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Abstract. We present an approximate sampling framework and discuss
how risk-limiting audits can compensate for these approximations, while
maintaining their “risk-limiting” properties. Our framework is general
and can compensate for counting mistakes made during audits.
Moreover, we present and analyze a simple approximate sampling method,
“k-cut”, for picking a ballot randomly from a stack, without counting.
Our method involves doing k “cuts,” each involving moving a random
portion of ballots from the top to the bottom of the stack, and then pick-
ing the ballot on top. Unlike conventional methods of picking a ballot at
random, k-cut does not require identification numbers on the ballots or
counting many ballots per draw. We analyze how close the distribution of
chosen ballots is to the uniform distribution, and design mitigation pro-
cedures. We show that k = 6 cuts is enough for a risk-limiting election
audit, based on empirical data, which provides a significant increase in
sampling efficiency. This method has been used in pilot RLAs in Indiana
and is scheduled to be used in Michigan pilot audits in December 2018.

Keywords: sampling · elections · auditing · post-election audits · risk-
limiting audit · Bayesian audit.

1 Introduction

The goal of post-election tabulation audits is to provide assurance that the re-
ported results of the contest are correct; that is, they agree with the results that
a full hand-count would reveal. To do this, the auditor draws ballots uniformly
at random one at a time from the set of all cast paper ballots, until the sample
of ballots provides enough assurance that the reported outcomes are correct.

The most popular post-election audit method is known as a “risk-limiting
audit” (or RLA), invented by Stark (see his web page [13]). See also [3, 5–7, 11,
12] for explanations, details, and related papers. An RLA takes as input a “risk-
limit” α (like 0.05), and ensures that if a reported contest outcome is incorrect,
then this error will be detected and corrected with probability at least 1− α.

? Supported by Center for Science of Information (CSoI), an NSF Science and Tech-
nology Center, under grant agreement CCF-0939370.
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This paper provides a novel method for drawing a random sample of the
cast paper ballots. The new method may often be more efficient than stan-
dard methods. However, it has a cost: ballots are drawn in a way that is only
“approximately uniform”. This paper provides ways of compensating for such
non-uniformity.

There are two standard approaches for drawing a random sample of cast
paper ballots:

1. [ID-based sampling] Print on each scanned cast paper ballot a unique
identifying number (ballot ID numbers). Draw a random sample of ballot ID
numbers, and retrieve the corresponding ballots.

2. [Position-based sampling] Give each ballot an implicit ballot ID equal to
its position, then proceed as with method (1).

These methods work well, and are guaranteed to produce random samples.
In practice, auditors use software, like [14], which takes in a ballot manifest as
input and produces the random sample of ballot ID numbers. In this software,
it is typically assumed that sampling is done without replacement.

However, finding even a single ballot using these sampling methods can be
tedious and awkward in practice. For example, given a random sample of ID
numbers, one may need to count or search through a stack of ballots to find
the desired ballot with the right ID or at the right position. Moreover, typical
auditing procedures assume that there are no mistakes when finding the ballots
for the sample. Yet, this seems to be an unreasonable assumption - a study by
Goggin et al. shows that when counting 120 ballots, human teams miscount the
number of votes for a given candidate at an average rate of 1.4% [4]. In the
literature about RLAs, there is no way to correct for these mistakes.

Our goal is to simplify the sampling process.

In particular, we define a general framework for compensating for “approxi-
mate sampling” in RLAs. Our framework of approximate sampling can be used
to measure and compensate for human error rate while using the counting meth-
ods outlined above. Moreover, we also define a simpler approach for drawing a
random sample of ballots, which does not rely on counting at all. Our technique
is simple and easy to iterate on and may be of particular interest when the stack
of ballots to be drawn from is large. We define mitigation procedures to account
for the fact that the sampling technique is no longer uniformly random.

Overview of this paper. Section 2 introduces the relevant notation that we use
throughout the paper.

Section 3 presents our proposed sampling method, called “k-cut.”

Section 4 studies the distribution of single cut sizes, and provides experimen-
tal data. We then show how iterating a single cut provides improved uniformity
for ballot selection.

Section 5 discusses the major questions that are brought up when using
“approximate” sampling in a post-election audit.
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Section 6 proves a very general result: that any general statistical auditing
procedure for an arbitrary election can be adapted to work with approximate
sampling, with simple mitigation procedures.

Section 7 discusses how to adapt the k-cut method for sampling when the
ballots are organized into multiple stacks or boxes.

Section 8 provides some guidance for using k-cut in practice.
Section 9 gives some further discussion, lists some open problems, and makes

some suggestions for further research.
Section 10 summarizes our contributions.

2 Notation and Election Terminology

Notation. We let [n] denote the set {0, 1, . . . , n− 1}, and we let [a, b] denote the
set {a, a+ 1, . . . , b− 1}.

We let U [n] denote the uniform distribution over the set [n]. In U [n], the
“[n]” may be omitted when it is understood to be [n], where n is the number of
ballots in the stack. We let U [a, b] denote the uniform distribution over the set
[a, b].

We let V D(p, q) denote the variation distance between probability distribu-
tions p and q; this is the maximum, over all events E, of

Prp[E]− Prq[E].

Election Terminology. The term “ballot” here means to a single piece of paper
on which the voter has recorded a choice for each contest for which the voter is
eligible to vote. One may refer to a ballot as a “card.” Multi-card ballots are not
discussed in this paper.

Audit types. There are two kinds of post-election audits: ballot-polling audits,
and ballot-comparison audits, as described in [7]. For our purposes, these types
of audits are equivalent, since they both need to sample paper ballots at random,
and can make use of the k-cut method proposed here. However, if one wishes
to use k-cut sampling in a comparison audit, one would need to ensure that
each paper ballot contains a printed ID number that could be used to locate the
associated electronic CVR.

3 The k-Cut Method

The problem to be solved is:

How can one select a single ballot (approximately) at random from a
given stack of n ballots?

This section presents the “k-cut” sampling procedure for doing such sam-
pling. The k-cut procedure does not need to know the size n of the stack, nor
does it need any auxiliary random number generators or technology.
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We assume that the collection of ballots to be sampled from is in the form of a
stack. These may be ballots stored in a single box or envelope after scanning. One
may think of the stack of ballots as being similar to a deck of cards. When the
ballots are organized into multiple stacks, sampling is slightly more complex—see
Section 7.

The basic operation for drawing a single ballot is called “k-cut and pick,” or
just “k-cut.” This method does k cuts then draws the ballot at the top of the
stack.

To make a single cut of a given stack of n paper ballots:

– Cut the stack into two parts: a “top” part and a “bottom” part.
– Switch the order of the parts, so what was the bottom part now sits above

the top part. The relative order of the ballots within each part is preserved.

We let t denote the size of the top part. The size t of the top part should be
chosen “fairly randomly” from the set [n] = {0, 1, 2, . . . , n− 1}1. In practice, cut
sizes are probably not chosen so uniformly; so in this paper we study ways to
compensate for non-uniformity. We can also view the cut operation as one that
“rotates” the stack of ballots by t positions.

An example of a single cut. As a simple example, if the given stack has n = 5
ballots:

A B C D E ,

where ballot A is on top and ballot E is at the bottom, then a cut of size t = 2
separates the stack into a top part of size 2 and a bottom part of size 3:

A B C D E

whose order is then switched:

C D E A B .

Finally, the two parts are then placed together to form the final stack:

C D E A B .

having ballot C on top.

Iteration for k cuts. The k-cut procedure makes k successive cuts then picks the
ballot at the top of the stack.

If we let ti denote the size of the i-th cut, then the net rotation amount after
k cuts is

rk = t1 + t2 + · · ·+ tk (mod n) . (1)

The ballot originally in position rk (where the top ballot position is position 0)
is now at the top of the stack. We show that even for small values of k (like
k = 6) the distribution of rk is close to U .

1 A cut of size n is excluded, as it is equivalent to a cut of size 0.
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Drawing a sample of multiple ballots. To draw a sample of s ballots, our k-cut
procedure repeats s times the operation of drawing without replacement a single
ballot “at random.” The s ballots so drawn form the desired sample.

Efficiency. Suppose a person can make six (“fairly random”) cuts in approx-
imately 15 seconds, and can count 2.5 ballots per second2. Then k-cut (with
k = 6) is more efficient when the number of ballots that needs to be counted is
37.5 or more. Since batch sizes in audits are often large, k-cut has the potential
to increase sampling speed.

For instance, assume that ballots are organized into boxes, each of which
contains at least 500 ballots. Then, when the counting method is used, 85% of
the time a ballot between ballot #38 and ballot #462 will be chosen. In such
cases, one must count at least 38 ballots from the bottom or from the top to
retrieve a single ballot. This implies that k-cut is more efficient 85% of the time.

As the number of ballots per box increases, the expected time taken by
standard methods to retrieve a single ballot increases. With k-cut, the time it
takes to select a ballot is constant, independent of the number of ballots in the
box, assuming that each cut takes constant time.

Security We assume that the value of k is fixed in advance; you can not allow
the cutter to stop cutting once a “ballot they like” is sitting on top.

4 (Non)-Uniformity of Single Ballot Selection

We begin by observing that if an auditor could perform “perfect” cuts, we would
be done. That is, if the auditor could pick the size t of a cut in a perfectly uni-
form manner from [n], then one cut would suffice to provide a perfectly uniform
distribution of the ballot selected from the stack of size n. However, there is no
a priori reason to believe that, even with sincere effort, an auditor could pick t
in a perfectly uniform manner.

So, we start by studying the properties of the k-cut procedure for single-
ballot selection, beginning with a study of the non-uniformity of selection for
the case k = 1 and extending our analysis to multiple cuts.

4.1 Empirical Data for Single Cuts

This section presents our experimental data on single-cut sizes. We find that in
practice, single cut sizes (that is, for k = 1) are “somewhat uniform.” We then
show that the approximation to uniformity improves dramatically as k increases.

We had two subjects, the authors. Each author had a stack of 150 sequentially
numbered ballots to cut, provided by Marion County, Indiana. The authors made
1680 cuts in total. Figure 1 shows the observed cut size frequency distribution.
The complete data tables are provided in the longer version of this paper 3.

2 These assumptions are based on observations during the Indiana pilot audits.
3 The longer version is available at https://arxiv.org/abs/1811.08811
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Fig. 1. Probability Density of empirical distribution of sizes of single cuts, using com-
bined data from both authors, with 1680 cuts total. The model that best fit the empir-
ical data was an exponential model, shown in blue. The extended paper provides more
details about this and other models for our data.

If the cuts were truly random, we would expect a uniform distribution of the
number of cuts observed as a function of cut size. In practice, the frequency of
cuts was not evenly distributed; there were few or no very large or very small
cuts, and smaller cuts were more common than larger cuts.

4.2 Making k successive cuts to select a single ballot

As noted, the distribution of cut sizes for a single cut is noticeably non-uniform.
Our proposed k-cut procedure addresses this by iterating the single-cut operation
k times, for some small fixed integer k.

We assume for now that cut sizes are distributed as in our experiments, as
described in Figure 1, and that successive cuts are independent. Moreover, we
assume that sampling is done with replacement, for simplicity.

We give computational results showing that as the number of cuts increases,
the k-cut procedure selects ballots with a distribution that approaches the uni-
form distribution. We compare by computing the variation distance of the k-cut
distribution from U for various k. We also computed ε, the maximum ratio of
the probability of drawing any particular ballot under the empirical distribution,
to the probability of drawing that ballot under the uniform distribution, minus
one4. Our results are summarized in Table 1.

We can see that, after six cuts, we get a variation distance of about 7.19 ×
10−4, for the empirical distribution, which is often small enough to justify our
recommendation that six cuts being “close enough” in practice, for any RLA.

4 In Section 6.4, we discuss why this value of ε is relevant
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k Variation Distance Max Ratio minus one

1 0.247 1.5
2 0.0669 0.206
3 0.0215 0.0687
4 0.0069 0.0224
5 0.00223 0.00699
6 0.000719 0.00225
7 0.000232 0.000729
8 7.49e-05 0.000235

Table 1. Convergence of k-cut to uniform with increasing k. Variation distance from
uniform and ε-values for k cuts, as a function of k, for n = 150, where ε is one less
than the maximum ratio of the probability of selecting a ballot under the assumed
distribution to the probability of selecting that ballot under the uniform distribution.

4.3 Asymptotic Convergence to Uniform with k

As k increases, the distribution of cut sizes provably approaches the uniform
distribution, under mild assumptions about the distribution of cut sizes for a
single cut and the assumption of independence of successive cuts.

This claim is plausible, given the analysis of similar situations for contin-
uous random variables. For example, Miller and Nigrini [9] have analyzed the
summation of independent random variables modulo 1, and given necessary and
sufficient conditions for this sum to converge to the uniform distribution.

For the discrete case, one can show that if once k is large enough that every
ballot is selected by k-cut with some positive probability, then as k increases
the distribution of cut sizes for k-cut approaches U . Furthermore, the rate of
convergence is exponential. The proof details are omitted here; however, the
second claim uses Markov-chain arguments, where each rotation amount is a
state, and the fact that the transition matrix is doubly stochastic.

5 Approximate Sampling

We have shown in the previous section that as we iterate our k-cut procedure,
our distribution becomes quite close to the uniform distribution. However, our
sampling still is not exactly uniform.

The literature on post-election audits generally assumes that sampling is
perfect. One exception is the paper by Banuelos and Stark [2], which suggests
dealing conservatively with the situation when one can not find a ballot in an
audit, by treating the missing ballot as if it were a vote for the runner-up. Our
proposed mitigation procedures are similar in flavor.

In practice, sampling for election audits is often done using software such
as that by Stark [14] or Rivest [10]. Given a random seed and a number n of
ballots to sample from, they can generate a pseudo-random sequence of integers
from [n], indexing into a list of ballot positions or ballot IDs. It is reasonable to
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treat such cryptographic sampling methods as “indistinguishable from sampling
uniformly,” given the strength of the underlying cryptographic primitives.

However, in this paper we deal with sampling that is not perfect; the k-cut
method with k = 1 is obviously non-uniform, and even with modest k values, as
one might use in practice, there will be some small deviations from uniformity.

Thus, we address the following question:

How can one effectively use an approximate sampling procedure in a
post-election audit?

We let G denote the actual (“approximate”) probability distribution over [n]
from the sampling method chosen for the audit. Our analyses assume that we
have some bound on how close G is to U , like variation distance. Furthermore,
the quality of the approximation may be controllable, as it is with k-cut: one
can improve the closeness to uniform by increasing k. We let Gs denote the
distribution on s-tuples of ballots from [n] chosen with replacement according
to the distribution G for each draw.

6 Auditing Arbitrary Contests

This section proves a general result: for auditing an arbitrary contest, we show
that any risk-limiting audit can be adapted to work with approximate sampling,
if the approximate sampling is close enough to uniform. In particular, any RLA
can work with the k-cut method, if k is large enough.

We show that if k is sufficiently large, the resulting distribution of k-cut
sizes will be so close to uniform that any statistical procedure cannot efficiently
distinguish between the two. That is, we want to choose k to guarantee that U
and G are close enough, so that any statistical procedure behaves similarly on
samples from each.

Previous work done by Baignères in [1] shows that, there is an optimal dis-
tinguisher between two finite probability distributions, which depends on the
KL-Divergence between the two distributions.

We follow a similar model to this work, however, we develop a bound based
on the variation distance between U and G.

6.1 General Statistical Audit Model

We construct the following model, summarized in Figure 2.
We define δ to be the variation distance between G and U . We can find an

upper bound for δ empirically, as seen in Table 1. If G is the distribution of
k-cut, then by increasing k we can make δ arbitrarily small.

The audit procedure requires a sample of some given size s, from Us or Gs.
We assume that all audits behave deterministically. We do not assume that suc-
cessive draws are independent, although we assume that each cut is independent.

Given the size s sample, the audit procedure can make a decision on whether
to accept the reported contest result, escalate the audit, or declare an upset.
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Fig. 2. Overview of uniform vs. approximate sampling effects, for any statistical au-
diting procedure. The audit procedure can be viewed as a distinguisher between the
two underlying distributions. If it gives significantly different results for the two distri-
butions, it can thereby distinguish between them. However, if p and p′ are extremely
close, then the audit cannot be used as a distinguisher.

6.2 Mitigation Strategy

When we use approximate sampling, instead of uniform, we need to ensure that
the “risk-limiting” properties of the RLAs are maintained. In particular, as de-
scribed in [7], an RLA with a risk limit of α guarantees that with probability at
least (1−α) the audit will find and correct the reported outcome if it is incorrect.
We want to maintain this property, while introducing approximate sampling.

Without loss of generality, we focus on the probability that the audit accepts
the reported result, since it is the case where approximate sampling may affect
the risk-limiting properties. We show that G and U are sufficiently close when k
is large, that the difference between p and p′, as seen in Figure 2, is small.

We show a simple mitigation procedure, for RLA plurality elections, to com-
pensate for this non-uniformity, that we denote as risk-limit adjustment. For
RLAs, we can simply decrease the risk limit α by |p′− p| (or an upper bound on
this) to account for the difference. This decrease in the risk limit can accommo-
date the risk that the audit behaves incorrectly due to approximate sampling.

6.3 How much adjustment is required?

We assume we have an auditing procedure A, which accepts samples and outputs
“accept” or “reject”. We model approximate sampling with providing A samples
from a distribution G. For our analysis, we look at the empirical distribution of
cuts. For uniform sampling, we provide A samples from U .

We would like to show that the probability that A accepts an outcome in-
correctly, given samples from G is not much higher than the probability that A
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accepts an incorrect outcome, given samples from U . We denote B as the set of
ballots that we are sampling from.

Theorem 1. Given a fixed sample size s and the variation distance δ, the max-
imum change in probability that A returns “accept” due to approximate sampling
is at most

ε1 + (1 + nδ)s
′
− 1,

where s′ is the maximum number of “successes” seen in s Bernoulli trials, where
each has a success probability of δ, with probability at least 1− ε1.

Proof. We define s as the number of ballots that we pull from the set of cast
ballots, before deciding whether or not to accept the outcome of the election.
Given a sample size s, based on our sampling technique, we draw s ballots, one
at a time, from G or from U .

We model drawing a ballot from G as first drawing a ballot from U ; however,
with probability δ, we replace the ballot we draw from U with a new ballot from
B following a distribution F. We make no further assumptions about the distri-
bution F, which aligns with our definition of variation distance. When drawing
from G, for any ballot b ∈ B, we have probability at most 1

n + δ of drawing b.
When we sample sequentially, we get a length-s sequence of ballot IDs, S,

for each of G and U . Throughout this model, we assume that we sample with
replacement, although similar bounds should hold for sampling without replace-
ment, as well. We define X as the list of indices in the sequence S where both G
and U draw the same ballot, in order. We define Z as the list of indices where G
has “switched” a ballot after the initial draw. That is, for a fixed draw, U might
produce the sample sequence [1, 5, 29]. Meanwhile, G might produce the sample
sequence sequence [1, 5, 30]. For this example, X = [0, 1] and Z = [2].

We define the set of possible size-s samples as the set D. We choose s′ such
that for any given value ε1, the probability that |Z| is larger than s′ is at most
ε1. Using this set up, we can calculate an upper bound on the probability that A
returns “accept”. In particular, given the empirical distribution, the probability
that A returns “accept” for a deterministic auditing procedure becomes

Pr[A accepts | G] =
∑
S∈D

Pr[A accepts | S] ∗ Pr[draw S | G] .

Now, we note that we can split up the probability that we can draw a specific
sample S from the distribution G. We know that with high probability, there are
at most s′ ballots being “switched”. Thus,

Pr[A accepts | G]

=
∑
S∈D

Pr[A accepts | S]∗Pr[draw S | G, S has ≤ s′ “switched” ballots]∗Pr[S has ≤ s′ “switched” ballots]

+
∑
S∈D

Pr[A accepts | S]∗Pr[draw S | G, S has > s′ “switched” ballots]∗Pr[S has > s′ “switched” ballots] .
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Now, we note that the second term is upper bounded by

Pr[any size-s sample has more than s′ switched ballots] .

We define the probability that any size-s sample contains more than s′ switched
ballots as ε1.

We note that, although the draws aren’t independent, from the definition
of variation distance, this is upper bounded by the probability that a binomial
distribution, with s draws and δ probability of success.

Now, we can focus on bounding the first term. We know that

Pr[A accepts | G, any sample has at most s′ switched ballots]

=
∑
S∈D

Pr[A accepts | S] ∗ Pr[draw S | G, S has ≤ s′ “switched” ballots]

For the uniform distribution, we know that the probability of accepting becomes

Pr[A accepts | U ] =
∑
S∈D

Pr[A accepts | S] ∗ Pr[draw S | U ] .

Thus, we know that the change in probability becomes

Pr[A accepts | G]− Pr[A accepts | U ]

≤ ε1+
∑
S∈D

Pr[A accepts | S](Pr[draw S | G, S has ≤ s′ “switched” ballots]−Pr[draw S | U ]) .

However, for any fixed sample S, we know that we can produce S from E in
many possible ways. That is, we know that we have to draw at least s−s′ ballots
that are from U . Then, we have to draw the compatible s′ ballots from G. In
general, we define the possible length s− s′ compatible shared list of indices as
the set X. That is, by conditioning on X, we are now defining the exact indices in
the sample tally where the uniform and empirical sampling can differ. We note
that |X| =

(
s
s′

)
and each possible set happens with equal probability. Then, for

any specific x ∈ X, we can define z as the remaining indices, which are allowed
to differ from uniform and approximate sampling. That is, if there are 3 ballots
in the sample, and x = [0, 1], then z = [2].

We can now calculate the probability that we draw some specific size-s sample
S, given the empirical distribution, and a fixed value of s′.

Pr[draw S | G] =
∑
x∈X

Pr[draw x | U ]∗Pr[draw z | G]∗Pr[switched ballots are at indices in z]

However, we know that for each ballot b in z, we draw ballot b with probability
at most 1

n +δ. That is, for any ballot in x, we know that we draw it with uniform
probability exactly. However, for a ballot b in z, we know that this a ballot that
may have been “switched”. In particular, with probability 1

n , we draw the correct
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ballot from U . However, in addition to this, with probability δ, we replace it
with a new ballot - we assume that we replace it with the correct ballot with
probability 1. Thus, with probability at most 1

n + δ, we draw the correct ballot
for this particular slot. Thus, we get

Pr[draw S | G]

=
∑
x∈X

Pr[draw x | U ] ∗ Pr[draw z | G] ∗ Pr[switched ballots are at indices in z]

≤
∑
x∈X

Pr[draw x | U ] ∗ (
1 + nδ

n
)s

′
∗ Pr[switched ballots are at indices in z]

≤ (1 + nδ)s
′ ∑
x∈X

Pr[draw x | U ] ∗ Pr[draw z | U ] ∗ Pr[switched ballots are at indices in z] .

Now, we note that there are
(
s
s′

)
possible sequences x ∈ X, where the

“switched” ballots could be. Each of these possible sequences occurs with equal
probability, this becomes

Pr[draw S | G]

≤ (1 + nδ)s
′ ∑
x∈X

Pr[draw x | U ] ∗ Pr[draw z | U ] ∗ Pr[switched ballots are at indices in z] .

= (1 + nδ)s
′ ∑
x∈X

Pr[draw x | U ] ∗ Pr[draw z | U ] ∗ 1(
s
s′

)
= (1 + nδ)s

′
Pr[draw S | U ] .

Using this bound we can calculate our total change in acceptance probability
as:

Pr[A accepts | G]− Pr[A accepts | U ]

≤ ε1 +
∑
S∈D

Pr[A accepts | S](Pr[draw S | G, S has ≤ s′ “switched” ballots]− Pr[draw S | U ])

≤ ε1 + ((1 + nδ)s
′
− 1)

∑
S∈D

Pr[A accepts | S] Pr[draw S | U ]

≤ ε1 + (1 + nδ)s
′
− 1 ,

which provides us the required bound.

6.4 Empirical Support

Our previous theorem gives us a total bound of our change in risk limit, which
depends on our value of s′ and δ. We note that, for each ballot b, we provide
a general bound of a multiplicative factor increase of (1 + nδ), which is based
off the variation distance of δ. However, we note that in practice, the exact
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bound we are looking for depends on the multiplicative increase in probability
of a single ballot being chosen. That is, we can calculate the max increase in
multiplicative ratio for a single ballot, compared to the uniform distribution.

Thus, if a ballot is chosen with probability at most (1+ε2)
n , then our bound on

the change in probability becomes

ε1 + (1 + ε2)s
′
− 1.

The values of ε2 are recorded, for varying number of cuts in Table 1.
We can calculate the maximum change in probability for a varying number of

cuts using this bound. Here, we analyze the case of 6 cuts. To get a bound on s′,
we can model how often we switch ballots. In particular, this follows a binomial
distribution, with s independent trials, where each trial has a δ6 probability of
success. Using the binomial survival function, we see at most 4 “switched ballots”
in 1,000 draws, with probability (1- 8.78× 10−4). From our previous argument,
we know that our change in acceptance probability is at most (1+ε2)4−1. Using
our value of ε2 for k = 6, this causes a change in probability of at most 0.0090.

Thus, the maximum possible change in probability of incorrectly accepting
this outcome is 0.0090 + 8.78 × 10−4, which is approximately 9.88 × 10−3. We
can compensate for this by adjusting our risk limit by less than 1%.

7 Multi-stack Sampling

Our discussion so far presumes that all cast paper ballots constitute a single
“stack,” and suggest using our proposed k-cut procedure is used to sample ballots
from that stack. In practice, however, stacks have limited size, since large stacks
are physically awkward to deal with. The collection of cast paper ballots is
therefore often arranged into multiple stacks of some limited size.

The ballot manifest describes this arrangement of ballots into stacks, giving
the number of such stacks and the number of ballots contained in each one. We
assume that the ballot manifest is accurate. A tool like Stark’s Tools for Risk-
Limiting Audits 5 takes the ballot manifest (together with a random seed and
the desired sample size) as input and produces a sampling plan.

A sampling plan describes exactly which ballots to pick from which stacks.
That is, the sampling plan consists of a sequence of pairs, each of the form:
(stack-number, ballot-id), where ballot-id may be either an id imprinted on the
ballot or the position of the ballot in the stack (if imprinted was not done).

Modifying the sampling procedure to use k-cut is straightforward. We ignore
the ballot-ids, and note only how many ballots are to be sampled from each
stack. That number of ballots are then selected using k-cut rather than using
the provided ballot-ids. For example, if the sampling plan says that 2 ballots are
to be drawn from stack 5, then we ignore the ballot-ids for those specific ballots,
and return 2 ballots drawn approximately uniformly at random using k-cut.

Thus, the fact that cast paper ballots may be arranged into multiple stacks
(or boxes) does not affect the usability of k-cut for performing audits.

5 https://www.stat.berkeley.edu/ stark/Vote/auditTools.htm
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8 Approximate Sampling in Practice

The major question when using the approximate sampling procedure is how
to choose k. Choosing a small value of k makes the overall auditing procedure
more efficient, since you save more time in each sample you choose. However, it
requires more risk limit adjustment.

The risk limit mitigation procedure requires knowledge of the maximum sam-
ple size, which we denote as s∗, beforehand. We assume that the auditors have a
reasonable procedure for estimating s∗ for a given contest. One procedure to es-
timate s∗ is to draw an initial sample, s, using uniform random sampling. Then,
we can use a statistical procedure to approximate how many additional ballots
we would need to finish the audit, assuming the rest of the ballots in the pool
are similar to the sample. Possible statistical procedures include replicating the
votes on the ballots, or using sample size estimates defined in [8].

Let us assume that we use one of these techniques and calculate that the
audit is complete after an extension of size d. To be safe, we can assume that at
most 3d additional samples will be needed. Thus, our final bound on s∗ would
be s + 3d. Given this upper bound, we can perform our mitigation procedures,
assuming that we are drawing a sample of size s∗. Ballots after the first s∗ ballots
in our sample should be sampled uniformly at random.

9 Discussion and Open Problems

We would like to do more experimentation on the variation between individuals
on their cut-size distributions. The current empirical results in this paper are
based off of the cut distributions of just the two authors in the paper. We would
like to test a larger group of people to better understand a variety of empirical
distributions. After investigating this, we would like to develop “best practices”
for using the k-cut procedure. That is, we’d like to develop a set of techniques
that auditors can use to produce nearly-uniform single-cut-size distributions,
which will make k-cut more efficient.

We would also like to run some experiments to test our assumptions for k-
cut, in practice. For instance, we would like to test whether each cut is truly
made independently.

In the longer version of the paper, we provide the full details of our empirical
data, for full reproducibility. We also discuss possible models for our empirical
data and the convergence rates of our models.

10 Conclusions

We have presented an approximate sampling procedure, k-cut, for use in post-
election audits. We expect the use of k-cut will save time since it eliminates the
need to count many ballots in a stack to find the desired one.
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We showed that even for small values of k, our procedure provides a sample
that is close to being chosen uniformly at random. We designed a simple mit-
igation procedure for RLAs that accounts for any remnant non-uniformity, by
adjusting the risk limit. Finally, we provided a recommendation of k = 6 cuts
to use in practice, for sample sizes up to 1,000 ballots, based on our empirical
data, with a 1% risk limit adjustment.

An earlier version of k-cut was used in pilot audits in Marion County, Indiana
to increase audit efficiency. This paper provides theoretical justification for this
technique, which is also scheduled to be used in Michigan in December 2018.
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