Y A2\
n- n-
") < monotonr S e logn)
C(F) ‘__gC,lm tone(F") < dlogn + (103")

Proof:

Every quadratic monotone function has the form

V a,-fz,-lij.

S i<i<j<n

If it can be shown that the “upper triangular” set of dié‘jdr’l'ctions‘

{ V a,-j:cj} ;

can be synthesmed wnth ~ (n /4 log n) V cperatlons, thcn the result will follow

immediately, since

3o

l<1<1<h K o=l J=1+1

Since by Theorem 3.2 the transpose theorem holds for an arbitrary commutative,
associative operatlon the construction in Theorem 3.12 remains valid over the
basis {V}. Therefore any n X'n B-valued matrix can be synthesized from the

identity matrix with ~ n*® /4logn disjunctions.

Now consider the ééhé}né"fér subdividing an h"pper triaﬁgdl'afr matrix that is shown
in the figure. The smallcst square submatnx has dnnenstons n/2F X n/2%, where
k ~ ylogn, and n is taken sumcwntly large s0 that Ciyy of any n/25-input,

n/2%-output dlSJunctlon is less than



 Subdivision Scheme for the Matriz Associated
- with a Quadratic Monotone Function

There are 2‘ t square- submatrices with dimension (n/2‘) X (n/2%) plus or minus

1, so the dxs;unctlve complexxty of the set of square submatnces does not exceed

C{v}( )+2C{v}( ) - 42k ‘C{v}( ) (107;271)

(1+e) (1+e)n B (1+e) f n
~ §(logn —1) (logn 2) T 2"+2(logn ~ k) (Eg—r:)

(L+en? (K, a2 )
S 4(log'n—k) ‘;2 +o logn

(14 e)n ‘n2 o
< 4(logn — k) +'? logn)

S( 1, & )(1+e) +o(n ) |
L logn log n - klogn : 4 ) 108" e e

o




Since k ~ /Togn, this last quantity is bounded above by

dlogn _ logn )

The cost of the small triangular matrices along the main diagonal does not exceed

n?  n? ( n? )
2k+l 2l+\/logn 1°gn

and the cost for Jommgallof thefsubmatriées together is proportional to the sum
of their perimeters: it does not exceed
9

O(n/log n) —" (j—l——) 1

logn

N)!S

Thls construction improves by a factor of 16 a result by P. Bloniarz [BLO],

and gives an asymptotlcally tlg,ht upper bound Since there are 2"(n~ l)/ 2 monotone

quadratic functions, Lemma 2.2.2 implies that for any ¢, all but a vamshmgly small

proportion of these functions‘have"cii'cuit'k"’co'miplexity in excess of (1 —¢e)n?/4logn.
* Thus, if @M, is the class of quadratic monotonfe functions B" — B, then

- n®
C(F) ~ F) ~ ——.
r gl&;{[n | (F) “ [rEn(ix“ Cmonotone( ) “Ogn .

Corollary )3.1"3.17

Ifa quadlx'artitc Boolean function is a function B" = B with the form

@D "ii‘a‘}x“i% {

~1€igji<n
then o
"
e, OF) ~ i
# quadratie T g
Theorefh 3.12 gives theyasvmptotkic corﬁf)’léiit?y of the hardest n'X n matrix. E.

Nechiporuk [NEC] and N. Pippenger [PI4] have g,cnerahzcd this result to rectangular

-1
[ =3
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the order of their longest dimension. The transposec th

matrices whose dimensions are not exponentially

lopsided, “producing the following
result.

Theorem 3.14

Let £ : B™ - B™ b¢ a linear Boolean function, with logm = o(n)
o(m). Then

log nm log nm

and logn =

This result ‘has applications sirhilar‘ to those of Theorem 3.12. For example

Corollary 3.14. 1

Consnder the class of monotone bilinear functions B’” "™ — B, ie., the set of
[functions of the form = .

v a,]a:,z_,

i€m
isn

l/\ l/\

If logm = o(n) and log n= o(m), then

o “ mn
max C(F) ~ max Cmmml(:m(r)
gpntmop , Fipntm_p log mn’
monaotone bilinear monaotone bilinenr

Corollary 3.14.2

Con51der the clasa of bllmear Boolean functlons B"+"‘ ?-+ B

) 1e the class of
functions wnth the form

@ a,,z,z]

n/\ m
. l/\ l/\

Ir 16gm:o( )and logn—o( ) then B |

‘max C(F)~ 20 ¢

F:amtn_p Iog mn IR SO
£ bilineds o

What about lop51ded matrices? All of these matrices have comple'(xty boundcd by

icorem -provides a useful ool for
accurately estimating this complexity.



 Tor example; consider the comploxl(y over {\/} of the hardest function B' — ",

whcre m is approximalely logn. Each such Fumtxon can bc represented by an m X n.

B-valued matrix. By Corollary 3.10.2,

- max_ C{v}(F) = 20 + O(log n).
AT :

Shg,htly reducmg the number of outputs reduces the compleuty of the hardest '

function. By Theorem 3.8.2,

max C’{V}(F) <n+ BLLEI logn 4+ 2loglogn ~1.

1 s logn=loglogn ogn

On the other hand if F has coordinate functions fl(zl, Sy Zp) = V;—l a,sz then [alJ]T

has dimensions n X (logn — loglogn), $0 its set of row vectors can compnse ‘at most

— logn + log logn — 1 distinct vectors with welght greater than 1. Consequently,

lo
if G plogn~loglogn _, B hag coordmate functxons g;j(z1,. 1 Tiogn- loglogn) =
yiogn-loglogn a,'jfr; then C(y3(G) > s By the transpose theorem, | ’
max C >n+——-—2lo n+2lo lo n—l
[,‘:Bn_fylog‘n-loglogn { }( ) l gn g g g
That is, - :
e n
max =n4 - -— + Oflogn).
I “n_,”luan—loglm., n {V}( ) | logn . ( E ) .

Sllrrhtly increasing the number of mputs mcreases the wmplexnty of the hardest k

functlon but not by nearly as much as decreaSmG the number of mputs reduced it.
[F)T has dimensions 7 X (logn + log log n) Dmdmv [F]T into two vertical stnps of
dimension n X : (logn + log logn), synthesmng all possible 1(logn + log log n)-tuples,
‘and joining them together with n dlsjunctlons computes the n rows of [F]T with no
more than n+ (\/— + T)W opcratxons By the transpose theorcm F can be
computed w1th no more than 2n+ (\/— + = )mﬁ logn — log lognv gates. This
gives the followmg upper bound on the complemty of the hardest function:

Copy(F) < 2n + 2.13)\/nlog n+ O(log n)

: max
: 1.'#3:-_.13!0;; n-tloglogn

- On the other hand; the next argument provides'a lower bound on the complexity of

the hardest fi'unction with these dimensions.

e

s

- »
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Proposition 3.15 -~ =~

For arbitrarily large n, there cxists a function F : B" - Blogn+loglogn with
_ ",O{V}(F) > m+V2on - O(log'n’.)..s

Proof:

Let k be an even integer and let n = 22° and m = 2% + k. By Stirling’s formula

(2) > e (2rm)~t o™,
N 2 B ‘ " ;—.k PR e e e

r’so the number of Boolean m- tup es whose welght is m/2 exceeds n. Let G: B™ —

B" be . some functxon whose coordmate functlons are dlstmct and which are given

< ’- gi’(zkly )zm V az]zja

where (a,‘l, ,azm) has Wexght m/2 for every .. ConSIder sorne optlmal circuit

for G. Let START be the set of functions {9:1, ,:z:m}, let FINISH be the
set of coordinate functions {gi,...,gn}, and let INTER be the set of functions

‘which ‘are produced by th‘e g‘aites' of the circuit but which are not in FINISH.
‘Each function in FINISH is the output of some gate in'the circuit; let us count

the number of such functions according to whether the inp\its of ‘the gate which

- produced it are in’ START INI’ER or FINISH.

- (a) The Jom of two elements frorn START has welght 1 or 2 50 such an element
' cannot be in FINISH |

(b) At most m[INTER[ pairs of elements from START and INTER can have a
_join which-is in FINISH. ;- :

- (c) The join of an element z; from START and an’ element - f; from FINISH
~ cannot bein FINISH unless z; < ; in the Boolean algebra of functions B™ — B.
-+ However in this case, z;V fi = f,-,»so the ,g‘at“é_ prodﬁces nothing new and a circuit

~~which contains it cannot be optimal. Ltk dheee] gady e o
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(d) At most !INTER](]INTERl - 1)/2 palrs of elements from INTER can have
| ~a join in FINISH

(¢) Since all the functions in FINISH hajﬂre the same weight, the join of a function
from INTER and‘a"funciion/ i from FINISH cannot be in FINISH unless the

join of the intermediate function with ft is f; itself. A circuit containing a gate

‘whlch performs such a computatlon cannot be optimal.

n The Jom ‘of two elements from FINISH canrniot be in FINISH unless the |

two elements are 1dent1ca1

Thus every function in FINISH is th’e join of a function’ from INTER with
one from INTER U START. Smce the n functlons in FINISH are all-distinct,
'm]INTERI + ]INTERK[INTER] - 1)/2 > n. Solvmg for |INTER‘ in terms of
‘m and n and taking the hmlt as n — o0 while m = O(logn) gives |INTER| >

V2n — O(logn). That is, at least m—— O(logn) intermediate functions must
be computed by any cu‘cult which computes G. Therefore Cwy(G) 2 n+ \/2_— ’

 O(log n) Let F': B" — B™ have coordmate functions f;(z1,.. z,’,) = VI a;;2;.
By the transpose theorern, C{v}( ) > 2n + \/—2_7; - O(log n) |

To give one final example of how the ﬁ‘réynspose theorem can be applied to circuit
_ synthesis, consider the complexity over {@} of a set of linear functions with the
property that each input affects only a limited number of outputs. If F has n inputs
and m outputs, and if each input appears in only k of the outputs, then FT has m

t mputs and n outputs and each row of [F I has wexght not exceedmg k: Dmdmg (F)T
" into's vertlcal bands of width m/s synthe=1zmg all possible functxons of welght k-s+1
within each band, and patching them together with the functlons T{, .0ty Tm glves a
construction for [F]T with no more than (s —1)n + sykstl ("‘! ”) operations. The
transpoee theorem gives a construction for [F] with Cg(F) < sn—m+s5 skt (m/ ")

1=2 1

- For example, if F is an ,'r'i-input', m-oﬁtout linear Boolean function in which each

~ input is connected to no more than & outputé each row of [F)T has weight < k, whence

Cg(F) < n—m+ E,_g‘( ) Therefore any 1024-input, 10- output Boolean function

over {\/} each of whose inputs is connected to at most & outputs can be computed by
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a cireuit with no more than 1641 two-in put V gates. By contrast, 5110 gates would be

required if each of the 10 output functions were synthesized indcpvn(h‘.ntly. Similarly,
n ¢ I3 AT Tk 2 M . N

Co(l'y <m—m+ ZLfL ('"i/ ), so any 1024-input, 20-output Boolean function over

{V}, each of whose inputs is connected to no more than 5 outputs, can be computed

with no more than 2778 gates.

The worst-case complexity of Boolean functions over various bases is summarized

in the following chart:

{B* - B} @ W {v,n}

et maB . op i (=)
functzo'ns B"—»B" 2"2 | | 2 2 22\/—/ U( "’")
maz complezity : B* - B ~2"/n n-1 n —1 B ~ (@)% ?
maz complezztyB"—-»B" ;2" LR 5{('7‘2:—; e N.’I?vin i ~(\/§)|—6g2%2;?
OQ(FXG) SCQ(F)*‘CQ(G) ; ’% f:; i ‘erS' . **)"CS g "   mo’ . no



) Chnp(cr I“(ﬁ)'lill‘

MEMORYLESS CIRCUITS

The complexity of linear Boolean functionzs‘with respect to the size ofﬁ arbitrary

linear circuits was discussed in Chapters 2 and 3. Next, the computation of n-input,

n-output linear functions in a slightly more réstrictcd model is considered, and an

asymptotically tight formula is developed for tﬁe complexity of the hardest functions -

in the new model.

Since the graph associated with a circuit ié :iiéyc’lic, it can be ranked, i.e., amapping
N made from the natural numbers to the gatesiof the circuit such that for any gate g,
the gates g’; and g2 which feed the inputs of g saéisfy N(g1) < N(g)and N(ga) < N(g).
- If N(g;) > N(g;), then g; is above g;, and if N(g,-)"< N(g;), then g; is below gj By

‘convention, input nodes rank above all gates, and output nodes rank below all gates.

Definitions 4.1

 The width of a circuit at a gate g is the minimum, over all rankings, of the

number of nodes below g which have inputé above g. The width of a circuit is

the maximum width at any gate. We call an n-input, n-output circuit of width n
memoryless, since it corresponds to a random access machine program which uses

" no more memory than that required to hold the input data.

Propositioh 4.2

If F: B® — B is invertible and is ‘compufed by a memorylesS circuit, then F is

affine.



Proof:

Let N be a ranking of gates in an optimal circuit for I, and let g be the highest
gate. Consider the width of the circuit at-g. fiach of the n— 2 inputs to the
portion of the circuit below g which are not also inputs to ¢ must ultimately be
connected to some output node, for otherwise F would not be invertible. If the
,’éirc‘u”it"is optimial, the output of ¢ must also ultimately be connected to some
“output node. Finally, since F is invertible, exactly oné of the two inputs to ¢ must
be connected to some output without passing through g. Since ¢ither {g(z|, 3), 7))
or (g(zy,zy), z4) is an invertible function B* - B, g(z,zs) must equal z; @ T,

I]@IQ@I,?[{BI,OT(EQ@I. 1

A circuit of width n for an n-input, n-output invertible Boolean function F can

be described as a sequence of operations of the form

zj =1z, az; Db,

where ¢ 5 j and a,b € {0, 1}.

Definition 4.2.1 |
Let F' be an invertible function' B® — B". N@(F)“‘is”'ythc‘m?in"im‘um; number of
gates to compute F with a circuit of width n.-

Lemma 4.2.2

| Suppose that F' is an afﬁr;é function B" — B" with coordinate functions
iz ze) = e;':i ;52 @ b Then C < Mg(F) < C 4 n, where C is the number
- of operations of the form (zj1=z; @ ‘z,-) necessary to synthesize the linéar functions
fier,. o z0) = £i(0,...,0) = ®'_ a;jz;. I Fis linear, Mgy(F) is equal to the number

of operations of the form (z; := z; @ ;) necessary to synthesize F,
‘Proof:

If F is computed by a sequence of operatlons of the form (a:} = 9:_, @ax {Db) then

deleting the constant term from cach oper ration givesa sequcnce of linear opuatxons
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(¢ == z; () az;) which computes Ty, z0) = F(0,...,0). An oper .m()n of the s

form (z; := z,; & 0 Az;) has no cost. On the other hand, f(0,. ()) is equal to B
cither O or 1,50 {fi(x(,..,2x)} can be (','(‘)mputod from{fi{zi, ., LL',,)‘—fL‘((), .50} \,J
with no more than n operations of the form (z; = z; D 1). 8 '

It is assumed in this model that permutatxon of output functions can be done
for free; il this is not permitted, denote the resulting circuit comple‘nty by M'

Two output functlons can always be transpoch with three successwe addltlons in the

- following manner:

: i
aPb b
'!a\EBb a
b a ey
Therefore, M! ol ) < }vi@(l“)+‘3(n— 1). In gonoml Co(F) < Mg(F) < M’ o(F), ‘
and it is not too dillicult to find functions for which these mcquahtles are strict. In
~ particular, the linear function B' — B' defined by the matrix
1000
0100
1110
e 1 1.0 1
is easier with auﬁciliary memory than without it. In the former case, one can compute
~the functlon with 3 gates by computmg the mtermedxate !unctnon 716D 73, while
. without memory, 4 gates are required. - : 7
The measures ‘M(D and M are of partxcuhr interest itn‘the“contekt'df C‘hap'ter
9. The complexity of an invertible Boolean function with respect to cither measure
xs e\cactly equal to that of its mvcrse, since thc operatmn (.EJ = I GB az; @ b) is (
| mvolutonc and since (AB) =D~ lA_ D R PR N S s
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Proposition 4.3

If I" is linear,

and ‘ T
j)vi'@(FT) = Mg (F).
Proof:

By Lemma 4.2.2, M@(F)IS the length of the shortest sequence (z; == z; ®
Zi) o (Ze =2, Dy, .. (%7 ==z, @ z,) which computes F'. By Theorem 3.1,
the sequence (z, := z, P ), ..., (21 = z D zi), ... (z; = z; D z;) computes

 The following upper bound holds for both Mg and M.
Theorem 4, 4

For any functmn F B" - B"

ogn

| M@(P) < M@(F) = L +o( v )

Proof: :

'By Lémma 4.2.2, M@( ) < C+O( ) where C' is the number of operatlons (zj:=
z; z; @D'z;) required to synthesize the hnear functxon F'(:r[, ,z,,) F(O ,0). The
matrix [F(zy,.. ,:c,,) F(o,... ,0)] can “be du:omposed by Gaussnan ehmmatxon
into the product of three matrices, [L][U][P], where [L] is lower triangular, [U] is
wupper trlangular and [P] isa permutatxon matrix. If there exist circuits of width
~w...nfor P, U,and L, they ¢an be cascaded to-produce a circuit for the fuhttldﬁ LUP.
If transposﬂ:xons are free, P takes no addmons at all; while'if they are Tiot, P can
be synthesized with no more than 3n - 3 gates By Theorem 4.3, the complent,y

o of the hardest lower trxanguhr matnx is thc same as th"xt of the hardost upper
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’Lay’out for Modified Four Russians’ Construction.

3.2 : .
upper tnangular matrix can be syntheswed from the rdentlty by %’fg)"? additions

of one row into a.nother

This can he done with a modified version of the Four Russians’ algorithm: divide
the matrix into vertical strips of width' kl‘,kg,‘ . and synthes‘lze lthe shortest
[leftmost] strlp, then the next shortest and so on, adding the various k; length
pieces together to complete the matrlx The square k; X k; submatrices along the
‘principal diagonal are used as work spaces to ‘successively generate all possible
k;-tuples, which are then added to the rows of the strip abOve the snbmetrix as
~many times as necessary to synthesnze the strip. When all the entries in a strip are
’k_icorrect the final form of the upper tnangular submatrix 1t.sell' can be obtained

Tw1l:h no more than §k2 addltlonal operatlons
: ,The followmg procedure generates all p0551ble k; tuples thhm the z submatnx

; ‘(a) build in the first row, from the smallest wexght vectors to the largest all
o ki-tuples whose first component is 1; |
(b) burld in the second row, from the smallest welght vectors to the largest, all

k tuples whose ﬁrst component is O and whose second component is 1;
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(¢) continue in this fashion, building up in the 7' row of the submatrix 4l ki-tuples

whose loftmost l appears in the j ' component.

All 2% possible ki-tuples arc created in 2% — k; — 1 steps, and the " submatrix
remains upper triangular at all times. To choose k; for a given n, set k| = 2, and

set

log Z /c - loglog Z kV

< J=l SR )

for 1 such that Z e Ic < n. If the nfrhtmost strlp is permltted to have width

lebs than |log Z]~l — loglog ZJ"‘I k;] for certain’ values of 7, then Zk = n.
If M(n) is the cost of an n X n upper triangular matn‘( less any mcomplete

rightmost strip, then

-~ M(n + [logn —1loglogn]) < M(n) + n-+ l—g—— +3 log n.
For any ¢ > 0,
d((1+£)n2) Iogn+n+[logn e

Cdn\ 2 logn [logn — log log n|

; asm — 0o, 50 % exceeds 1\/[(71) for n sufﬁmcntly large Any partlal stnp on the

right edge of the matrix with width less than [log Z‘ i — log log ZJ_l ;| has

no more than nlogn cntries, so its synthesis can contribute at most o(n?/logn)

steps to the overall cost.

Thus, for any n X n triangular matrix

2 logn logn

< < o)

and for any n X n square matrix

= log n logn

Mo(F) < Mg(F) < il +o( " ) 1
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- Corollary 1.4.1

" Every lincar invertible function B™ — B™ can be computed by a memoryless

circuit.

Next, a lower bound for Mg ’arid Mg is presented. Under either model of
computation, at most( n(n—1))¢ different rﬁétrices can be produced with C' operations.
By the followmg proposition, there are at least (28)2" nonsingular n X n B-valued

" matrices, so there exist invertible lincar functlons F:B" -~ B" for whlch M' olF) 2

M@( ) _.. ;&;;1;_’0('0;")' |

Proposition 4.5

For large 7, a constant fraction of the linear Boolean functions from B® — B"

- are invertible.
Proof:

B™ has 2" elements. If F k:’ B - B" is non-singular, then given the value of F
for k linearly indopondent vectors, and (z1,-- n:,,) € B" not in the k-dimensional
subspace generated by these vectors, F(z[, ©y Zn) can take on at most 2" — 2%
”dxfferenb values Therefore the total number of mvertxble lmear functlons B® — B"
: ‘is L : , ; ¥
(@ — 1)@ =22 —4) - (2" = 2"") =2 ]] (1 - 5[)
Lo k=1 o
There are‘(Z")"_= 97 linear 'functidns ‘B" — B", so the proportion of these

functions which are invertible is:

This quantity is a monotonically decreasing function of n, and

; 8.]
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‘Theorem 46

0 the ‘infinite product I'[,(~ (l —‘W) converges to a nonzero hmlt By a

‘ combmatonal argument duc to F)uler [N[V]

% 1 j RS ey
HO~~%%+Z +—
= =i 2“1 HR g6
R A 11 1 1 1" 1 1 1
: 2?;1'— s Tttt + o5 T

Q- 92 .95 97 - 912 ek

= 288788103... g

“However the bound of ,-‘,Tf"ig-; - 0(1(:;’.7,) on the complexity of the hardest function

can be improved by counting more carefully the nutnber of functions with-a given

memoryless complexity. .

For all but a vanishing proportion of invertible F : B" — B,

“ - Proof:

A memoryless cxrcmt for the 1nvert1ble lmear Boolean functlon F 1"( ) can be

descnbed as a sequence of operatlons .
z; = z; Pz,
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with ¢ £ ] The strategy of Lho prool w1ll be to define a canonical form for
scqucnces of lengjth o whxch h% Lhe propert) let any two sequences with the
same canonical form compute the same function. To obtain an upper bound on
the number of functions with cmﬁplexitjnét exceeding C, the number of distinet

canonical forms will be counted.

If <, 7,%,1 are all distinct, two successive operations
zj=1z; Pz
Z = T GB 2

can be transposed w1Lhout changmg, the functlon that is computcd by the sequence
$0 two such operations may be called ezchangeablc Exchanoeabllxty is a reﬂe\we

relation on operations.

If the r't operatlon in a sequence precedes the s'" operation, and if these two
operations would not be exchangeable if they occurred in 1mmedxate successmn,

the 7'h operation blocks the s'' operation.

Finally, the operation z; := z; b z; léricogmphically precedes the operation |

o=z Pz ifj < kor if j =% and 3 ‘<. Lexicographic prccodence defines a

lmear order on the set of operatlons

Next, the canonical form of a scquence"ef length C is defined by a series of
transpositions, cach of which does not change either the length of the sequence or
the function which it computes. First, consider Ly, the set of all operaeiens‘in the
| sequ'ence which are not blocked at all. iiEaeh operation in Ly is exchangeable with
every opentlon which prccedes it and which is not in Ly, for otherwise it would be
blocked itself. Each operatnon in L, is also exchangcable with each other opemtnon
in Li, since ‘otherwise the earlier of the two would block the later onc. Thus, these
operations can be moved to the top of the sequence, and pla(:cd in lexiedgmphie
order, w1thout changmg the output functlon Whl(.h is compute(l by the circuit.
’Lvery operatlon that was blocked in- the onglnal sequence is still blocked since
the blockmg operat,xon could not havc becn moved below it. L; compnses the first

level of the scquence.



‘ll'v.,

-
ag
Lag

L3 o ;
L3

" Reordered Sequence

N Next build the second level of the sequence in- lLll sectzons, where |L| is the

: \the number of operations at the frst level. Define Ly, the set of operations

below L; that are blocked by the ﬁrst operatlon in L1 By the same argument

- as before every parr of operatrons m L«“ are mutually exchangeable, and each

is exchangeable wnth every operatron which precedes xt and is below L,. Using a
series of transpositions, move every operation in Ly, to the top of the second level,
and place them in lexxcographrc order As bel‘ore, all the remalmng operations
below Ly, are blocked by some operatron after the ﬁrst one m Ll This completes
the first sectron of the second layer To burld the second sectron of the second
layer, find L22, the sét of operatrons below L91 that are blocked by the second

operatlon in Ll, move these up beneath Lgl, and place them ln lexrcographxc

 order. Continde’ this process for each of the ]L1| operatxons in L1 Thrs completes

the second level

To blllld the thrrd level and all succeedmg levels, continue inductively: ‘The 7+ 1‘h

o level compnsmg {L,+1,z}1_<_,_<_[ L] is constructed by sequentially examining each jth
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A Blocking Tree

* level operation in turn, and appendmg in lexicographic order all of the operatlons

_ beneath the ;% level which are blocked by the operatron bexng exammed

Because all operations below the j"*‘ level are blocked by operations in the 7' level,

t}us mductwe process must eventually termmate by exhausting all the operatxons

' in the ongxnal sequence.

The reordered sequence computes the same functxon as the ongmal one. Moreover,
 the reordered sequence has a natural tree structure, the blocking tree, defined as
| follows Consxder a graph G thh c + 1 vertices, one of whxch is dlstmgurshed as
| the root Each of the remammg C vertlces is assoclated w1th a single operation
Cin the c1rcu1t Draw an edge between vertex r and vertex s if and only if the
r‘. operation in the circuit is the last [or lowest] operation which blocks the st

operation. If the r*h operation is not blocked by any operation in the sequence,
~“draw an edge between vertex r and the root. G is connected, since if one begins at

_ any vertex r, and traces the path r—(the lowest vertex blocking 7)—(the lowest
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vertex blocking (the lowest vertex \'b‘lockin'g" )=, and so on, he will eventually
end at the root. The analogous p']Lh starting at 7' will also end at the root; hence
r and ' are connec Lcd to each other. G has exactly C ed"os since we constructed

it in' C steps, addmg one’ cdge at Ld(h step. Mncc it is connee ted and has one

fewer edge than 'vertlces Gis a tree!

If Gis the blockmg tree of some canomca.l sequence the ma\nmum degree of G is

'n/2, since each scction of : a reordered sequence consrsts of pairwise exchangeable

‘ delements, and at most n/2 operatrons can be dISJomt in all thelr varlables

The canomcal sequence, assocmtcd thh w1th a blockmg tree can be recovered by
;Vworkmg down and across, ﬁrst computmg all first level operatrons in lemcographrc

order; then all second level operatrons 1n lexrcographlc order of their parent

nodes, with operatxons with the same parent node computed in lexicographic
order; then all thlrd level operatrons in lexxcographlc order of their parents, with
operations w1th the same parent computed in lexxcographlc order ‘and so on.
Thus, a canomcal sequence is umquely assocmted thh a tree in which every node
besides the root ‘is labeled wth an operatlon in such a way that adJacent nodes

exchangcable operablons C‘onversely, every such labeled tree grves a canomcal

sequcnce

An upper bound on the number of canonical sequences of length C, and hence
on the number of distinct functions that can be computed with C operations,
can be obtained by counting the number of rooted trees and multiplying by the
maximum number of labelings that can be given to any one tree in a way that

permits it to be the blocking tree of a canonical sequence.

R. Otter ‘[OTT] has shown that there exist constants k ~ .4399 and ¢ =~ 2.956

such that the number of rooted trees with n vertices equals-
k n n \

ol ).
n3/2 /2

There are at most n/2 immediate descendents of the root, so opcrations can be

assigned to these nodes in no more than (n(n — 1))"/? ways. If operation z; :=
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oz Pzjis as‘soci'u.tcd with a vertex of G other than the root, then each duughLer ' .

~of this vertex must be as'sociate‘d}with an operation of the form z; := z; P zy, | 4
oz o= z) @z, 21 == @\Tl', or z; := z; (D z;. Therefore, traversing the tre‘e NS

. from Lhc mlm(‘dntc descendants of its root to its leaves, (ounnng, the number of
permls:lble assignments of operatlons to vertices, one has no more than 4n choices

at each node. The total number of ass1gnm‘ents does not exceed (rl-n)c ™

e Smce the numbcr of rooted trees w1th C+ 1 vertices is 0(3(') and since the number
j of labelhngs of a given tree does not exceed 4('n"n(' the total number of functions
with complexxty C is 0(12(’ n"n (') By Proposmon 4 there are ()(2" ) invertible

{3} Irc < (1=qn? only a vmlshmgly sm.lll proportxon of the pOSblblC mvertlble v

logn ?

‘funictions could have comple*qty less than or equal to C |
Thus, the lower bound in Theorem, 4.3'is :aSymptotically tight:

n?

max_ Mg F~  max_ M F)~ . :
F:Br=B" €B( ) ‘,F Brs@3n ( ) logn el ) T
; That is, the complexxty of the n- mput n- output lmear Boolean I‘unctlon that is hardest

with respect to memoryless circuits is just thce that of the n- input, n- output linear

Boolean function that is hardest with respect to circuits of unbounded width.
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— Chapter Five -

BOOLEAN DERWATIVES T

This chapter reviews the propertics of the derivative of a Boolean function, a
coneept that will be used in Chapters 6 and 8. Although “ﬁﬁwité“‘Boblcaniélgebras are
discrete spaces, a numbcr of the classical theorems of differential caleulus remain valid
in this setting. The concept of a Boolean dcnvatlve and’ Lhe Boolean version of Taylor’s
theorem are apparently due to I. Reed [RED] D. Muller [MUL], and S. Akers [AKE].
These ideas have been further generalized by André Thayse and \Iarc Davio [DAV]

Theorem 5.20 is a new result.

Definition 5.1
Given a function f: B® —+B, the p:i}ti‘al‘der‘ivative of f with respect to z; is .
the function from B" to B defined by

é)f(:zl,...,xn)

EP = f(zl: .. '7:";" O: Zif1gees, zn) @ f(zl; ",z-i_{,'l’:g:;-ﬁ_ii’ ey xn)-

That is, 8f/dz; is 1 or 0, accordlng to whether the V'ﬂue of [ changes as z; changes

while z,. ,z, ! and :z:,+1, :z:,, remam ﬁxed

S

Definition 5.2

; b

Given f : B ‘B, the ‘gr&i‘lﬁiﬂciiﬁt of f is the fu’riél‘:ibthf :B" — pn given by

3 afy .
Vf( l:"_'!zﬂ_) (().Cfl ‘7%&)

3
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Definition 5.3

Gwen f: B" — B, the tdngent map to f at ((‘q,...,a,,) is the afline function

Ty : B" = D delined by

Tf(II; o .’,{E") =f(a|y .. ~:an) LE
@(Il (‘B aly)’?—f’(al' ‘e ':an)

3.7:1
@ @ (zn S, an) af (

afy. 7an)~

Defi mtlon 5.4

leen f B" — DB, the derivative of f at (al, ., @) is the linear functional

R e "aa,,a ;
”f’(ml;---;zn):@zi f( la,‘ n).
S = (%

; ‘Pi;dpbsibion 55

Partial differentiation is linear, i.e.,

(f S| 9) 3f
6:1:, FRE 32:, 8:1:,

Proof:

(@?f 2 ‘—(feag)(zl,;.‘f.“,“o,..‘.', ALYVLY) CHRRIEN

Sy CTN N mu)@g(zx, 0, 7a)
’ @f(mh'." 1 In)@?(mls "'711; In)

=f(a:l,...,0,...,:z:,,:)@f(zi,...,l,.'..,a:n)
@g(zl,.‘,.,o,...~,/:c’,.)@g(:rl,.!..,1,...,:c,,)

af . dg i
_61:, S 0z -
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Proposition 5.6
For a € B,

a f(zlaz' ’ )=af(zl,...,O,...,xn)@af(xl,...,l,...,zn)

C=a—i-

a:t,'

Proposition 5.7 o
Differentiation is4lvir,1’éar, ie, gi'/ver’l frg : B™ — B,
" f’(zh cuey xn) @ 9’(21; e zn) = (f @ g) (11, ceey :1:,,).

Pr‘oof:

Proposition 5.8 .

R

The partial derivative satisfies a version of Leibuitz’s rule:

o(fqg) dg af
oz, —f(‘“’""1’""I")a-z}@g(“’”"o"“’z")gg-
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Proof:

)
((()i?) ——fg(.m,...’,(),....
_—=f(:i|,...,0,...,xn)g(xl,...:,(),...,a:,,) e
@f(:1:|,...,,1,...,I,l)g(:l;‘,.*..,1,...,.’1:,,)

=f(21,.+,0,..,2a)g(z1,...,0,...,24)
{Bf(z,,..,.,o, ‘
D f(:;l,...,1,"...,:1:,,)g(:'cl,...,0,..’.,1‘,,)
@f(:rl,...‘:,ll,...,

T P of
f(zh " Tl) @g(zl""’;"°'fx'f)az;
‘=f(2l{--.~;1» ,zn) @9(2"“"0"“’1")5%' 1

Proposition 5.9
The partial derivative of f with respect to z; is independent of [the value 6f] ;.
Proof:

f(z1y:--,2Zn)

62,‘ =f(ch" € )@f(ch 7Cn)

(Cl,t..,o,...,c,‘) ’
_ Ozt s )
' dzr;

(ci,...,l,;..,c")

This means that the product rule for partial derivatives can be written in a more

symmetric form.
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Proposition 5.10

a(f9) , g
—EII— f(zl’ ,IE,@ 1, yzn)éz; :
af
@(](x], y Ly, 1In)‘ﬂf
a/ | 9g
—[f(zly'- 3 Ly 1271)@89:1']6&:{

Corollary 5.10.1 .~ . .~

af

Iffis mdependent of z;, thcn 3a is a constant function.

Corollary 5.10.2

The derivati':vé‘p‘f a constant function is 0.

Corollary‘Si.‘10.3 o

All second and hlgher partxals wlth respect to the same varmble are zero, i.e.,

2
a_z__o

6:z

Corollary 5.10.4
If g(zy,...,2z,) is inde‘pendent of z;, then

dfyg of
61,‘ g(zlx In)["a‘:‘t:]-

 Proposition 5,41

All mixed partials are equal.
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Proofl:

Bf(zr,0,..0,0,., 1.0, 3,)
B flz,...,1,..,0,0.,1,..0,2,)]
@ flzi,...,0,..., .o, 000 2,)
@f(zl,...,1,.’..,1,...,L...,:c,,)]]]

; 2 ar
o 0z dz; || 9z;

=([lf(z1,20,...,0,...,0,..p20)

: @ f(z1,.-,0,...,1,...,0,...,2,)]
@z, 1,..,0,...,0,...,z,)
D flzi,-- by 0,z
4‘@[[f(‘zl,...,(),?.:_.y.,o,...,1,.,.,1,.)
@D flzi,.., 0,000,100, L z0)]
D flzr,.1,000,0,.00,1, 000, 2)
O AL 1 z)]]]

_ 9|2 13f
RCIREE 55:”

Recall from Chapter 1 that for zy,...,Zn, ¥l,..1Yn € ’B, (z1,-0,20) <
(¥1,..+,yn) when z; < y; for all ¢; 20 = 1; and 2z} = ;. With this notation, we

have:
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Corollary 5.11.1

Examples 5.11.1.1'1" ‘

Corollary 5.11.2 .

The derivative of a Boolean monomla] T 'z
xf', ..,z when evaluated at Ty =Ty = ...

(B1,...,Bn), and is 0 otherwise.

Example 5.11.2.1 -

- ﬂl@/’l n,,@ﬁ

L,

a(z|:z:3:2:4) .

blf (a;,..:,a,,)

‘lf (Oq, oz,,) Z (ﬂl:---;ﬂn)

(Bl!"‘vﬁu)
if (a1, v o) = (B1,...,8.)

= Zy13

8:::,

33(2:1:1:3234) .

8z10z30z4-

8 (z1z324) _
0121019023

ny re

-+, with respect to the variables

=z, =0,is 1if (a1,..., ) =

8*ayz 2374 €B 27223 €D 032224 D ayz124 D asz) D agzy @ arz3 @ ag)

32:132:3

)

when evaluated at 2y = 23 = 73 = 2:4 = 0, equals as.

Proposition 5.12

O™ f(z1,..., 2

ok

00 0 Lo

3»)

| - 8

<(Blv sBn}

07



Proof: *
Let i be those z; with §; = 1, i, those variables with respect to which the | \J
_dvcr"ivativeis to be taken, and 2/} be the remaining variables. The proposition now -
réads‘v~ 4 V B |
o™ flzy,...,z o,
L I e
i O0%n 1(0,.,0)  all(2),zh) E Z§’¥0 ‘
The pr.oof is by induction on m:
-df(zy,...,z
__'(_"‘5_,_—2')' = f(o, ’O’ )01)@./‘(07 11; ,0)
Ty (0,..-,0)
If the statement is true for m — 1, then
3 [0™ 1 f(z1,...,%n) :
az{,n[ azll. .. am{’n—l ‘ — ’n‘l«';@"’e. f(Il’ seey zn)
Co ) Lﬁ("p--'v'::n_i!o) z:I____()
@ @ : f(xl)"‘ijﬂ) 1 : ‘\J
all n—tuples
(z'l ..... :'m_l.lk) - z:-"f—“:'O o '
. whence il is true for m. g
Coroll.ﬁry 5.12.1
Applying the proposition to the function g(z1,...,2,) = f(IIEB ¢t, ,:z:,,EB Cn)y
Sgmglan o a T
G:gc(ﬂll’ 31’/’"") , @ flziDety- .20 Den).
Loeeeon (cl;r'“vc") S(’(';;'vt;,)‘)
Example 5.12.1.1
8%£(0,1,1,0,1)
dzy0z4 = o
= £(0,1,1,0,1) @ f(0,1,1,1,1) & £(0,0,1,0,1) & f(0,0,1,1,1). J



Proposition 5.13

If fis an alfine function; then each of its partial derivatives is a constant funetion.

Conversely, il each of the partial derivatives of g is a constant, then ¢ is afline.

Pl'qof:
Let -
Sz, 20) = a0 B P agz;.
1=
Then

af(z‘ll': = .z"); = f(zli 0,0 In)@ f(zl}" TS In)‘

= [an Sl o) aﬂi} @ {an Da; 0P ai'—”i}
_ i#] ’ i#j
. s . : . - 4
a constant independent of (z1,...,24). Now suppose ;)a—z”—‘_ = g; for all 7, and

consider e : B" — B, aeﬁned by

e(il?],...,ft,,) =g($|1"'7$")€B @ _-—g—xi

i=1 0%

n
=g(zl,...,zn)@ @ aQ;z;.

t==1

But

de(zy,...,2.)  8g(z1y...,20)
=0,

forall1 <7< n.

.. Ifevery partial derivative of ¢ is 0 everywhere, €(0,0,0,...,0) = e(1,0,0,...,0) =
e(0,1,0,...,0) =¢(1,1,0,...,0) = ... = e(1,1,1,..., 1). Thatis, e(z1, 22,23, ..., )

takes on but a single value, (0,0, 0,...,0), independent of (z1,22,23,...,Za).
Therefore o
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. n
g(zr,... zn) =e(zi, ., 20) D @a;zi L

=1

o@'“,

=1

The Boolean derivative satisfies a close analog of the multivariate Taylor’s theorem
of ordinary calculus—given knowledge of all of a function’s derivatives at a single

- point, it is possible to pre‘dict’?y"the Value of the function everywhere.

Theorem 5.14

Let f be a functlon from’ B" — B, and let Y = (yl, y,,) bé some element in
~ the domain of f. Then,

8f(:z:1,‘...,x,,)

¢} n'
(oyomm) Ok~ Ozh ;
Z{ypreenswn) {0,0,...,0)

(81, .. 24)]
= @ ﬂl n
penn \ dzi' - dzn

fY) =

R

(0,0,...,0)

- Proof:
Let

fX)= @ apal'af-- 2bn
penn

be the ring-sum expahs‘ikon”of f. Observe that Corollary 5.11'.2kimplies that

8f(a1,...,20)
azllh, .. 8:1:’,3;" (0,0,...,0)

= ab,

since ‘all terms of lower order than G disappear in the dlﬁ'erentxatlon step, while

all higher’ order terms dlsappear in the eviluation step

- Thus,
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]

) =@ agylt oy
: acon

= @ ag,

BLY

L g :
since the product yy'- -y vanishes unless g <Y. 1

This formula can also be derived from Proposition 5.

12 by Mobius inversion.

Theorem 5.14 gives the Maclaurin expansion of f; a change of vafiables gives the more

general Taylor’s expansion:
Corollary 5.14.1

af(zy,...,z,
o= @ Ulut)
: B<z@C Ozy':.-0zh”

Af(zy;:e.,2a)
penn | 0zl agb

(cr| ,‘.’..,c,.)

(e1seien)

Example 5.14.1.1

| Let f(z(, 29, 23) = (z1 A z2) V z3.

@)

(2, cn)ﬂ".

Sz ) = mzezi D iz Pzy

%(11,12,13) =z1Z7o0P1

a .
: 5;’_0(?‘.? Z2,23) = 7123 D zy
T L
827262:3
af

(z1,22,73) = 1,

e axli
3% f
;az|a:1:3 :
Pf oo
513{;2—(11,12:23) = 13®1
8:1012323(“’1:2,‘ 273)

(z1, 22, 23) = 22

=101

“‘“(31’;22,‘3{3) = ToT3 @zg‘ L



Cmizazy [T Do S Anonf
000 0 O 1 -
’ 001 1 1 0
" 010 0 0 0
011 1 0 1
100 0 0 0
. 10 1 3,1;' 0 ' 0
110 1 1 0
111 1 1 1
FL1,0) = 1(0,0,0) & 7 0,0® 5 Lo, 98 5 27 _(0,0,0)
Sl 9 ) L 32
=f(1,0,1)€Baf2(1 0 1)@af(1 006 01
=1. i
»
Definition 5.15
~If F:B"™ — B™ has coordinate functions f1,. oy fny the Jacdbian matrix of F
is the m X n matrix (J4] Whose i™" entry is the function 8f;/dz;.
Proposition 5.15.1
If [Jp] = [Jg], then F — G=K, where K : B® = B™ is a constant function.
Proof:
Once F(0,0,...,0) is known, F(zy,... ., Z,) isr"clét"ermined by [JF]-
o, 4 e ,
fj(zl:" ) f]( )@a (2110 ’O)
x T i .
@ azz(x;,Xo ’ )‘59’4-5;—3-(2:1,2:2,:123,...,0)
) af ‘ R L ';},
@" @ 9z (231,332, )Zn—l;zh)- 1 / Mj
ﬂ
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F is affine if and only if [J,]ls constant.

Definition 5.16

If f:B™ - B, the Hessian matrix of f is the n ) n matrix whose 17" entry is
(9f/(9$182:]. ¢
A Hessian matrix 1ssymmetr1c and has zeros on the main diagonal, and its 1yt

entry is independent of z; and z;.

Proposition 5.16.1

I the Hessian matrix of f is identical to the Hessian matrix of g then f —g = [,

where [ is'affine.

gk
fat o2 =10,0,1..,0)® L (@10,...,0
\Z10 00920 —‘ gV ey 3211 1L,y )
| @ 322(.»5,,:52‘,0,‘..,1.0)’@ am3(z1,22,z3,...,0)
0 ‘
@ tee @a_a:i(zl;zi?r"-)zn—l)zn)'
dn thé othe-r h—and, :
af _of of L 8f
az,‘(zl,”.’zn)——a:t,'((),O’“.’O)@azgaxl(zl’o,'”’o)ee (Zl,zg,...,O)

az,‘azg
: @ A @ az'afz (2:1);2)7-‘-““)z‘n—‘l,zn)- s
‘ 1 n R

Thﬁsé £ is determined by its Hessian matrix, £(0,0, ..., 0) and {ng;(O, 0, 0, 0)}iet. e

In facit, by Theorem 5.14, if f and g have the same Hessian matrix they differ only
} 2 0f

f(O,,O)@ @ 5;(0,...,0)2;. 1
. e g 1

A=l

The expansion in Proposition 5.16.1 is equally valid when based at any fixed point
in B"; i.e., for any point (ay,...,a,) € B, f is completely determined by its Hessian

matrix and by [Ty(ey,..., an))-
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The Boolean analog of line integrals can now be defined.

Definition 5.17 - . ' e R/

A paramcterized path in B" is a function ‘¢ from the integers 0,1,2,...,7 to
B™ with the’proper'ty that dg(t)/dt = ¢(t) ® (t + 1) is an atom in B" for every ¢
between 0 and 7' ~ 1. That is, the successive pomts #(0), #(1), (2), . ..,8(T) trace out
a path along the edges of the n-cube B™. | |

Definition 5.18

Let F be a function B" — D™ and let f; be the 2*" comnponent of . Let P be some
path in B™ with parameterization ¢ : {0, 1, .., T} — B", and let ¢;:{0,1, ...,T} be
the ¢*" component of ¢. Then the line integral of F along the path Pis .

Jp¥te

Il

é( d¢1 EBf2d¢2 o @fﬂddm)

£=0
=T§€Bf(¢(t+1))%@ 9
Proposition 5.19 o
 Integrals add along paths.
/plF dz @/,,,F ~dz = [é ff(¢(1))(¢i(0)’@ ¢i(1))}@...

SRS @ —1)@(;(1'))]@

¢ @ e )@w,( »}@ "

o] é (T N(T -1)@¢(T'»]
poap T 0T 0

1014



M

where Pj + Py is the path traced by ¢(1), ¢(2),...,8(T — 1), &(T) = (0), (1),
c (T

The valué of the line integral ‘depends only on the path P and the direction in
which P is travelled, but not ‘on the parameterization. The direction ¢s important—

in general:

/pF-dz%*/_PF-dz. .

* The niext result is a Boolean version of one of the key theorems of real multivariate
calculus:
Theorem 5.20

Consider F : B — B", with coordinate functions f; : B" — B. Thén the following

conditions are equivalent:

(a) there exists a potential funétion f :B" <5 Bwith F = Vf. That is, there
exists an f such that f; = g—é forall1 <5 < m.

(b) F is conservative. That is, if P, and P; arc any two paths in B™ with the

same endpoints, then

Jo =] Fods

for any closed loop P

@

oz;  lo, if i=j
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‘ vProo[';
(a) = (d)

- -For any [+ B" — B, the mixed partials of f are equal by Proposiﬁo'n 5.11 and

-~ the-second partials are zero by Corollary 5.10.3."

(c) = (b

Leﬁ P, be the path trdced by #(0),.. ,gb( ) and Py be the path traced out by
$(0),...,¥(T"). Suppose $(0) = 1(0) and ¢(T) = 4(T"). The path P, — P; traced
by 95(0), oy 8(T), (T = 1),...,1(0) is a closed loop, and so, by hypothesis

/Pl P2F(2:)-d:z:~=0.
Thus, | | \
Fode=[ Fodz
Py -P; ’ o
. Finally, since the path P2 — P, traced by 1(0),...,%(T"),:+.,%(0) is a closed loop,

| / Pdz = / Faa:. :

- whence

F-da:';—--f F.dz.
P, Py

b) = (a

Define f: B® — B by
1) = [, Ply) - dy,

where p is any path from 0 to X. Since F is conservative, one may assume that
the path of mtegratlon does not move alomr the j* dimension until its very
last step. That is, dgb,( )/dt =0 for 0 <L t <T-1, dé;(T ~1)/dt = 1, and
d¢;(T — 1)/dt = 0 for 1 ;é . Then,
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- However,

S B e

Assume the implication 1s false, le, that there exist closed paths around which

the line integral of F' is non-zero. Wlthout loss of generality, it can be assumed

that some such path passes through the ongm Smce the mtegral around a closed

| loop is mdependent of the starting point of the parametenzatlon (but possibly

dependent on the direction), assume that loops passmg through the origin start

and end there.

Define the weight of a path to be the sum of the Hamming weights of the successive

points along the path, i.e., .

R R
weight (P) = ) weight ¢(t).
T =0

 Every path has some weight; assume that P is a-path with minimal weight among

all ‘closed paths along which'F has a non-zero integral. Let P be traced by the
parameter ¢, with ¢(0) = 4(T) = (0,0,...,0).7" " ¢ ‘

First, we wish to show that P has no reversals, i.e., points where it turns back
on itself. Suppose there is some 7 and ¢ such that it —1)=c¢, ’qu;(t) =chl1,
and ¢;(t + 1) = c. Then di%t__ll é%ﬂ = 1 while ‘—Iél—g—ll d—"j@ =0, so that
the terms contributed to the mtegral by these two steps are f;(¢(t)) and f,(d)(t))

respectively.

ey =240)
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But by the hypo’ﬁhesis d) %—@ is uniformly zero /Th’usy the two steps from ¢(t—1)
~to ¢(t) and from ¢(t) to ¢(t + 1) together contribute nothing to the integral, and
their femoval from the path P produces a new path ‘with smaller weight and a

non-zero integral, a contradiction. Thus, P has no reversals

The shortest possible candidate for P would beia path of length two, i.e., one
* which started at the origin, took one step out,vand immediately returned. This
would constitute a reversal, however; so if P exists at all, it must have length > 4

and weight > 4.

Now, consider some time ¢ for which the weight of ¢(t) is mazimal.

mawlz 5,

Y ey we can wrlte W’(t“' )l + 1 = ld’( )| | (t+ l)l +1 I there o no reversal thies -

.-, " must ex1st z, 7 w1th |
$ilt—1)=0
o s=1
Csen=1
$it—1)=1
Cosl=1
,¢j(t +1)=0,
while @p(t —1) = @¢(t) = ¢i(t + 1) for all & # i,j. The contribution of these two
steps to the integral is ‘f,( ( ) fJ(gb(t + 1)) Now consider the modified path P’,
- identical to P except that - S T

"¢'(t~1)=0
Sy =0 -
(t+1)=1j
it—1) =1
$i(t) =0
¢'(t+1)=0

The contnbutlon of these two steps is f,(d:’( ))@f,(gb’(tﬁ- 1)). What is the difference

between the two integrals?
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A
‘Ww/

[ F@)-dz~ [ F(o)-do=F(a(0) @ F($+1)
B fi('(t) & £(¢(t + 1))

S _ase) o 3f;(8'(t+1)

Oz; 0z;
G+ L6+ )
= 9z; | dz; '

But by hypothesis (d), this last quantity is zero. Therefore, [p F(z)- dz is non-zero,
while the weight of P’ is less than that of P, a contradiction. One concludes that

there could have been no such counterexample P. 1
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= "Chapter Six —-

- THE A-TRANSFORM

In this chapter, a lincar transformation of a Boolean functional is defined )
which is equivalent to both Boolean polynomial evaluation and to Boolean polynomial
interpolation. The set of Boolean functions invariant under this transform is enumerated

and characterized.

Definition 6.1

| B L | J
Given a function f: B® - B and Y € B", the A-transform of fatY = :
(y1,-..,yn) is the function Ay f: B" — I3 given by
f(Y), il (2:1,...,.’2,,)=0
Ayf(a:l;...,a:n) =
(')kf .
OZay+dLn, (Y)) if (Il) vy 21:) % 0,
‘where the partial derivative is taken with respect to each variable z; in (z1,...,2n)
that has the value 1. When no confusion will result, write A f for Aof.
Example 6.1.1
a? f(i 1,0,0)
Ao f(1,0,1,1) = ——— 2112 7
oof(1,0,4, ) 92,0730,
Fxample 6.1.2
The Ay-transform of the zero function is the zero function, since f(¥) = 0 for \J

all Y, and all partial derivalives are zero.

1o



l‘)x:uh'plc 6.1.3
Suppose f: B" — B is the constant function flzy;...,24) = 1. Then
S (=, ra) =0
‘ «HA‘\'f(Il,';.;»',i?),,,)‘: 2 k [ S
IR : 0, - “ otherwise, -

Example 6.1.4 . T PRSI L PEIS e B S
Appendi;i( B Ed"lspla'y‘s a table of f and Affor each of the 256 distinct functions
from B? to B.
Proposition 6.1.5
The Ay-trans‘forﬁl is linear; L

Proof:

The Ay-transform represents a linear transformation on the space of all functions
from B" to B. For example, the A-transform is represented by the matrix

T o SR - S Sy WOy VR W

O — N — S Py S
T T S T — W~
M o R o O o o o

- - o o O o o o
e R - - -

_ O e O e S e o
- o o o Mmoo o o

i..l .

1



with respect to the following basis for the vector space of functions 3% = 1:

a,'(:z:},'z:_,, z3) =1 if and only it (xl, I r;)

ax(xy, 0, 23) = 1. if and only if

(x )

az(zy, 2y, 73) = | il and only if ", (:r;, r:,ur;;;) =(0,1,0)

- aq(zy, z9, 74) = I“"xf and only il (I|,I2, r3) =(0,1,1)
a5(:£|,zr_), z4) =1 if and only if (z,, 2., z3) =(1,0, 0)
ag(z1, 29, 3) =‘1 if and only if (z(,zs,23) =(1,0,1)
a7(zy,z9,2z3) =1 if and only if (z1, 72, 73) =(1, 1,0)

, ,‘(18(2‘,,2.2,:1:3’) =1 if and only if “’(‘:L'|, z2, z3) =(1, 1,1)

Theorem 6.2

Forany f:B" = B, Af(ay,...,a,) = Aof(a,,...,a,,) equals the coefficient of

the term z{'z5*--- 2% in the ring-sum expansion of f.
1 +2 n g : P

Proof:

Every function is expréesible as the sum of monomials in the variables zy, ..., z,.

The partial derivative of a function mth respo(t to any set of variables is the

sum of the partial denvatlves of each monomial with respect to that same set of

variables. Therefore, the partlal derivative of Af= z{" with respect to the variables
gi . :

z; is 0 when evaluated at 0, unless a; = ;. g

Exampl‘ekﬁk.?.i -

Let f(.'tl,:rz) =z z9 = 7| @Io‘@ TiTo = ao(j@al():z:i D agiz» @a“zq ‘whore
agp = 0 apg = 1 a(j] = lf‘and arp =1. /_\f(O 0) = 1 Af(l 0) =1, Af(O 1) = 1
and Af(1,1) = 1, whence Af(z;,a:g) =z V 2.

Each function B® — B is assocxated mth a umque polynomlal and A(f—g)=0
if and only if f—g =0, so the A- transform is one-to-one. The set of functions B® — B

is finite (of order 2%°), so the A~transform is invertible.

J
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Theorem 6.3

The A-tranform is involutoric. That is,
AAaf) =

Proof:
This follows directly from Proposition 5.12:

AMflanyean)= @ fzn..rm),

~ and from Theorem 5.14:

fieu) = @O AfBr,. B
(,5[.-...[’") X
L{ugseesun)

Dcﬁn‘iti‘o/n 6.4
- Given two functions f, g : B" — B, the A-convolution of f and g is

. Proposition 6.5

"A-convolution is commutative, associative, ‘and 'idcfxfipdtén‘t,‘ and is distributive
Proof:
fxg=0A(Af AAg)

=A(AgAAf)
=f*y.

fx(g k) =A(AF A(A(A(Ag A AR)))

O =A(AfAAGAAR)
A(A(MAS A Ag))A AR)
=(/*g)*h.

I
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[ f (Af/\Af)
(Af)

J(g@h)=AAFAA(GD h)
=AAfAAgB AR)

=A(AfANAg) B (ASAAR)

=(f*9)D(f+h). 1

A-convolution is identical to ordmary convohmon of mteg,cr pol) nomlals modulo

the Boolean relations z2 = z and z + z= 0.

Ay, the set of functions B® — B, is a Boolean ring of order 22" with respect to
A, @, 0, and 1. It is also a Boolean algebra with respect to A, V, 0, and 1. The same
sct is a ring with respect to *, @, 0, and A(1), and an algebra with respect to x,

(z*xy) Dz Dyl 0, and A(1). The nrip fak‘ihg Ao+ P toD,0t0, and 1 to

A(1) induces an isomorphism of algebns and rings. Flmlly, to any circuit computmg ,

f(zy,...,2,) over the basns {A, 'EB, } from the elementary functions .z:l, , T, there
~ corresponds a circuit computing A f over {*,5,PA(1)} from the elementary functions
A(z1),...,A(za). Note that convolution is an operator in the function space, but not
in B", ’

Proposition 6.6

Let a, 8,7 € B™. Then

U= D 1B,

7/\,d—-n

it



Proof:

I
b
>
-
>
o
s
2

(e = A

|
&
—
b
&

where ag, is the parity of the numbe'r{: o}‘ z satisfying Vv < z < a. The number

of such z is an integral power of two; ap,; iszeroif BVy < a,and one iff BV y = a.

Thus,' e et NERPEEY
fro= @ [

Definition 6.7

A function f: B" — B is A-invariant if Af = .

Theorem 6.8
f is A-invariant if and iny 1[' f ::Ag P g, for some g : Db" - B.
Proof: s :
(a)If f =Ag@g, then }

=g@ Ag
i =f, . s ’/

“so f is invariant under A.
(b) The set of all functions from B™ — B is a vector space over B of dimension

2n, Conéider the lincar function ¢, which takes f — f () Af. By part (a), the

s



image of ¢ consists ontxroly of functions which are invariant un(hr A On the
other hand, if f is invariant under A fép Af = 0, and [ is in the kernel of ¢. In
- fact, the kernel of cb consists of cmctly those functlons that are A- invariant, since
Af = f=¢(f)=0. Thus, Imag,c (<p) C I\ernel (6), whence rank ¢ < nulhty ?.
Since the rank of ¢ plus the nuillty of ¢ is 2", rank (¢) < 2"~' In what follows,
we will sce that the rank of ¢ is greater than or cqual to 2", whcnce, the two
quantities must be equal. It will therefore follow that Image (¢) = Kernel (4), and
thai every A-in;variant function is of‘ the form Af @ f. |

Tor § € B", the functions ag : B" — B defined by

1L, z=
'ﬁM@={ e

0, othermse,

form a basis for the vector space of functions B" — B.

| Aagly) = 'GEB‘GH(i)

z<y
{L B<y

0, otherwise.

Aay(y) B ap(y)
GMM)

o z<y L
{L B<y

0, otherwise.

©-
—
(3]
w
—
<
~—
I

Let b be a fixed atom in B", and consider the set of functions {é(a,;)} for whlch
BAb=0, ie., the set of g‘)(a,,) for which § has a zero 4" component. There are

271 sych functions; we have only to check that they are linearly mdcpendent

Suppose some subset of these functions sums to zero, i.e., suppose there is a subset

S C B" such that BAb=10for all € S, and

@ dayly)) =

Bes
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for all y € B". Let 3 be some minimal element in S, i.e., an element such that

B «£ @ for any B € S. Now consider the element G'vb e D" Since f'Ab =0,

ﬁl < ,B,Vb

and

C bap(BVb) =1.

On the other hand, supboﬁe B is ,some clement of S not equalto 8. If 8 < B Vb,
BV V) =pVb
BBV vb)=b(8 Vb)
v =g
8L,
a contradiction to the minimality of p'. Therefore, § £ 'V b, and

:ﬁ¢%WV®=0w:

Thus, T B R R L S
| - B bauve) =1
But this is contradicts the assumption that the ¢ay sum to the zero function.

Thus, the ¢ag are independent. §

Corollary 6.8.1

) T PR e e AR
The number of A-invariant functions B® — B is 92

Example 6.8.2

There are exactly 22° = 16 functions B® — B that are invariant under A, namely:
0
Z1Z2723

17



wizy @ ey
Ty €D zozy
T1Ey (L
123 (D 2023 @ 2y 2273
2122 P zo73 P T132Ty
:rga:»@xlz;@r[zoz;
21 Dz Q23 B o1y
"":II@I’@M@IIM
a:l@zo@:c;@z]x)
zn@xz@x;@mws@rmza
31@32@:‘7!@2!33@1133’1{ -
zl@zg@xq@mz;@mzxr;

I] @JZ)@I;@ (AP ARE)) .IZ'J'{(').H.I:;

T Dz D3Pz D Iérs@ zz3 P z (2223,

Theorem 6.8.3

Every A-invariant function B® — B is of the form

@B ),

ﬂEB"‘

where ¢(f) = Af D f.

‘Proof:

Let ﬁ =‘(ﬁl;" “'yiﬁﬂn-l; 0)

LR

o



N ‘;1.” /i,. L0
Ty Xy = I Ty Iy

{1, Lz

0, otherwise.

HI B ﬁn— e ﬂl ;’n 1o
A( Ty T~ I)_‘ Tyt T In

¥

[y p=z
1o, otherWISer
Using the notation of Theorem 6.8.1:

1, pB<z
oy = L P
@l 1) 3 0, ' otherwise.

= f¢(1'1)(2),‘l

) where B =0. By pa.rt (b) of the proof of thnt theorem the ¢aﬂ( ) with B =

V are lmearly mdcpendent as ‘vectors over B. These 2" 1 vectors are A-invariant

2

by part (a) of Theorem 6.8. 1, zmd therel‘ore are a ba51s of the 2" -1 -dimensional
* subspace of A-invariant functlons B* > B. ‘| o /
, Exa.mplc 6.‘8.3.1 PR

~ There are exactly 256 A‘invariant functions B' ' B. Every ‘A-invariant function

is a linear ‘combination ‘of the following crght functions:

S SR

< §(1) = T TYT3T4 (-B 1o 0
B iﬁ(éi')”f—_i“iliéfgilr on
b =mmmn@n
bferm) = 120 D 2122
¢(z123) = Z1Z224% 4 D zz3

Herzs) = mimem G oms
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B(xirazy) = vy zaryr, O LyTLy.

Recall that P is the sot of languages accepted by a Turing machine (TN i time
P(n), where P is a pblynomial in the length of the input. NP is the set of languages

‘accepted by a nondctermihistic“Tu'ri(ng' ma‘ch‘i'ﬁe"(NTDM) in polynomial time.

The next three definitions are by L. G. Valiant [VL3, VL4].

Definitions 6.9

A counting Turing machine isa NTDM with an ‘auxiliary output device that
instantly computes and prints the number of accepting computations induced by the

_input. A countmg T\/I has time complex1ty f(n) if the longest acceptmg computation

mduced by the set of all inputs of size n takes f( ) steps #P is the class of functions A

that can be computed by countmg TMs in polynomml time and #kP is the class of
functzons that can be computed in polynomml tnme by countmg T’\/Is wnth (mod k)

‘arithmetic.

[ [VL4], Valiant shows that the pfoblvm of computing thekpéf’ninncnt‘ is #P
complete, and that for all k that are not powers of 2, the problem of (omputmg the
permanent (mod k) is #P-complete. Computmg the permanent over the integers is

“believed to be a very hard problern, and no fast’ procedures are known.

The case k = 27 behaves a little‘diﬂ'er'éh'tl"y from other values of k. Valiant's

argument for the #LP comp]eteness of the pcrmanent (mod k) is inapplicable for
~ these values of k. At the same tlme note that for k = 2 computing the permanent
is identical to computing the determinant, a problem for which efficicnt algorithms
are available. Therefore, it is not. ?mmcdfately clear whether k = 2 is a special case

because functions in #, P are easy, or because they are hard.
Proposition 6.10
The following problem is #sP-complete: _.
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COMPUTING Af
Input: A circuit computing f B" — B md an n- tuple X € B"
Property: \f( ) =

Proof:

COMPUTING Af is in #4 P since Af can be computed by nondeterministically
sclecting each possible Boolean n-tuple, checking if it is less than or equal to X,

and if so, simulating the computation of the circuit on that n-tuple. Af(X) =

- ®z<x f(Z),s0 Af(X) = 1if and only if the number of accepting computations

(mod 2) is 1.

Ori the 6ther hand, for f ‘BB,

Af)= /62 1z
1, the number of Z with f(Z) = lequals 1 (mod 2)
0, the number of Z with f(Z) =1 equzi-ls Oy(mod‘2)

A polynomial time algorlthm ¢an be simulated mth a polynomml sne circuit.

" Therefore a fast procedure ot computm«r Af(‘\) from a cireuit. for f would give

a fast procedure’ for solving any problem in # P\ — sxmulat,e the NTD\/I with a

* eircuit and evaluate Af( ) "

Valiant and Vazirani [VAV] have recently shown that a fast random pr‘oce‘dﬁ‘reg for

'solving problems in #P would imply the existence of fast random procedures for any

problem in N P.

Various simple functions B® — B like the linear functions, elementary symmetric

functions, and threshold functions, which are known to have O(n) circuit complexity,

also have A-transforms with O(n) circuit c”bmplexity.;Given ‘these examples, and the

notion that a polynomial and its coefficients ought to have similar complexity under a

. -Tobust complexity measure, it' would bé ihtere‘sting to-know whether the existerice of

_.a small circuit for f always implies the existence of a small circuit for Af.

Y




— Chapter Seven —

SET COMPLEXITY

This chapter introduces the fundamental notion of set complez'zty, and relates it
to previously-defined measures of combinatorial comple\:xty A number of new results
are presented which reduce open questions about cnrcuxt complexity to questions about

set complexity which, on the surface at least appear to bc more amenable to attack.

Bel'ore dclimng set complex1ty, let us revxew the measures of complexity dlscussed

in earlxer chapters

Tne circuit comploxnty of a set of functxons from B™ — B, or of a function from

: ‘B‘ - B, is tlu size of Lhe st 1llvst cxr( wit w ln( h unnputc: the coordinate functions

’fl, f_», ,f,,, from the elemcntdry l'unctmns 1, T2, < yEn, whe_re a node of the circuit
is one of the 16 two-input, one-output Boolean operatdrs By extension; the circuit
- complexity of an m X n Boolean matrix [a;;] is the circuit complexity of the m linear
functions |
f(zly @ uz]; 1 S i S m.
The lmear complezity of an m X n Boolean matrv{ is the size of the smallest
- circuit computing the m lmear functions e e k
f(zh @ alJIJ! 1 <i<m, o
‘where a gate takes h; and h; to hy @ hy. Since e:ich"l'ur‘l‘ction produced dufing the
computation’ is linear, the circuit can be thought of as acting on #n-tuples, where
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(ay,ay,...,ay)is shorthand for ayxy (D arze O (Dayry,. Since a; has cither the value
0 or the value I, one can also think of the circuit as acting on subsets of an n-element
set S = {sy,...,s,}, where the n-tuple (ay, ..., ay) corresponds to the subset Lo N,
in which s; € Ail and only il @; = 1. Thus, the basic oper:xt,i(‘)n(()f:lkin" Clreuit ke
the scts A and A’ to the symmetric difference of A and A'. Therefore; the problem
of computing the lingiar functions fy,..., fi from:the clementary functions zy,...,Z,
becomes that of synthesizing the characteristic sets corresponding to the f; from the

atomic sets {s}, {sa},---,{sn} using only the symmetric difference operator.

Definition 7.1

The set complexity of an m X n Boolean matrix [ai;] associated with the linear

functions
f(ml» ;zn @a’l]mji 1 Szé m,

is the size of the smallest circuit co'mputing the characteristic sets of the f; from the
atomic sets {s1}, {sa},..., {sn}, over the basis of the 16 two-input, one-output set

operations.

By restricting the class of operators, one can define U-set complexity (Cry—set})s
in which only union of sets 1s perrmLtcd or monotone set complex1ty (Crionoset)s
in ‘which only union and mtersectlon are permltted V-sct comp]axnty and N-set
complexity can be defined analogously However the former measure is exactly
identical to the linear complexity Cgy of Chapter 2, while N-set complexity is relatively
uninteresting, since it is dual to U-set complexity and since no non-trivial sets can be

produced from the disjoint atoms {s(},..., {s.} by intersection.

The U-set complexity of a matrix [d‘ij] is identical to the circuit complexity over

the basis {V} of the functions {f;} : B" — B defined by

fi(zh 2:n. V a;;Zy,

j=1

and to the complexity over the basis {A} of the functions.{g;} : B" — B dcfined by



: ‘g;(m, yxn /\ a;;x;.
J—“l

| :lemnpic 7.!.1:,

The followmg row vectors afe ds:omated with the nodes of a circuit computing a

function whose complexnty is C(F) = 4:

Zy

Ij
Z4
TiA T |
(1 Az2) D 2y
23 % 1'4‘ "

(z1/\:r-z)6}(:c3V:r}). i : o

Iinmmplc712 Foha ST e

The f'ollowmg functlons are assocmted w1th the nodes of a circuit Lomputmg a

functlon v'hose cornple‘uty 1s C’@(l“) = 4

-

: zl
z2 -
z3
Z4
| 21Dz
z P z3
W z) D zy (D 5‘3;1‘



’ T n®n®n.

anmplo 7.1. 3
The f()ll(;xvxng row vectors ‘are assocnted wah thc nodes of a cm,mt computing a
matrix with compleXIty C'm([a”]) =T
row vector characteristic set
~ (1,0,0,»0,0) oo qs}

(0,1,0,0,0) {s2}
(0,0,1,0,0) {s3}
(0,0,0,1,0) {s1}

(00,001 . s}
(1,0,0,0,1) (51,55} = {51} U{ss}
(1,0,0,1,1) ,,{81,34,35} {s1,55}U{s54}
{1,1,0,0,0) {1, 59} = {Sl} @ {s2}
(1,1,1,0,0) "~ {s1;s2,83} = {s1,82} U{s3}

w/, (1,1,1, 1,,1) P {sylff%s-'i’s,’hsf'} = {31,54,55}U{s|, s2,53}

(0,0,1,1,1) {s';,'84,sr} = {sl,s 83,851,551 D {s|,s)}
(0,0,0,1,1) ”'{s,, s5} = {sl, 54, 55}0{9;, 51, s'r,}

For a given m X n matrix [a;;], the following relations follow immediately from
the definitions: , ,
Oset([aij]) S Cmonoset([aij]) < CU fsct([Qij])
ert [aq] < CV sct([az]] ( @ auz_)}l<n<m)
CH{P aijzitici<m| < Ce—sct([aij])'
J’=l
Fach one of the on’ n X n Boolean matnces can be gcnerated from the identity

function under each of these modcls of computatlon By using the constructions

of Theorem 3.12 or Lemma 3.11, it is possxble to construct any m X m matrix in

TS



9 : L ' , S .
~ n*/2logn steps, or any n X 2" matrix in 2"' '~ 2 =2 steps under either the lincar .

model or the U-set model, and hence under any of the models.

On the other hand, by (‘mm!ing the number of n-output circuits that can be
constructed with a given numbvr of gatos as in Theorem 2.5.4, one can show that
for each of these UlOd(‘lb sotiie 7 X 7 m"xtn*( hms complemty ~ n- /2 logn Thus, the

hardest functions in each model have the same asymptotlc compluuty

Set complexnty s equlvalent to the circuit’ complemy of a Boolcm funcbxon ona

ﬁmte non-Boolean domain.

Pfopositio;l 7.1.4
; Suppose [a;;] is an m X n Boolean matrix and [b,]] is an Ic Xn ’Eoolean matrix.
Then R , ‘ | | |
 Cocsalles] | ) = CalP | 6),
-where F: {1, 2,..,n} > B" ﬁés coordinate functions
fz(y‘)—am" 1.‘<_"i?’§7?ri,1§f$'ﬁ; S
and where G {1 2,. ,n} -~ B’f has ’c‘éqrdirlaté functions g

a(f)=by, 1<i<k1<j<n

Proof:

The function f,( ) is the characterlstlc functlon of the set of entries with value 1
in the 2% row of [a;;]. The function g)(5) is the characteristic function of the set of
entries with value L in the ' row of [by]. If w € {B* = B}, then w(hi, b)(7) =1
if and only if w(hyj, hyj) = 1. Thus,'any circuit for [a;;] | [b;] in the set complexity

model gives a circuit for F' | G in the circuit complexity model, and vice versa. ]

In particular, Cq_ {“u] ’CQ(F | G), Where G: {1,2,...,n} = B* has coordinate

ol ={ Log=i

0, otherwise. N

furictions
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Since set complexity measures the number of operations necessary to compute one

set of subsets of a finite sct from another, this measure does not depend on how cither

the elements of the finite set or the target subsets are ordered. Thus, permuting the -

rows and columns of a matrix does not change its set complexity. .
Proposition 7.142

T [A] is an arbltrary Boolean matrv{ and [P] and [Q] are permutatxon matrlces ‘

then CM [PAQ]) .,C,([A])

Prool':

“The inputs or outpits of a circuit'can be permuted without changing the circuit’s
complexity, so0 Csot([P1A] | [P2B]) = Cset([A] | [B]) for any permutations P; and
Py. Thercfore Cuu([PAQ]) = M([PAQ]' | 11]) = CeallA@] | (1)) By Corollary
2.2.1.3, C,([AQ] | [I]) gct([A] | [@ l] ancc @ is a permutation, this last
quantity equals Cier([A] | [I]) = ( Cour((A]). ®

The formulas for computing Cqo(F | G) that were given in Chapter 2 remain valid
for their set comple\nty an’mlogs smce the prool’s of tlwsc theorems were lndependent
of the domain ol‘ Lhe funotnons F and C: Accor(lln" Lo Lhe l'ollo\\mb rebult it is not

difficult to check whether [G] generates [F]. 4

“Theorem 7.1. 5

For 1 = {w B" - B}, {EB} {/\ V} or {V} the followmg problem is € P:

BOOLEAN GENERATORS

Input: Anm >< n Boolean matnx [F] and an k >< n Boolean matrm [G’] | ‘

Property: ’l‘he rows of G generate the. rows of I’ over Q

Proof:

. In the case of any of these four bases, checking }vhetl\er' [G] generates {F] can be

performed in a number of steps that is polynomial in n, m, and k.- -



Suppose {1 = {£: JEER. B}, By Theorem 1.12 [(.] ge n(r ales {[] il and only if
whenever two columns of [F] are dxstlmt Lh( eorrespondmg, columns of [(:] are
distinct. Hms the requlr(‘d checking can be performed by sortmg, the u)hunm of

[1'} and comp'mnﬁ thém with the corr(\pondmﬂ‘ (olumns of [(1]

Supposc Q= {@} Whether [G] generates [F] ‘can be checked by forming the
(m+k)Xn matrw [H] whose first m rows are identical to those of [F] and whose
 last & rows arc identical to those of [G], and then putting [G] and [H] into Hermite
normal form via Caussxan ehmmatlon [G] gencrates {F] if-and only if [C] and [H]
have the same rank. -

Suppose that Q == {A, V} and that [f,] is a row in [F] One can' check if [G]

- generates [fl] by checkmg if SRR BRI e

=V ( A [gd)._ |

JU‘: =1 llgh =1

Suppose @ = {v} and [£;] is 2 row in [F] [G] generates [f,] if and only if

[fgl -y [gdn ;

: gl<f|

For ﬁxed i and ] only n comp"u'mmm are r(‘qlnrod to dotcrmme 1f a < j', 1

Next, a result analogous to Proposition 2.7 is presented. As in the case of circuit

complexity and linear complexity, savings in operations can be had in the set complexity

- model when computing the same function on disjoint sets of variables.

. ~Theorem 716 e ‘ T TR

Let [a;;] bean m X n Boolean matrix, and let Cm([au] M) denote the number of

set operations necessary to compute k dxsjomt cople: of {au] Then

sct [au]( )) < Oset([azJD + 2nk + mk —n — k

Proof:
‘The matrix [a,-}](k) ‘cbrrésbe‘nding to k di'srjbix}t')'eop‘ies’ of [a,jj has ‘dimensions

km X kn. The (pk + 1, gk + 7)™ entry of [a;;]®) is a;; if p = g and is 0'if p 5% q.
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fagl O - O

o | O el

Lop o o falh
The following procedure synthesizes [a,-j]“"). First, form the n X An matrix
consisting of & copies of the n X n identity matrix:
Teal= (1] (1] -~ [}
[Tt ] has set comp‘leXit}f"'n(k'i 1) Next, make an m X kn fhati’ix"tthiStih‘g of k
copies of [a;;]:
(Ak] = [lai} lei] -+ lagjl]-

The set complexity of [AL] gwen (k] is the same as that of [au] Next, form the

k X kn matrix

o[ for e Ol
v =|8 W)
o o - [

where the submatrices [1] and [0] have dimension 1 X n and are filled with 1s

and 0's respectlvcly The set complcxxty of [Ug.n] is k( 1). Finally, compute the
“micet ‘of each row of [Ak] and each row of [UL ,,] The rCaultmg matn\ is [au](’”)

‘Thus,”

| ' Csct([A(k)]) = C"sc‘t(\k[aif]) + n(k—l) + ]"(n "1) + km = |

Therefore if [a;;] is a fixed n Xn matrix, limg_o(1/nk) m([au](’“ } < 3+ o(kn).

That is, in the limit the number of operatxons per input to necessary to compute [ 1(’“)]

does not exceed 3.

Set complexity can be related to the circuit complexlty of Boolean functions in

the newhborhood of 0.
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Deflinition 7.2

Let F': B™ — B™ have coordinate’fuﬁct‘iqns f;ﬁ, ooy fon . B" & B The impulse

matrix of [ at (0,... ;()), 1], is thé m X n Boolean matrix whose o™ entry is

T T
: f,‘(O,...,O)@—é(o,f;.'.';0)='f,‘(:ti,...‘,I;tN:j‘_—_l‘af k=i .
afj =0 otherwiase

[I¥] is equal to [T;:(0) — F(0)], where T is the tangent to F..

Proposition 7.3

Let F': B" — B™ have impulse matrix [[5]. Then

C'n-,-seity(v‘[-’ !])S Q(l(ﬁ')-

Proof:

If the circuit gOmpléxity of F is C(I) it means that ﬁhere exists a circuit with
C(F) gates which computes F from {zl’,...k,zn’}. If so, consider the;restricti;)n
of I to elements in B™ of weight 1. Mapping 1 to z, 2 to zy, and so on, this
restriction can be pulled back to ‘a';fUn“(:tildn’/from {1, 2,... ;n} to B™. Tn the same

way, the functions zy, 73, ..., z, from B® — B correspond to the functions

0, otherwxse

“from {1,2,. ,n} to B By Corollaty 7.1.4.1, there must be a circuit with C(F)

gates computing [I] over the set complmnty model.
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Example 7.3.1

SL p'rogrdm - »)ripolyn’()'fnzvgll o ) - row of  set
ffdmgci;'cﬁit AR re;orescnfatzon“;i h i ;‘z'/‘mpu.rlﬁsé’ B
S hzdtréx
zy Ty | 1000 {si}
T2 Ty e o 201000 2 {sa}
z3 SR 0010 {53}
z4 gy S e 0001 {54}
TI ATy _ T\ Zo : | 0000 ]
(21 Az2)V 23 212223 D T1ze D23 0010  °  {s3}
m xlzoz;@ Z12y @ a:;EBl 1101 {s1,52,54}
z3V 24 e x3x465z369z4 o oo {5354}

((z1 Az2)Vz3)D (1‘{1 Vzy) zi2273 D iz D 2324 P4 Pl 1110 {s1, 59,53}

Thus, if there is a circuit computiné F over the basis (1, there is a circuit of the same

size which computes {Iy] in the Q-set model.

¥oT

The next result cquatc:. Lhe set complmuty of a nmtnx to thc c1ruub complemty of
a partially-specified Boolean function, or equlvalently, to the complu(xty of the easiest
member of a large set of Boolean functions.. :

Theorem 7.4

. Let [a;;] be an'm~X n Boolean matrix. ;‘The‘n"“f

Gnowle) = , gin, {cn(an( I=lel)

" In other words, the set complexnty of an m X n mmtnx is equal to the circuit

complex1ty of the ea51est functxon B" : B"’ w1th that; unpulse matrlx

Proof
- "By the proof of Proposition 7.3, if there exists'a circuit for any F with {I5] = [a,i],

there must be a circtit over the set comple\nty ‘model for [au] ‘with the same
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number of gates. On the other hand, if there exists a circuit for [a;;] over the set s
modol a cxrcunt with the same Boolean gates Computes a funcllon B - p" whose |
| unpulse matrw is [aU] Alternatlvely, the resulL follows (llre(tly from Proposmon R

T (md Corollary 2.2.1.1. g

Corollary 7.4.1

- Il F is a linear function with matrix [a;;], then' .

Coal[aij]) < C(F) < Co(P)

Corollary 7.4.2

l

vrt([az]l <C({ {7;11’ ;,}l<¢<nz)
SC{v}({ _Vl aijIJ‘}lgigm)-

Corollary 743 R k; " R | - \,,/
, ~ Let P b" - B", and let J, (:rl, ,:r,,) be the Iuobmn of F evallnted at the

txpomt (3:1, ,:z") € B". Then o ’
sct(Jl' (Z[, 12:1{)) S C(F) +n
Proof:

Consider the restriction of F to elements in B" differing from (z1,..:,24) in a
single component. A circuit for this restriction corresponds to a circuit in the set
complex1ty model which computes Ji(zy,. . ,a:,,) from the 7 X n matrix whose
z] entry isz; Pl when t=7j and is z; otherwxse Since thls last matnx is simply
an 1dent1ty matrm whose ¢ % row is complemented 1l' and only if =1, its set

complexxty does not exceed n. The trxangle inequality gives the statcd result

- The next result shows that it is possible to determine Coet([asj]) exactly for the

: ,hardest matrices with m rows ard more th'm QM em —2 columns
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Theorem 7.4.4

Coer([Fullm ])—-2’"+1 3m 2.

Proof:

Cy—set([Fully]) is an upper bound on Cset([Fullm]). By Corollary 3.10.1,
Cy- set([.rull )= C@(full )—2",‘“’1 ~3m — 2.

f To obtarn a lower bound, ﬁrst note that by Proposrtron 7. 1 4, Cyet([Fullm]) is the
- size of r,he smallest circuit: computmg the functions fi:{1,2,...,n} - B from

the - functrons_ {1,2,...,n} = B of werght 1. Let N; be such an optrmal circuit,

supolemented with fanout nodes so that it observes the conventions of Theorem
3.2. M has 2"‘ —-m =1 mputs, m outputs and Coset([Fullm]) computational

nodes. Since each cornputatxonal node has two inputs and one output and each

‘ fanout node has one input and two outputs for the number of sources and sinks

‘m the network to be _equal, the number of fanout nodes in N; must satisfy

f—‘-n —‘-2Cset(1}’ull ]) = 2"‘»—m -1 +2f -*-C’,ct([?ull ]) Thus, Cet([Fullm]) =
f+2m= om —1.

Consrder the circuit Ng obtamed by deletlng from M every w1re leavmg a fanout
‘node. Srnce NQ has no f'anouts it conslsts of a collec’cxon of drsconnected components,
ijeach of whrch is a bxnary tree If N1 is optrmal each mput vertex has at least
N one output vertex as a descendant so the root of each of the trees in Ng which

contams an mput vertex must be erther an output or a fanout node

J.

: fSuppose that some tree in No contains two input vertices, say ones corresponding to

 the functions (g;(z) =1 = z=1) and (g;(z) =12 = j). By hypothesis, these

two inputs share a common descendant in N to which they are each connected

- without passing through any fanout node. Consider the function computed by this
_common node. If A(7) = h(j), then every node in Ny which is a descendent of the

- common node, including the outputs of the circuit, must compute functions which

have identical values on the arguments 7 and ;. But this presents a contradiction

since the 2" % 'and j** columns of [.’r’ ully,) are drstlnct Suppose then that h(7) £ k(7).

* But this'is also a contradxctlon Since Nl is not optrmal Consrder the following

: cases
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: Two Inputs in the Sa'me_‘Tree of Ng

~(a) Both 1nput vertxces are connected dlrectly to the common computatxonal _

" node. If h(z) = 1 and h( ) = 0 "the common node can be replaced by g¢;. If

h(3) = 0 and h( ) =1, the common node can be replaced by 9;-

, (b) Both mput vertxces are separated from the common node by at least one

other node In tlus case both mput vertices can be dlsconnected from the circuit,

and the ﬁrst computatlonal nodes beneath the mputs eliminated. Smce g: and g;

| are 0 on all arguments other than ¢ and j, the two deleted computatxonal nodes

must act 1dentxcally on all arguments different from ) and _7 That is, the two
deleted nodes each compute the 1dent1ty functlon the complement functxon, or
a constant function on all inputs not equal t6 7 or 5. This computatxon can be

absorbed into the next lower node(s) of Ny. When g; and g; are dlsconnected the

‘¢ommon node computes a function that is identical on 2 and 7; this function can

be restored to its correct value on these arguments by addmg to it either g; or g;.
This costs one gate, but two gates were saved by dlsconnectmg the inputs g; and

9 s0 the resultxng circuit computes the same functions as }J and has one fewer

- gate, -

(¢) One‘input vertex is separated from the common node by at least one other

node but the other vertex is connected to it directly. As in case (b), each input can

134



be disconnected and the first computational node beneath the nodes eliminated.
The common node, which is deleted in this process, is replaced by a node fed by

o .one of the two input vertices to ensure that the correct value of the function is
; ‘cor'nnuted on inputs ¢ and j. The action of the topmost deleted node on inputs
different from 1 and y can be absorbed 1nto the ﬁrst computatxonal node beneath

"‘1t and that of the common node 1nto the new node whxch replaced it.

Therefore 'ench tree in Np con'gains at most one-input'vertex. However every row
- of [?ullm] has weight 2™~1, so any tree whose root is an output vertex cannot
- contain input vertices. Therefore each input vertex is contained in 2 distinct tree
~whose root is-a fanout node, and since there are 2™ —m — 1 input vertices, Np
‘must contain at least 2M—=m—1 distinct fanout nodes. ‘Nj.also contains this many

fanouts, whence Cyp([Fully]) > 2"’"“} —-3n-2.0 -

Corollary 7.4.4.1

- Suppose [a;;] is a logn X n matrix. Then C’s;g([a;j]) < 2m*+l_9m — 1. This
~ maximum is attained if and only if [a;;] contains {Fulljgys] as a submatrix and [as]

. contains no columns consisting entirely of zeros.

“"Proof

If [a,J] has k columns which are identical, then Cm([a,]]) =k—1+ Ciet([bs5]),
where [b;;] is {au] with all but one of the duplicate columns deleted. If [a;;] has
a column of welght 1 then C’set( a,,] =1+ C'set([b”]) where [b;;] is [a;;] with the
singleton column removed. If [g;;] has a column consisting entirely of 0’s then
Cuet([as;]) = Coet([bij]), where [bs] is [a;;] with the column of 0’s removed. §-

g

The next result shows that the set complex1ty and monotone set complemty of any
matrix are identical, up t6 a constant factor. This i is very dlfferent from the model of |
circuit complexity, where complexity over the monotone basis and over the complete
‘ basxs can be quite different. For example, Boolean matrix multiplication requires O(n3)

gates over the Inonoton‘e basis [MEL, PAT] but can be performed with O{n?%! log? n)

L . gates over the basis ..{‘” : B — B} [FME]. Paul [PAU] has even shown the existence
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If gate g;"is connected to gate g]-”in*a:'circixift’ over the U‘-set’model, and f; and

f; are the n-tuples computed by g; ‘ar'id"gj respective]y, then' f; > f;. Therefore,

each row of [a;;] must be synthesized independently. Each row contains & 1’ S, SO

its synthesis’ requlres k-1 U operatlons therefore Cl et [a,]]) ~ k3 = k15,

’If [a,J]n is the matrlx descrlbed above when n= k2 and the n X n zero matrix

for other values of m, then the characteristic function of [aij] can be computed by

- a Turing machine in a number of steps polynomial in 7. Turmg machines can be -

- efficiently simulated by Boolean circuits [PF1], so this means that the characteristic
- function of {a;;], has a circuit of pslynomial size. But this is impossible if C,q is
* bounded below by KCj _,; for- any constant K, for then char{aw] would require

’ exponentxal—sme circuits for some values of n.

Thus, while Omonosec([aij]) = Cset([a{j]) up to a constant factor, the same cannot
be said of Cy _set([a;j-]).

* Tt should be noted that the set of sequences of Hitrices with linear U-set complexity
“is distinct, not énly fr'em the set with linear set co‘mplexi‘»ty, but also from the set with
linear complexity over {@}. By Lemma 2.2.2, there exists a'y/n X /n matrix [M] with
Cy—set([M]) > (1= €)n?/logn. An n X n matrix [a;;] consisting of \/n copies of [M]
along the main diagonal and 0’s elsewhere has C|j _ei([a5;]) > (1 - e)nl®/ logn.

(M) Y 0]

N 0
=) N
e

On the other hand, the Strassen matrix multiplication algorithm {STR; Appendix C]
_provides a scheme for computing [a;;] with Cvesez([l\’f]) = O(n11%%) steps. Theorem
- 7.1.6 provides a scheme for which Cyu([a;;]) < O(n). ..

The ‘relationshib between set eemﬁleiit&" and cirehiﬁ“eom;“)llexitfy“di‘scussed above
can be sharpened in several ways. Flrst note that 1f [a,,] is exponentxally-zopmded ie,

if m = K logn for some constant K then a lower bound of 2n + K log? nloglogn —
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2logn — 2 on Cyy([a;;]) suffices to give a nonlincar lower bound on the complexity of
charla;j].

This is numerically quite close to the set complexity of known matrices. For
example, Corollary 7.4.4.1 presents a matrix with dimensions log n X n with Ci({a;, 1) -
2n — 2logn — 1 and Proposmon 3.15 demonetrates a matrix with dImLIISlOIlb (logn +

loglogn) X n for which CU—‘"'t([alJ]) > n + \/2—ﬁ + O(logn).

The problem of displaying a concrete function B™ — B" with nonlinear circuit
complexity is open; this problem can also be reduced to the problem of finding a

lower bound on the set complexity of a matrix. Again, consider an m X n matrix

[a,]] This time, i nstead of looking at the characteristic functlon of [ay], consider

», a;; to be shced mto m logn horlzontal bands W1th logn rows each. Consider
7

the Boolean functlon whose truth table consists of the m/flogn] bands of [a;;]

placed end- to- end W1t,h enough paddmg so ‘that both the length of a band and the

number of bands are powers of 2. Denote thls function, ‘which has [logn] outputs

and no more than flog n] + [Iog m] inputs, band[a,_,] m/[log n] copies of a circuit for

band[a;;] suffice, when their “index” variables are set to combmatlons of 1’s and 0’s,

" to computé the m "functions whose truth tables are the rows of [a,J] By Theorem 7.9,

Cseil[aif]) < (m/[log, rﬂ) (i)and[au]) + zn o 2logn i 2 o H; o

This says that if [a;;] is square a lower bound of nlog®, or even nloglogn,

on the set complexity of [ai;] suffices to establish' a nonlinear lower bound on the

_complexity of C(band[a;;]). If {ay] is exponentially lopsided, a lower bound as low as
2n + K lognlogloglogn — 2logn — 2 suffices to establish a nonlinear bound on the

__complexity of band[a;]. - -

Thus, in numerical terms, the"igyayp between the lérglest set eomplexity now known

-and the set complexity required to displa'y nonlinear Boolean circuit complexity is vei-y

- small.
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— Chaptér:Elght -~ B

“BooLE‘AN‘,GRAthNTs |

- ‘l Looslély, one can say that a measure of computatronal comple*crty is robuet if

" minor changes 1n the structure whose complexrty is bemg measured result in only small

| v‘:’changes in comple‘(rty under that measure. Inturtlvely, a good “umversal’ measure
Cof computatronal or combmatorral complexrty — one which claxms to capture the
: ‘essence of the 1nherent cornplexness of : a structure, rather than merely the dxfﬁculty of

"syntheswmg it w1th a partlcular machme -—'ShOUId be YObUSt

, thtle seems to be known ‘concerning the question of whether the cxrcurt complexxty
of a ﬁmte Boolean function is robust with respect to geometrlcal transformatrons of
the matrlx representmg ‘the functron The purpose of this chapter is to discuss the
relatlonshlp between a recently-announced result concerning the algebrarc complexity

of sets of polynomials, and geometrlcal transforrnatlon of Boolean matrices.

~'Boolean functions ¢an be' represented by Boolean matrlces in any of several ways.
- Linear Boolean functions are linear maps between vector spaces S0 they can can

be represented by matrices in the usual way; ie., 56 that the column vectors show

the images of canomcal basis vectors from the function’s domain. A linear function

B" — B™ is represented by an m X n matrix.

A second useful representation is the truth table. There is a 1 - =1 correspondence

between Boolean functions B® — B™ and truth tables of dimension m X 2"; a function -

B" — B is a matrix with a smgle row. As one traces the progress of a Boolean

computation downward in a combinatorial circuit over Q = {B* — B} and tabulates
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the row vector which belongs to the function computed at each gate, the truth table
representing the aggregate outputs of the gates grows according to the rule that each
new tow is the componeht—wise product of two previous rows under some operation

from 2.

Theorem 7.9 and Theorems 7.3/7.4 reflect two different mappings between the set
complexity of a matrix and the number of operations necessary to synthesize a given
truth table. Theorem 7.9 is based on the observatidn that the process of computing
in the set complexity model and the process of building up a truth table are identical,
except for the choice of the starting vectors. The truth table with dimensions m X 2"
is built up starting from n row vectors of weight 2n=1 swhile in the set complexity
model a matrix with dimensions m X 2" is built starting from 2" row vectors of weight
1. The uppef and lower bounds in Theorem 7.9 reflect the cost of synthesizing one set
of starting vectors from the other. Theorems 7.3/7.4 are based on the fact that the
m X 2" truth table contains an m X n submatrix in which the computation process

looks just like computation in the set complexity model.

A function f: B" — B has a truth table with a only single row. An alternative
to forming a conventional table for f is to break this one very long row vector into
pieces of equal length and td stack them up to form a tableau. That is, if logm of
the inbut variabl.es—are distinguishea frofn .the‘ r'e‘lﬁainin.g w)aria’bles, then ;';a. one-to;one |
correspondence between functions B® — B and m X 2"/m tableaus can be established
by letting [a:;] = f(21,..., Ziogm» Tlogn+1,++ +» Tn), Where ¢ is the unary representation
of the (logm)-tuple zi,...,Ziogm and j is the unary representation of the n —logm
variables Ziogm41y - -y Zn- In the 1960’s and early 70’s, O. Lupanov, E. Nechiporuk, V.
Orlov, L. Sholdmov, and others used this rcpresentation of the truth table, together
with the “local coding” technique, to establish asymptotically tight upper bounds
on the number of gates or contacts required for various combinatorial problems. N.
Pippenger [PIB] used the same téchniqué in 1978 to obtain tight upper bounds on the

circuit complexity of the hardest monotone Boolean functions.

A third approach to representing Boolean functions by matrices would be to use
the representations discussed in Chapter 5, i.e., the gradient, Jacobian, or Hessian

matrices.
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By Theorem 7.9, the set complexity of a large m X n matrix and the circuit

complexity of the function represented by the 71X n'truth table differ by an amount

that is of order n..The characteristic function of the matrix is identical to the index

function of the function that is represented by the truth table.~ -~ = 7o

The complexity of the characteristic function is less than that of the matrix, plus
conversion factors of order n. The matrrx on the other hand, is guaranteed only to
be as casy as ‘the chiracteristic functlon tzmes n To obtam more powerful results
concerning geometrical robustness it would be desrrable to show that the structure of
the characteristic function, wh1ch'contams all of the information in the matrix, can ‘be

used to speed up its synthesis. "

The following surprising theorerrr,'based on a cléver but clementary construction,

was announced in 1983 by W. Baur-and V. Strassen [BAS].

Theorem 8.1

Let f be a polynornlal in’ 21, :1:2, N ,z,. over Z a.nd let L( f) denote the number of

addrtrons and multrphcatrons necessary to compute f from {xl, z,,; 1}. Then,

7
82:,, A

e

L(f) is the algebraie complezzty of the functron f There is a close parallel

‘between the algebraic complexrty of a set of polynomxals over the reals and the circuit

complexity of a set of Boolean polynomials. The A and @ operations, whrch correspond

to multiplication and addition over the reals, together with the complement operation,

~ which’ corresponds to adding 1, are a complete set of Boolean operators That is,

_‘ombinations of these three operatxons suffice to generate the other 13 operatlons

B? = B. Therefore, if éach gate in a comblnatorlal clrcurt 1s replaced by a combmatron

"of gates from {A, &, - -} that performs the same operatlon, and if real operatxons are
" Substituted for the correspondmg Boolean ones, then the new c1rcurt computes a set

~of real polynomrals whose algebralc complexrty 1s 1dentrcal to the c1rcurt complexrty of

the original function, up to a constant factor.
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o An elegant way to ‘map ‘between -algebraic complex1ty and Boolean circuit
complexrty is by using the following technique for representing Boolean functions
by real polynomials. This technique is used by Thayse, Davio, and DesChamps' in their
book on switching theory [DAV], but it is not’clearfwlth\whom it originated.

s Lemma's 2

Suppose F B" — B" has coordmate functlons f,, and is computed by a circuit

. blover {B2 - B} The cxrcurt obtamed by replacmg each

2@y gate with gates cornputmg' THY = 2zy;
zy gate with gates computing  zy, '

TVy gate with gates computing z 4y — zy,

I .gate with gates computing ‘1= z, T

0o gate with gates computing 0,

1 gate with gates computing 1,

TVy  gate with gates computing 1 —z — a:y,

THy gate with gates cbmpu‘ting. 1-z —,y‘_v—}- 2zy,
v, ‘:Ey - gate Wrth gates computmgl y=zy,

computes a functlon G R" — R" wrth the property that if f,(xl, .1Zn) =1 for
{z:} € {0,1} then g;(zy,.. i Tq) = 1 and if f,(z;, +1Zn) = 0 for {z;} € {0,1} then
gi{z1,. .0 z0) = 0. \/Ioreover if L(G) is the number of multiplications and additions
~required to compute G, then

| ams<uo <iaw).

Proof:

; "Inductlon on the size of the crrcurt shows that an output of the crrcmt for G takes
_ the rea.l value 1 whenever the correspondmg gate in the circuit for 7' takes the
Boolean value 1, and takes the real value 0 whenever the correspondlng gate in
the circuit for F takes the Boolean value 0. Each .gate in an optimal circuit for
Fe can be snnulated with no more than 4 addxtrons or nonscalar multrplrcatrons
«’Each addmon or multmhcatxon in the computatlon for G can be srmulated by &b

or A respectively to bulld a cxrcmt for F. 1
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To be able to apply Baur and Strassen’s result to Boolean functions, one would
like the mapping between real and Boolean operations to survive the differentiation
process. Unfortunately this is not quite the case, for the derivatives of the real functions
z, z2 and g? .ﬁre different (mod 2), while the three expressions z, rz, and zzz are

identical as Boolean functions.

A moré limited result does hold, however; .-

Lemma 8.2.1

If f7is a polynomial R® — R which corresponds to f: B® — B on {0,1}, and if

the degree of z; in f7 is less than 2 then

AN EA%
' (55;1- - 611'

~on {0, 1}, where &' represents ordinary partial differentiation of a real function with

respect to a real variable, and represents differentiation of a Boolean function with

respect to a Boolean variable,
Proof: [DAV]
f" = a+bz;, where a and b are independent of ;...

arff N
511,' o

b= flz; =1)— flz; = 0).

Since 8f/9%; = f(z; = 1) & f(z: =0),

(%) = flai=1)+ flz: = 0) - 2f(z, =1)f(z: = 0)
- [f(I.; = 1) - f(I.,: = 0)}2 ]

Example 8.2.2 . R o

| f=z223P 1120 Pz H1

f=1-2;- 2129 + 3217925 — 22y 29z}

e =ziz3P 1y
0z ©
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Thué Baur and Strassen’s result o'{tr'apdlateé directly or‘lly‘ to Boolean poljrnomia.ls
~synthesized by circuits whose computations, if modeled over the reals, would never

develop any polynomials of degree ‘greater than one. One way to ensure that this

happens is to restrict one’s attention to fanout-free circuits. In this limited context, the

gradient of a Boolean function has circuit complexity that is bounded by a constant

factor times the complexity of the function itself.

J. Reif [REI] has used this fact to efficiently calculate Boolean derivatives for the

purpose of determining all possible “stuck-at” faults in a digital circuit that can be

detected by a given Boolean test vector. For this application, the restriction that the

portion of the circuit that is to be analyzed be fanout-free is not a critical one.

It does not seem possxble to directly extend Baur and Strassen s proof to produce

small circuits for the Boolean gradient when the real version of [’s circuit generates ‘

poiynom:als of large degree

Let us suppose for a moment that the Baur and Strassen result does apply, at

least asymptotically, to Boolean functions. That i is, suppose that circuit complexity

has the following property.

- [Boolean Gradient Property] |
There exists a constant K such that for all n sufficiently large, and for all

f:B™— B,
on ) sxon

"’ 9z,

The Boolean gradient property says that one can compute the value of f at the
n points (21 B 1,22,23,...,%a), (21,22 D 1,23,...,:,_.), ey (Z1, 22,23, -+, Zn D 1) at
a cost that is at most a constant times the cost of evaluating f at the single point

(z1,...,2n). Now, let us look at two of the consequences of this powerful property.

First, given the Boolean gradient property, the circuit complexity of f(z1,...,Za, ¥1,..

and of {f(z1,... Za)},, ., are always approximately equal.
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Definition 8.3

Suppose f; : B® — B, for 1 < ¢ < m, are the coordinate functions of F : B —
B™. Let Indexy : Bntllosm] _, B be the function which selects the functions fiy le.,
Indezy : (Il;---:$n+[log}n]) = fi(z1,..., ), where Tatls -+ Tniflogm] is the binary

representation of the integer 1. Indezy is the index function of F,
Proposition 8.3.1
- Let F: B®* — B™ Then .

ClIndezy) < C(F) + O(m).

Proof:.

If {f:} are the coordinate functions of F, then

IndexF(i'i: - ) mm ﬂ:rl-l-l: "; - zn-}-rlogm]) = ylfl EB y2f2l @ fos ‘@‘ymel
where Ui =1e;i #‘Z.J{Iiglﬂ ;i:n+3-27.‘1. Binary to unary conversion can be
accomplished with 2/leem! 4 19,/2ffoem] _ ¢ gates (Lemma 7.8), and selection of

the appropriate coordinate function can be accoraplished with 2m —1 gates. g

On the other hand, if circuit complexity has the Boolean gradient property, it also

has the following property.
[Index Property]

There exists: some K 2 0 ‘such that for all n +m sufficiently large, and all
F:B" -~ B™, ‘ _
C(F) £ K C(Indezr) + O(m).

Proof:

. : fogm . '
Consider the function g : B*+2 °* 'L B givenby g(z1,...,Zn, Zper, ... 1 Ty porlogm) =
Indexp(zy,...,20,y1,... s Y[log m7)s Where y; =V Tn+j, the disjunction being taken

over all § with 1 in the ¢*# digit of its binary representation. Clg) < C(Indezp) +
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O(m), by Lemma .7.7. By the Boolean gradient property ther'é exists a circuit with

" complexity not exceeding K C{g) which computes

g, RN ' .
AT 02na1 . OTpgnionm |

B t Qﬂ%}ﬁﬂl = g(Iis---.;ﬁ:n)IT!+1!"‘}zn+j@1 :$n+m) @f(zlj"'

Trtlyee-1Tntfserey Tntm). I we set Tnir, oo Tasm to 0 in this last circuit, and

add output g to each of its m other outputs, we have a circuit whose i output
computes f(z1,...,%n,0,...,1,...,0) for each possible (Iogm)-tuple. That is, this

circuit computes

{Indezﬁ‘(zl)---;Imcl;-'- -1 Cllogm )}CEBUOKM = F(Ilr-' -rmn)- 1
[logm]

The index property says that the complexity of a single-output function which can,
depending on the values of its indexi'variabies, take the value of any of the coordinate
functions of a multiple-output Boolean function F', is bounded by a constant times the

complexity of £’ itself, plus a term linear in the'number of outputs. Geometrically, this
‘means that rows of a truth table can be broken off and stacked on top of one another

to form a new table with relatively little change in the complexity of the represented

function.

The index property is not only a consequence of the Boolean gradient property, it
‘is equivalent to it. Fér'suppos‘e [ : B® — B has complexity C(f). Consider the function
9(ZT1ye s T Yl -« 1 Vlogn]) = F(21, 22, -, Za D 1, ..., Ta), where o = ngl"] yi2k-L,
By Lemma 7.8, binary to unary conversion can be accomplished efficiently, so C(g) <
C(f)+5n. By the index property, there exists a circuit with complexity K(C(g)+0O(n))

for the n functions

f(II @1:9:‘2;23;“';371)
_f(Il,Ig@l,Ig,,.--,ﬂ?n)
flz1, 22,230 1,...,2n)

. f(Il:'IZ:mfh -'L'nEBl)-
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To complete the synthesis of the n partial derivatives of f, add flz1,..02,)

to each of these last outputs. The cost of the entire construction does not exceed
(K +1)C(f) + 3K + 1)n - 3K.

A second consequence of the Boolean gradient property is that an analog of
Theorem 3.1 holds true for set complexity, i.e., for all n sufficiently large, and all

n X m matrices [a;;], there exists a constant X > 0 such that

Coet([24]") < K Cour([es5]).

By ‘Theorem 7.4, there exists a function F : B" — B™ with Up] = [a;5] and
C(F) = Coer{[a;j]). One may as well assume that C(F) > m, since rows or columns
of weight < 1 may be added to or deleted from any matrix without increasing its set
complexity. Expressed as a Boolean polynomial, a typical coordinate function of F' has

the form

n
iz, 20) = i @ ) 0525 B ri(z1,..., 2,),
=1

where ri(z1,...,2,) is a polynomial all of whose terms have degree > 2. Given

ft,- ..y fmy With 2m — 1 gates one can form the sum

m
h(zlr"'sznryls'“:ym) = @ yifs'
i=1

|

s

1

n
@ iy Tyl +P(21,- Ty Yy rym)t
17=1

where p is a polynomial all of whose terms have degree > 2 in zy,...,z,. By the

Boolean gradient property, there exists a constant K such that

O( dh dh

dz;'"" " dz,

)gxqu

A typical derivative of h is

hi X dp
ER b=



~ where ea:c'h‘ter'm":in' dp/8z; has degree > 1 in zl,...., z,. Therefore, if zi,...,Zn
are set to 0 in the circuit whose existence is ‘guaranteed by the Boolean gradient
property, then what remains is a circuit which computes a linear function G whose n
coordinate functions are @7, aijyj. But [G] = [Ig] = [a;;]7, so by Proposition 7.3,
Caet{[aif]T) £ C(G):

Thus, given that the Boolean gradient property holds for circuit complexity, the -

set complexity of a matrix is of the same order as the set complexity of its transpose.
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-— Chapter Nine —

ONE-WAY FUNCTIONS

In this chapter, results given earlier are a.pplled to examine the relationship

between the circuit complex1ty of a invertible function and that of its ; inverse,

_ Deﬁmtlon 9.1

- Asequence of functions {F, : B" - B"} 1. o IsOne-wayif each F,, is invertible,
and -

lim =2 "/
Tl.—-*ngo Oﬂ(Fﬂ)

= co.
Whether one-way functions, in' the sense of Definition 9.1, exist at all is an open
question. No proof of one-wayness for a sequence of finite functions has ever been

exhibited,

By analogy with the transpose theorem and with Baur and Strassen’s result on
computing gradients, if circuit complexity is truly robust one might speculate that there
exists k > 0 such that for all n and all invertible F : B" — B", Co(F~H < kCa(F). A
equivalent formulation is the proposition that for all invertible F and G, CQ(F [ G)
kCq(G | F), since by Corollary 2.2.1.3 Ca(F | G) = Co(FG™1) = Cn((G'F 0=1} and
Ca(G | F) = Ca(GF™Y), and since Ca(F | G) reduces to Cqo(F) and Co(G[F) to
Ca(F~!) when G =I. No proof of this proposition is evident, however.

Most invertible functions B® — B™ have near-maximal complexity. Because of
this, a sequence of functions {F, : B — B"} chosen at random is one-way w1th

‘ probablhty zero. In fa.ct a stronger statement is possible:
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Propuosition 9.2

If {F,: 0" — B"} is a sequence of invertible functinns., then C(I"2Y) ~ C(F) \_)
with probability one.

Proofl:

‘For any ¢ > 0, il

then either (1 —€)C(F~') > C(F) or (7i7)C(F) > C(F~"). By Corollary 2.4.3,
| the complexity of any function B" — B" is less than 2" +0{2"), so F" can have this
" property only if cither C(F) or C(F~") is less than (1 — €)2" + o(2"). By Lemma

2.2.2, the number of functions F : B® — B" with C(F') < k2" does not exceed
(12]Q))¥2" (k2™)*¥"*". Therefore the number of functions B" — B" with either

C(F) < k2" or C(F~') < k2" does not exceed Ni(n) = 2(12]Q|)k"’"(k2")"2n+".

Let N(n) = (2")! be the number of invertible functions B" — B". N(n) >

- 989 (loge}2"gn2" Therefore for any 0 < k < 1, \J
. = N(n)— Nin) o= 1 }
A, ,Es(“w(‘r 2 m I (1= 5)

where d = (1 — k)n2" — (klog k +7.59k — 1.44)2" —n? + (} — log k)n = 1. But the
L la.st limit is 1, since the product 13 [(1 - ——) is bounded below by [Th—; ( 21,;),

. and hence converges. §

Most invertible lincar Booléan functions also have near-maximal complexity: by
Lemma 2.2.2 and Proposition 4.5 all but a vanishing portion of the invertible linear

functions I* : B® — B™ have

Ca(F) > C(F) > (1 — €)—
o(F) 2 C(F) 2 (1 — 57—
As a consequence, ‘the same counting argumcnt that was used in Proposntxon 9.2 \_)

can be applied to linear invertible functions.
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Proposition 9.3.1

IF{F,:B" -~ B"}isa sequence of invertible linear functions, then Co(F7l) ~
Cop(Fu) and C(F;1) ~ ~ C(F,) with probability one. o :

Proof:

By Theorem 3.12, Cq(F) for any linear F : B™ — B" does not exceed

n? + n?
_ o ——— .
" 2logn 2logn

By Lemma 2.2.2, the numbef of functlons B" — B™ with either C(F) < kn? /2logn
or C(F~1) < kn*/2log n satisfies

kn? )(ﬁ&+")

2logn

(_ki)

~ Ni(n) <2(12)0)\ T (
| < olkn? +0(n*/ 105 )

| BY Proposition 4.5 the number of invertible lincar functions B® — B" satisfies

i N(n) 2 (28)2"2 > 2:1“’ -2

Therefore for any 0 < k < 1,

17 ( N{n) = Nifn )) = ( - 1 )
lim —— > lim 1- =1.
”*°°nI=Ia( - Nm) *wn];l, 2(1~k)n?=0(n?/ log n)

Propositions 9.2 and 9.3.1 aré based on the fact ‘that nearly"all functions from

B™ — B™ have near-maximal complexity, which in turns reflects the efficiency of
combinatorial circuits in generating a large number of functions with a small number

of gates. That is, since there are very few easy I'unctions a randomly chosen invertible

lincar function nearly always has complexity close to and, for the same reason,

JI ogn

2 .
its inverse nearly always has complexity close to ,—’"—-- A deeper question is whether
a function chosen at random among easy functions has an easy inverse. The upper
bound on the complexity of memoryless functions that was established in Chapter 4

establishes a limited result along these lines:
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Proposition 9.3.2

Let Ng be the number of invertible lincar functions F : B* — B™ with circuit

complexity not excceding C. Then for all n ‘su{.ﬁcicntly large and all C > 2n, at lcast

VN¢ — o(y/N¢) such functions have

Proof:

By Lemma 2.2.2, Ng¢ S- KCCC+n, for a constant K depending on the basis.
Let MC be the number of functions F : B® — B" for which Mg(F) < C. By
Theorem 4.4, every 'invertible linear function B™ — B" can be computed by a

**'memoryless circuit of size

n? T .
( ) But a memoryless circuit of this size can
I gn logn
2 2
be considered as a cascade of <+ 0( -
¢ lop,n k Clogn

) circuits of size C. By Proposition

4.5, there arc more than ('.2.8)2" invertible linear functions, so Af; must satisfy

P
n2 n=

szlnln+o(010;n)__>_ (28)2”

Tha.t is, log Mg 2> Clogn - o(l ) Por all n sufﬁuently large, MC > nt

- All of the functions with Mg < C have Mg(F~!) < C, since reversing the order

of the operations in a memoryless circuit for ' produces 4 memioryless circdit for
Pt '
By Lemma 2.2. 2 at most I&(g)( )(2 ") functlons B" - BN can have C(F) <

c
C/2. By the same counting argurnent, at most K(%)(-‘})(‘ ") functions can have
C(£~1) < C/2. Thercfore there are not less than

c-1_ 21{(9(2)(%“)

2
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distinct functions F : B® = B" for which CiFy<C, cFrY <o, cry>c/e,
and C(F~1) > /2.

A direct calculation shows that for all n suﬁ'ici.ently' large and 3n < C < n?,

> 0,

w01 _ax(8)(€)(

2
and that the square of this quantity is less than KCCC+n,

If C is'less than%ﬁéL, somewha.t stronger results can be obtained by this same
argument For example, given any € > 0, for C = nlogn and all n sufficiently large,
the number of linear invertible functions with
C(F~1

5 S T

<2
is not less than NV (GI-"E)I.

According to Theorem 3.1, the complexity over {B} of every square matrix is
ezactly equal to that of its transpose. Is it possible that a similar relation holds for the
circuit complexity of a linear function and that of its inverse? What about the circuit

complexity of an arbitrary invertible function B® — B" and that of its inverse?

Each of the 24 invertible functions from B? i:o B? docs reqﬁire 'exact]y as many
gates as does its inverse (either one or two, depending on the function.) What about
the case n = 37 There are 2% = 8! = 40320 invertible functions with three inputs
and three outputs. It is not necessary to examine each individual function to verify
the hypothesis that C(F) = C(F-Y, however. If Fy = PP, where P and P,
are permutations, I and Fy have the same circuit complexity. In addition, if C,
and Cy are complementations of inputs and outputs respectively, F| and C.F1C; will
normally have the same circuit complexity over the 16-gate basis {w : B® — B}, since
complementatién of inputs and outputs can be absorbed into the top and bottom gates
in the circuit without changing the total gate count. The only exception occurs when

an input wire is connected directly to an oulput wire without any intervening gates.
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However, when this happens, complementation increases the complexity of a function
\ and its inverse by the same number of gates. Thus, it suffices to consider one member . J
of each equivalence class under permutation and compiementétion. These classes have ‘
been enumerated by C. S. Lorens [LOR] by using a variation of DeBruijn’s Theorem: he
finds that there are 52 classes, and lists representatives of each. 24 of the functions are
equivalent to their own inverses. The' remaining 28 functions are listed in Appendix D.
Heuristically determined minimal networks for these functions are shown in Appendix

E. In each case, the circuit complexity of the function is same as that of its invetse.

.., It turns out not to be true, however, that C(F) is exactly equal to C(F~1) for all
n, or that Cgy(F) equals C@(F;l] for all n. A sequence of linear functions {F,} for
 which C . '
oFs) - CalFa)) | |
OfF) ~ ColF) '

is presented below.

Lemma 9.4

. Let S. be a set of functions {fi,f2,+--,fa=r,91,92,.--10r} in the variables
{z1,29,...,2Zn-r}, and a_.Ssu’me that none of g¢y,...,g, are idenﬁ.icalljr zero. Let S,

“be the set of functions | ‘

| Ui oo e ® o102 Zcrsts o0 @ 20}
in.the variables {;1,32,...,zn}. Then | '

. Cals) =Cgls) 4+

‘and R |
| asy=os)+r

Proof: |
- The transpose t'hed:rem (THeOr'eiﬁ 3.1) gives the first result. .By- definition, the

n X n matrix | ' _ )

N [G Ij’ - \J.
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which contains the r X  identity matrix and the (n—r) X (n—7) matrix [#] as

submatrices, has complexity Ca(S,). By Theorem 3.1,

[F”' (;"‘J
0 I

has complexity C(S;). Since the last r rows simply represent an identity function
on the last r inputs, their synthesis takes no gates at all. Therefore, the complexity
of

[FT G7]

is also Cg(S;). Using the transpose theorem again, the complexity of

i
G
is C(S;) — r. But this last matrix represents S.

The second result may be verified by the following argﬁment. Suppose that we
have a circuit for S, with C(S,) gates. Successively set Zp_r 11, ZTn_ris,..., 2z, to
zero. Since in each case an output depends on one of the Z,_r4+i, together with at
least one other variable, zeroing Zy—r+; allows us Lo eliminate one gate from the
circuit, When all the z,,_,,; are zero, the circuit computes S, so C(S)—r > C(8).
On the other hand, C(S,) can be synthesized by first building S, then adding
Tn-r+ly-++1Zn to the outputs gy,...,g,. Thus, C(S,) ~r = C(S). n

Lemma 9.5

For any integer d > 0, and n = 4d, there exists an n-input invertible linear

Boolean function F on the variables T{,Z3,...,Zy, and a circuit computing F, with

the following properties. Denoting the set of intermediate functions computed by the

circuit as INTER, and the set of coordinate output functions by FINISH, we have:
CINTER)=4d—1
C(FINISII | INTERU{z\,...,2,}) = 2d
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CUNTER U{z,,..., 2} | FINISH) =17d - 2.
Moreover, these relationships hold if C is replaced by Cg in each equation.

Proof:

" The coordinate functions of F are

Hi=mz
fa=1=
f2d= Tad .

foar1 =Z1 D ... D 24 EB Tod+2 EB B '-"4d
fodrz=21D ... B 2ogs1 P T2a43B ... D 24a

f-id = 55163-..@:44;1.

If the 2d X 2d matrix which consists of all ones is denoted by [1] and the 2d X 2d
" identity matrix by [I], then [F] has the form

oo
[1 1@1]'
(P =0, (1] + (L] + M)L) = (0], and ([t] + [Z])((1] + []) = [7]. Therefore [F]’

"is the 4d X 4d identity matrix, and F is non-singular. The circuit computing F

calculates successively:
Phase I (d gates)
z1 D zad+1
71 @ 72 D Tag4r
z1 © 22 D 73 D T2d+1

1 D ... Dz T2
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Phase II (2d — T gates)

nd... @'Id@ Tad+1 D g4
T D O 1D Tags1 B zogy 2 D Touuy

210 DB ... Py
Phase IIT (d gates)

21D Dri B zart B zoar1 D ... D zyy
21D D2 D 21t D zupo D Tows1- . Zag

Iy @.@ Tid-

The results of phases I, II, and III comprise /N7T'[IR; 4d — 1 gates are necessary

and sufficient. FIN[SH consists of the functions T(yZa,...,Taq and

Todyi EB(I_I D... D)

Zodr2 D (21 B ... Dzig)

Z4d D (Ily@ o @ fd:f]-

Given {z),...,2,} and the last output of phase TII, 2d gates dre necessary and
sufficient to compute FINISH. = -

Given FINISH, how many gates are required :to calculate IN T;ER ‘and
{z1,...,2,}? FINISH and {z1,...,2,} have 2d functions in common, namely
T, 22,0, 294,80 INTER U{zy, ..., z,} contains 6d~1 functions not in FINISI],
Therefore, any circuit which computes INTERU{z,,...,z,} must have at least
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§d — 1 output gales. Now note that, since I is non-singular, {zy,...,z,} and
FINISH are cach bases of a 4d-dimensional vector space over f3. We will now
show that, when expressed in terms of the basis FINISIH, the weight [number of
~ non-zero components) of each of the 6d — 1 linear -i'uncl.ions to be synthesized is
at least d + 1. This finishes the lemma, since it means there must be at least d — 1

gates in the network which do not synthesize any output function.

Since F is self-inverse, [F]7 is itsell the change of basis matrix which converts
an input vector in the basis z{,...,Zn to one in the basis fi,..., fu. It is easily

checked that

) = fi
T2 = f2
Zod = fod

Tagr1 = Joart B (N1 D ... D fad)
Zadr2 = foar2s D (N1 B ... D f1a)

t= [ QN D D i)

Therefore, the functions Edmputcd in phase I all have weight at least 3d — 1, since
each has a non-zero projection on fy,1,..., faq and fagioe,..., f14. The functions
computed in phase II all have weight at least d + 1, because each. has nonzero
projections on either f,..., fs or on fyiy,..., fo4, depending on the parity of
its rank in the phase, and each has at least one nonzero projection on one of
the fagsts-.-, fad- Each function computed in phase III has weight at least 3d,
since each has nonzero projections on fi,..., f¢ and foqi1,..., f14. Finally, the
functions in FINISI which are not in {zy,...,z,} all have weight 4d —1, since

F is its own inverse. §

The following example, with d = 4 and n = 16, demonstrates the weight

distributions discussed above.
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In terms of the basis FINISH, these vectors are:

I 11 11
1 1111

t
1

L

01 1 11

1110

1 01
0006111110111 1111

1

0 01 111

10 1

1

1 1

11

1

i1

0 0 0 0 1

1 1110000110000 00

0 6001 1110001111

111100001

1

I 110000

0 0001 1 11 000UO0TCO°1

1

1

11
0 000 11

1

1000011111100

100000001

1

1 0

L

1111000011111
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Note that each vector has weight at least d + 1 == 5.

" Theorem 9.6

For any integer d > 0, there exists an invertible linear Boolean function 7

B!, i1 with
| C'.(?) = 10d - 2
and
C(F ) =11d-3.
Proof:

Take F : B'd — B 35 in Lemma 9.5. Consider t,hé function defined by the matrix

FINISH o]
INTER IJ

7=

where FINISH and INTER are the sets of functions dcfined in Lemma 9.5. By

Lemma 9.4,

 _([FINISHY\
cm:-c([ 1 D+4d—-1
INTER

(4= 1)+ (2d) + 4d — 1

= 10d - 2.
On the other hand,

c(F h ='C(

FINISH-' o
(INTERYFINISH™Y) I




PINISH -
=C | +4d ~ 1
(INTER)(FINISI)! .

- )
= Cq -_ J[mmsm") +4d—1
- \UNTER |

=0C{z1,...,2,}UINTER | FINISH) + 4d - |
=(7d—2) + (4d—1)

= 11d-3. [ |

Corollary 9.7

For any integer d > 0, there exists an invertible linear Boolean function 7

Bod-1 _, Bad—ll with
" Cp(f)=10d<2 -
and
c@(%;‘) = 11d -;3.
Example 9.7.1

 Ford=2and n =15,
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L 00006GO0O0O0O0O0O00 0 0
01 0000000000000

6 0 1000000000000
000 100000000000

L 111011 10000000
{ft 1111011000000 °0

_ 1111110610000000
=t 1 1111110000000
1 0001000100000 O0

1 1001000010000 0

{ 1001100001000
11601110000T10G00

1 1001111000010 0

1 1101 11100000T10

1 1 1111110000001

| C(F} = Cg(¥) =18, while C(F )= C@(?") = 19.

We fmi‘srhl this éhapter with the observation that a fast gencral procedure for
finding the A-transform of a function yields a fast procedure for finding the inverse of
a function. Suppose it were easy to compute the A-transform of F': B" — B" from a
small circuit for F. If F is invertible, there is only a single value of X € B™ for which |
F(X) =Y. Therefore a fast procedure for AF could be used to determine F1(Y)
by checking whether the number of solutions to F(X) =7 with X < Xiest is odd or

even for various values of X;.5.

No general fast proéedure is known for computing AF from F. It is quite .pb'ss:ible,
however, that AF has always has small circuits when I does, without those circuits
being easy to find. If so, then I and F~! must also always have nearly the same circuit

complexity.



Theorem 9.8

Suppose that for all f: B" - B CIAL)/CLf) = O(1). Then for all F: i —

with C{F) > n

Proof:

Consider én optimal circuit N, computing F(zy,...,z,)fromz,, .. .y Tn. Appending
2n — 1 gates to N| which successively compare cach of the n oﬁtputs of N\ with
the corresponding variable y;, «++y Yn forms a 2n-input, onc-output circuit which
evaluates the predicate (Flzy,...,z,) = (Yt,--.,9n)). Call this new circuit No.
The function computed by Ny is

Afi(z1,0022) O 7)

=1

and the A-transform of this function is

Now consider the circuit Aj, which is identical to N, except that there are
two input lines for each element in y; and that the = pairs Y1, 2(,...,Yxs, 2, are

connected to a 2n ~ 1 gate “protocol-checking” circuit which computes

/n\ (v: @ z).

=l

The output of the protocol checker, which is multiplied by the output of Ny, is
1 if and only if y; is the complement of z; for each 1 < i £ n. The function
computed by N3 is equal to (F(zy,...,z,) = (y1,...,yn)) if every pair y;, 2; are
complementary, but is 0 otherwise. N; has C(F}+ 4n — 1 gates,

By hypo.thesis, CAf) K KC(f)forall f:B" — Band all n sufliciently large. In
particular, there exists a circuit Ny of size < K(C(F)+4n—1) for the A-transform
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of the function computed by Ni. Ny computes

@ (Flan. - en) = (Brr..B) Alprotocol satisfied)) ",
[ qaeens u,.)'\_([rl.....:") ’ . .
[ril ..... Br )<y o vn)
(T{v----'hl)fl-'|----13")

If z; is set equal to §; for each 7, then the last sum is equal to

@ ((F(al,---;au) =(ﬁlr-°°1ﬂﬂ)) A((’Tll"'r’fﬂ) =(ﬁlr"-rﬁn)))

(e reeoran S {2 pamnes zn )
YA eernrn ) Y orein)
(rgeees 17\)5(7[ ----- Tn)

=: @ ..(F(als'--:a")=.(y1"'."?;”)) |

(A1 ey} S (L 1e00rEm)

“72 | @ ((al:"",anz):F (yl’ ,yﬂ))

{ee) ,...,rx;.) i T

'__{1, if F= y1, .- yn) < (=1,...,2n)
0, otherwise,

since §; < y; and B; < ¥; together imply that §; = y;.

Let N5 be an n-input m-output cirduit‘consisting of n copies of Nj;, where the u
1" copy has inputs zy, ..., ZTi_y, Tit1,.-.s Tn et to 1 and input z; set to 0,
and where each of the copies has inputs 2y weey Zn S0 O Yy ey T The
output of each copy of Nj is complemented to produce the final outputs for As.
" The ¢t output of N5 is 1 if and only if the *" component of F- Yyy, e ryn)
" is not < 0. That is, N5 computes F~! (yl,...,yn). Ns contains no more than

KnC(F) +4Kn? + n? — Kn + 2 gates. i

This result can be improved to C(F."I)' = O(C(F)) if it should be true that circuit

comple.xity possesses the Boolean gradient property.
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— Chapter Ten -

SUMMARY AND CONCLUSIONS

1

In addition to definitions, techriical lemmas, and revised proofs ufpreviously-knovvn
results, this paper has presented the following new combinatorial or complexity-theoretic

results:

(a) CIRCUIT COMPLEXITY OVER {&} and CIRCUIT COMPLEXITY OVER

{v} are N P-complete.
. {b) - Given the matrix associated with a function that is generated by a
commitative, associative operation, the complexity of the function and the complexity

of the function associated with the transpose matrix are the same. A simple procedure

generates one circuit from the other.

(¢} J. Olivos's bound on the complexity of a monomial with respect to an addition
chain can be extended to the simultaneous computation of sets of monomials, and with

- a minor medification, to computation by addition-subtraction chains.

(d) (.25)n%log™' n+ o(n®log™' n) is an upper bound on the circuit complexity of
the hardest quadratic monotone Boolean function. This matches the previously known

lower bound, which was based on a counting argument.

(¢} The complexity of the hardest linear function with respect to circuits of
width n is n2log™! n + o{n*log™" n). This is twice the complexity of the hardest linear

function with respect to-circuits of arbitrary width.
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| (f) Line integrals on Boolean functions, defined analogously to their real or

complex counterparts, satis(y the same conditions for path independence.

gn . -
(g} There arc exactly 22"=! Boolean polynomials whose functional values are

identical to their coeflicients.

(h) There exist Boolean functions whose circuit complexity dilfers from that of

their inverses.

(i) 1If Af has a small circuii whenever f does, then the circuit complexity of a

function and its inverse cannot differ by more than a factor of n.

(j) Nearly all n-input n-output functions with the property that all of the outputs
" take the value 1 whenever two or more of their 'inp’uts are 1 have circuit complexity
over the monotone. basis that is greater than LL—TO%‘; However, any sequence of such
functions with monotone circuit complexity greater than n'+? is (1) hard to describe,
and (2) can be used to define a sequence of functions B" — B whose circuit complexity

~ grows exponentially.

(k) Displaying a set of subsets of a finite set whose complexity with respect to

a co‘mfalete basis exceeds 2n + O(log n) would be tantamount to displaying a Boolean
- function with nonlinear complexity. ‘A concrete set is given whose set complexity is
~+2n — O(log n) with respect to the complete basis, as well as a set whose complexity is

at least 2n + Oy/n with respect to union operations.

() If circuit complexity satisfies a property analogous-to ohe possessed by
~ algebraic complexity, then the circuit complexity of a function with n inputs and 2"
outputs is within a constant factor of the complexity of the function with transposed

truth table.

It has been known since at least 1950 that nearly all finite Boolean fuﬁctions have
exponential circuit complexity. However, as yet, no one has demonstrated a concrete
example of a function with nonlinear circuit complexity, except via diagonalization-type
arguments [e.g., STO). This fact has hampered progress. in other areas of ¢complexity

theory. Perhaps the most outstanding single open problem in the theory of the



complexity of finite functions is to display a well-defined Boolean Tunetion with at least

polynomial circuit complexity.

One possibility that might explain this difficully is (hat, up-to linear Mactors, the
circuit complexity of a Boolean function may be unchanged under a wide variety of

combinatorially or geometrically simple alterations of its truth table.

This amounts to the statement that C(F), the circuit complex’ity‘of' F:B"— B™
is a robust measure of complexity. If so, it would be casy to see why finding examples of
Boolean functions with nonlinear circuit complexity is so difficult: a candidate function
would have to be very different from the simple functions of ordinary discourse, since

a simple transform of an easy function could not have large complexity.

Whether circuit cofnpleﬁit}‘rl 'a.c':tﬁﬁl'I;y is robust in this sensc remains an open
question. What this paper has shown, at most, is that several different notions of
robustness are closely related. The hypothesis that circuit complexity s robust has not
been ruled out by any of the counting or combinatorial arguments currently available

in the literature, however.

If' it should turn out that circuit complexity is not robust, it would be interesting
to know if there is another combinatorial measure of Boolean function cowmplexity
that is robust, while still being useful. Paradoxically, the more robust a measure is,
the harder it seems to be to prove lower bounds for the complexity of particular
functions under that mcasure, except by self-refercnce. For example, if one measures
the complexity of a sequence of finite functions by the size of the programs necessary to
compute them, one has a measure that is robust, but for which it is difficult to display
concrete functions with nonlinear lower bounds. The most robust measure of all would
be one for which any easily-described transformation of a function’s description would
not change the function’s complexity. Difficult functions under such a measure wéuld

probably be very difficult to describe, indeed.

Among the key open problems related to the topics discussed in this paper are

the following:
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. Dons“CL'D(F) = C(F} for all linear Tunctions’ [ B o ™2 Are the two

complexitics refated by a constant {actor?
o Are Coflaij]) = Cut(feij]") related by a constant factor?

e Il the linear function F: B* — ™ has matrix [a,'j], are IC,q.‘a([fla"jD and .(-“U")

linearly related? What about Cy.([a;;]) and Cg?
‘@ Does' Af have a small circuit if [ does?
« Docs the gradient of f have a small cireuit if f does?
e Does F"l have a small circuit if F does?

Answers to any of these questions, either positive or negative, would go a long

~ way to clucidating the nature of combinatorial complexity.
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Circuit Based on Synthesizing Vectors in Order of Weight

52 gates suffice to compute any 3l-input, 5-output, function over a single
commutative, associative operation whose indez + period = 2. (n + 21 gates suffice for
any n-input, 5-output function.)
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Circuit Based on Reflected Gray Code

53 gates suffice to compute any 32-input, 5-output linear Boolean function.
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" APPENDIX B

" Table of A (F) for F: B3 — B%



-

Sy, ey, ay)  ASf(z), T2, 23)

0000111t 00001111

00110011 00110011
01010101 01010101

00000000 - 00000000
00000001 00000001
00000010 - 00000011
00000011 00000010
00000100 - 00000101

00000101 ~-00000100

00000110 - 00000110

- 06000111 00000111
. 00001000 00001111

00001001 00001110
00001010 - 00OCOL1O00D
00001011 00001101
00001100 - 00001010
00601101 00001011
00001110 00001001
000061111 00001009

00010000 00010001
00010001 ;- 00010000
00010010 - 00010010
00010011 00OLOO1LT
00010100  -00GL10100
00010101 : 00010101
00010110 - 00010111
00010111 00010110
00011000 : 00011110
00011001 00011111
00011010 00011101
00011011 00011100
00011100 00011011

00011101 00011010

00011110 - 00011000
00011111 00011001
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(71,22, 23)

-’—\f(InIz, ‘123)

184

00001111 00001111
00110011 00110011
01010101 01010101
00100000 00110011
00100001 00110010
1001060010 - 00110000
00100011 00110001
00100100 00110110
00100101 00110111
00100110 00110101
00100111 00110100
00101000 00111100
00101001 00111101
00101010 00111111
00101011 00111110
00101100 60111001
‘00101101 00111000
700101110 602111010
00101111 06111011
00110000 * 00100010
00110001 © Q0100011
00110010 - 00100001
00110011 00100000
00110100 00100111
00110101 ‘00100110
00110110 00100100
00110111 00100101
00111006 00101101
00111001 00101100
00111010 - 00101110
00111011 060101111
00111100 00101000
Cp0oL111101 00101001
00111110 " 00101011
Q00111111 ‘00101010

R,



Co Sy T, 2)

100001111

L0100t
01010101

Af(zi s, T8)

00001111
00110011

01010101

01000000
01000001

01000010

01000011

01000100 ¢

~: 01000101 - ©

01000110

01000111

01010101
01010100

01010110
01010111
01010000

01010001

Tip1010011

;701001000

701001001
©.01001010
01001011

01001100

01001101
pf01001110
~.01001111

~.01010000

01010010

01011010
01011011

01011001
‘01011000

Sr01011111

01011110

01011100
01011101

701000100

£01010001
01000111
F010001L10
1701000001
101000000
© 01000010
101000011
01001011
101001010
701001000
© 01001001

01010010

01010011

©01010100
01010101

701010110
01010111

£01011000
101011001

£ 01011010
© 01011011

101011100

101011101

01011110
01011111

‘01000101

01001110

01001111
01001101
01001100

=



- S(=zr, 72, 23)

00001111
co 00110011
01010101 -

Af(.l?] y L3, 373)

00001111
00110011

S 01010101

01100000

01100001

01100010 -
01100011

01111011
01111100
01111101
01111110

c01111111

01100110

01100111

01100101

01100100

01100100 01100011 ¢
7201100101 - 01100010
01100110 01100000
01100111 - :01100001
© 01101000 01101001
01101001 01101000
701101010 01101010
01101011 01101011
01101100 01101100
01101101 01101101
01101110 01101111
201101111 01101110
01110000 01110111
01110001 - 01110110
01110010 ~ 01110100
S0Lr1oo0tL  otrrtot1ot
701110100 © 01110010
01110101 - 01110011
01110110 - 01110001
01110111 01110000
01111000 01111000
01111001 01111001
01111010 01111011

01111010

01111101
01111100

01111110

01111111
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o Sz )

;00001111
100110011

01010101

- Af(zy, 20, 123)

00001111
00110011

01010101

10000000 © ©
1210000001

10000010

~. 10000011

£210000100
10000101

10000110

10000111
210001000

+410001001

10001010

1410001011

©10001°100

10001101
10001110
10001111

10010000
10010001

10010010
£10010011
10010100
110010101
10010110

10010111

£10011000
10011001
10011010
10011011
110011100
~10011101

10011110
10011111

11111111

S EERE RN
fr11111100
11111101
£711111010

11111011

© 11111001
11111000
SO11110000
11110001
Sarrr1001t
II1110010
S111110101
11110100
11110110
11110111

S Ar101110
111er1tl
11101101
S11101100
C11toetont
11101010
£11101000

S11101001

11100001
11100000
11100010
111100011
711100100
11100101
11100111
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: ' 'f(zliﬂf'.h'fl:;)

00001111
00110011

: Af(ﬂﬂl,ifz,??:;)

100001111
00110011

188

01010101 01010101
10100000 211001100
10100001 11001101
10100010 © 11001111
7210100011 11001110
10100100 11001001
10100101 11001000
10100110 11001010
10100111 11001011
10101000 ~ 11000011
710101001 © 11000010
10101010 11000000
10101011 11000001
10101100 - 11000110
10101101 11000111
10101110 11000101
101011'11 11000100
10110000 11011101
210110001 11011100
10110010 11011110
1011001t 11011111
10110100 11011000
10110101 11011001
©10110110 11011011
10110111 011011010
10111000 11010010
10111001 11010011
010111010 11010001
10111011 11010000
10111100 11010111
10111101 11010110
10111110 11010100
210111111 11010101

13



='f(ml 7‘}5:'2) xll)

00001111
0011001t
L0011 010t

01010101t

Lo Af(xi“,;:'l‘v-r_), 3)

00001111
00110011

11000000

11000010

I Aol
©11000100
11000101 ¢

11000110

Si11000111
11001000
111001001 ©
11001010 °

©011001011

11001100

11001101

©111001110

111001111

©©11010000
711010001
711010010

L1rotoo0rt
11010100

©11010101
£011010110
Si11010111
111011000
©.11011001
©711011010
11011011
©110101100

11011101
Prro1r1te

cerro1t111

10101010
10101011
T.710101001
10101000
10101111
10101110
“110101100
10101101
10100101

10100100
110100110
110100111
10100000
710100001
110100011
~710100010

“{0111011
“i0111010

10111000
ror1tool
10111110
10111111
frrot111101

Lh10110100
10110101
10110111
Siroe110110
710110001
1710110000
10110010
110110011

7189




; 'f(xl ) ‘.T'_g‘, ZE,';)

00001111
00110011

01010101

Af(zy, 2o, zy)

00001111
00110011
01010101

’3f11100000

11100001

2111100010 ¢
co 11100011
~10011100

11100100
11100101 ¢
11100110
co11100111 0
 ; 411101000 -
© 11101001
11101010
11101011

11101100 -

11101101

11101110

11101111

10011001
10011000
10011010
10011011

10011101

10011111

10011110
10010110

10010111
10010101
10010100

10010011

10010010
110010000

10010001

©111110000

- 11110001
11110010

co11110011
11110100
11110101
2711110110
co11110111
“11111000
211111001
11111010
11111011

10001000
10001001

10001011
10001010

©10001101
10001100
10001110
10001111
10000111
10000110

10000100

Arrr11100 o
211111101
11111110 o
11111111

10000011
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10000101
10000010

10000001

10000000
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APPENDIXD

Equivalence Classes of Invertible Functions B - B®
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Reference: [LOR].
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O’pvtimal Circuits for Tnvertible F : B" - B3
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'APPENDIX F

Rate of Growth Notation

20t



Suppose that f{n) and g(n) are nonnegative real-valued functions defined on the
natural numbers. The following notations are used to describe the relative rates of

-growth of f and g with respect to changes in n.

ftn) = o(g(n)) if for any € > 0, f(n)/g(n) < e for all n sufficiently large. That
is, f == ofg) if limn—e f(n)/g(n) = 0.

f(n) = O(g(n)) if there exists a constant ¢ > 0 such that f(n} < ¢g(n) for all n
sufficiently large. '

f{n) ~ g(n) if for any ¢ > 0, (f(n) —g(n))/g(n) < € for all n sufficiently large, -

That is, f(n) ~ g(n) if limp_c f(n)/g(n) = 1.

f(n) = Ulg(n)) if log f(n) = O(g(n)).
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NOTATION

An

I
.13”

C

Ca

Cop

Clvy
rmonosct

C.:ect

Af

af

vf

(1]

J

[F(’k}
Full,
{
Mg
M
o)

REFERENCE

Ixp. 1.13.1
Prop. 1.2
Prop. 1.3
Def. 2.1
Def. 2.1
Thm. 2.5.1
Def. 2.1
Def. 7.1
Def. 7.1
Def. 6.1
Def. 5.1
Def. 5.2
Def. 7.2
Def. 5.15

. Thm. 2.7.1

Def. 3.9
Cor. 3.5
Def. 4.2.1
Prop. 4.3
App. F
App. F
App. F
Thm. 7.10
Def..5.3
Thm. 7.10
Thm. 3.1
App. F
Def. 5.18
Def. 6.4

- Prop. 1.1

Lemma 7.8
Def, 5.4
Prop. 2.2.1
Prop. 1.10
Def. 7.2
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