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Abstract

We explore the power of teaching by studying
two on-line learning models: teacher-directed
learning and self-directed learning. In both
models, the learner tries to identify an un-
known concept based on examples of the con-
cept presented one at a time. The learner pre-
dicts whether each example is positive or neg-
ative with immediate feedback, and the ob-
jective is to minimize the number of predic-
tion mistakes. The examples are selected by
the teacher in teacher-directed learning and
by the learner itself in self-directed learning.
Roughly, teacher-directed learning represents
the scenario in which a teacher teaches a class
of learners, and self-directed learning repre-
sents the scenario in which a smart learner
asks questions and learns by itself. For all pre-
viously studied concept classes, the minimum
number of mistakes in teacher-directed learn-
ing is always larger than that in self-directed
learning. This raises an interesting question
of whether teaching is helpful for all learners
including the smart learner. Assuming the ex-
istence of one-way functions, we construct con-
cept classes for which the minimum number of
mistakes is linear in teacher-directed learning
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but superpolynomial in self-directed learning,
demonstrating the power of a helpful teacher
in a learning process.

1 Introduction

In this paper, we study the power of a teacher in help-
ing students to learn concept classes. In the literature
of learning theory, the teacher has been modeled differ-
ently in various learning frameworks [3, 8, 9, 10, 11, 15,
20, 22, 23], and the impact of teaching depends on how
much the teacher is involved in the learning process. We
study the importance of teaching by investigating two
learning models:

• teacher-directed learning in which the learner highly
relies on the information provided by the teacher to
accomplish learning, and

• self-directed learning in which the learner actively
queries the information needed and accomplishes
learning solely by itself.

Teacher-directed learning and self-directed learning were
first introduced by Goldman, Rivest, and Schapire [11].
In both models, the learner tries to identify an unknown
concept based on examples of the concept presented one
at a time. The learner predicts whether each example
is positive or negative with immediate feedback, and
the objective is to minimize the number of prediction
mistakes. The examples are selected by the teacher in
teacher-directed learning and by the learner itself in self-
directed learning. The picture behind the formulation of
the two models is roughly as follows. Self-directed learn-
ing reflects the situation in which a smart learner asks
questions and learns by itself; teacher-directed learning
reflects the situation in which a teacher teaches a class
of learners, some of which may be stupid. Throughout
the paper, we use smart learner to denote an optimal



self-directed learner for a given concept class. To study
the power of teaching, we compare the number of mis-
takes made by the smart learner with the number of
mistakes made by the stupidest learner with the help of
a powerful teacher.

Goldman and Kearns [8, 9] studied the teacher-directed
learning model and gave tight bounds on the number
of mistakes for several concept classes. Goldman and
Sloan [8, 12] studied the self-directed learning model
and derived optimal bounds on the number of mistakes
for several concept classes. For all previously studied
concept classes [8, 9, 11, 12, 27], the minimum number
of mistakes made by the stupidest learner in teacher-
directed learning is always larger than the minimum
number of mistakes made by the smart learner in self-
directed learning. This raises an interesting question of
whether teaching is helpful for all learners including the
smart learner. In other words, can a smart learner learn
faster when being taught instead of asking questions and
working on its own?

In this paper, we answer this question in the affirmative.
We construct concept classes for which the minimum
number of mistakes in self-directed learning is strictly
larger than that in teacher-directed learning, assuming
that cryptographically strong pseudorandom bit gen-
erators exist. In fact, our results are much stronger:
the concept classes that we create have the property
that the minimum number of mistakes is superpolyno-
mial in self-directed learning but only linear in teacher-
directed learning. In particular, without the help from
a teacher, the concept classes are not learnable even
for the smart learner. This demonstrates the power of
teaching in a learning process. It has been shown that
the existence of cryptographically strong pseudorandom
bit generators is equivalent to the existence of one-way
functions [14, 18]. So our results hold if any one-way
function exists.

In the past, cryptography has had considerable impact
on learning theory, and virtually every non-learnability
result has at its heart a cryptographic construction [1,
2, 4, 16, 17, 21]. Although the construction of our con-
cept classes is also based on a cryptographic assump-
tion, our non-learnability result for self-directed learn-
ing is stronger than previous non-learnability results in
the following sense: Most of the previous results of this
type rely on the fact that the examples are chosen ac-
cording to a distribution or by an adversary which might
be “malicious” to the learner. Since the examples are
selected by the learner itself in self-directed learning, the
non-learnability of our concept classes is solely inherent
in the structure of the concept classes and does not de-

pend on having the learner see examples in a way that
is less desirable than could have been chosen by itself.

As a by-product, our results also imply that the min-
imum number of mistakes for learning a concept class
in self-directed learning can be substantially larger than
the Vapnik-Chervonenkis dimension [25] of the concept
class. This answers an open question posed by Goldman
and Sloan [12].

The remainder of the paper is organized as follows. In
§2, we formally define teacher-directed learning and self-
directed learning. In §3, we review some useful defini-
tions in cryptography. In §4, we present the construc-
tion of our concept classes and show that they have the
desired property. In §5, we further discuss some other
properties of our concept classes. We conclude in §6
with some open problems.

2 The learning models

In this section, we first introduce some basic definitions
in learning theory and review Littlestone’s on-line learn-
ing model. Then, we formally define teacher-directed
learning and self-directed learning, which are two vari-
ants of Littlestone’s model.

A concept c is a Boolean function on some domain of in-
stances X. A concept class C is a family of concepts. An
example is an instance x ∈ X, and, for a given concept
c, a labeled example of c is a pair 〈x, c(x)〉. An example
x is called a positive example if c(x) = 1, and it is called
a negative example otherwise. An instance domain X is
often decomposed into subsets {Xn} according to some
natural dimension measure n. Accordingly, a concept
class C is decomposed into subclasses {Cn}. In all mod-
els for concept learning, the objective of the learner is
to learn an unknown target concept in a known concept
class using labeled examples of the target concept. Since
we are interested in designing efficient algorithms, we
will focus our discussion on polynomial-time algorithms
throughout the paper unless otherwise specified.

One of the commonly used models in learning theory is
Littlestone’s mistake-bound model [19] in which learn-
ing is done on-line in a series of stages. In each stage,
an adversary first presents an unlabeled example x to
the learner. The learner predicts if x is positive or neg-
ative and is then told the correct answer. The goal
of the learner is to minimize the number of prediction
mistakes. We say that the learner learns a concept class
C = {Cn} if there exists a polynomial P such that for all
target concepts in Cn, the learner makes at most P (n)
mistakes using polynomial time in each stage.



We say that a learner is consistent if, in every stage,
there is a concept in Cn that agrees with the learner’s
current prediction and all previously seen labeled ex-
amples. A consistent learner is a reasonable learner in
the sense that it pays attention to what has been pre-
sented. We define a polynomial-time consistent learner
as a learner that makes consistent predictions using poly-
nomial time in each stage.

The self-directed learning model

Self-directed learning is a variant of Littlestone’s model
in which the adversary is replaced by the learner it-
self. Let A be a self-directed learning algorithm for
selecting examples and making predictions. We use
MS(Cn, A) to denote the maximum number of mistakes
made by A for any target concept c ∈ Cn, and we de-
fine optMS(Cn) = minAMS(Cn, A). In other words,
optMS(Cn) is the number of mistakes made by an op-
timal self-directed learner (i.e., a smart learner) in the
worst case.

Note that a self-directed learner selects examples by it-
self, and the selection in each stage is based on the
learner’s current knowledge of the target concept ob-
tained from previously seen labeled examples. This re-
flects the situation in which a smart learner actively asks
questions and learns by itself.

The teacher-directed learning model

Teacher-directed learning is a variant of Littlestone’s
model in which the adversary is replaced by a help-
ful teacher who knows the target concept. Let A be a
teacher’s algorithm for selecting examples. We define
MT (Cn, A) as the maximum number of mistakes made
by any polynomial-time consistent learner for any tar-
get concept c ∈ Cn. (We make the convention that
MT (Cn, A) = |Xn| if Cn has no polynomial-time consis-
tent learner.) We define optMT (Cn) = minAMT (Cn, A).
In other words, optMT (Cn) is the number of mistakes
made by the stupidest learner in the worst case when
the teacher uses an optimal algorithm.

Note that the teacher is required to teach any polyno-
mial-time consistent learner. Equivalently, the teacher
is required to present a sequence of labeled examples
that uniquely specifies the target concept. This require-
ment represents the situation in which a teacher teaches
a class of learners who may be stupid but pay attention
to (i.e., is consistent with) what the teacher has pre-
sented.

The requirement is essential since it prevents possible
collusions between the teacher and the learner, which
would make both teaching and learning trivial. An easy

collusion strategy is the following: The teacher and the
learner agree beforehand on an “encoding” of the con-
cepts in a concept class by certain sequences of exam-
ples. When teaching a concept, the teacher just presents
the sequence of examples that encodes the concept, even
though there may be several concepts consistent with
the sequence of examples.

optMS(C) versus optMT(C)

For all the natural concept classes that have been pre-
viously studied [9, 12, 27], optMS(C) is always smaller
than optMT (C). As we analyze these algorithms, it is
always the case that a smart self-directed learner can
obtain some information about the target concept “for
free”.

We illustrate this phenomenon by a simple concept class.
Let C consist of all the concepts with exactly one pos-
itive example and the unique concept whose examples
are all negative. To learn C, a smart learner can sim-
ply follow any order of the examples and always predict
negative. In such a way, the smart learner makes at
most one mistake, and hence optMS(C) = 1. On the
other hand, to teach the concept that only has negative
examples, the teacher must present all the examples in
domain X; otherwise, some consistent learner may still
make prediction mistakes for unseen examples. This
implies optMT (C) = |X|.

3 Some background in cryptography

In this section, we first introduce some notation and
definitions in cryptography. We then review the Gol-
dreich, Goldwasser, and Micali pseudorandom function
construction [13], which will be useful for constructing
our concept classes.

Let R =
⋃
nRn, where each Rn is the set of all pos-

sible 0-1 strings of length n. Let S =
⋃
n Sn be a set

of strings, where each Sn consists of n-bit-long strings.
We use notation s ∈rand Sn to denote that s is chosen
uniformly at random from Sn. Let T be a probabilistic
polynomial-time algorithm that takes as input strings
from Sn and outputs either 0 or 1. We use Pn(T, S) to
denote the probability that T outputs 1 on s ∈rand Sn.

For a polynomial P , a Cryptographically Strong pseudo-
random Bit generator (CSB generator) [6] with stretch
P is defined as a deterministic polynomial-time algo-
rithm G with the following properties: (1) On an input
string s ∈ {0, 1}n, G generates a P (n)-bit-long out-
put string. (2) The set of strings S =

⋃
n Sn that G

generates cannot be efficiently distinguished from set
R. More precisely, for any probabilistic polynomial-



time algorithm T and any polynomial Q, |Pn(T, S) −
Pn(T,R)| < 1

Q(n) for sufficiently large n.

Let F = {Fn} be a collection of functions, where each
Fn consists of functions from {0, 1}n to {0, 1}n. Let A
be a probabilistic polynomial-time algorithm capable of
oracle calls. On an input function f : {0, 1}n → {0, 1}n,
A outputs either 0 or 1 by querying an oracle for f
about some instances. We use Pn(A,F ) to denote the
probability that A outputs 1 on a function f ∈rand Fn.

Let F = {Fn} and F ′ = {F ′n} be two collections of
functions, where both Fn and F ′n consist of functions
from {0, 1}n to {0, 1}n. We say that F and F ′ are
polynomially indistinguishable if, for any probabilistic
polynomial-time algorithm A and any polynomial Q,
|Pn(A,F ) − Pn(A,F ′)| < 1

Q(n) for sufficiently large n.
It is easy to prove that polynomial indistinguishability
is transitive.

Let F = {Fn} be a collection of functions, where each
Fn consists of functions from {0, 1}n to {0, 1}n. Let
A be a probabilistic polynomial-time algorithm capable
of oracle calls. On an input function f ∈rand Fn, A
queries an oracle Of for f about some instances and
then chooses a different instance y. At this point, A
is disconnected from Of and is presented with values
f(y) and r ∈rand {0, 1}

n in a random order. For any
polynomial Q, we say that algorithm A Q-infers F if,
for infinitely many n, A correctly guesses which of the
two values is f(y) with probability at least 1

2 + 1
Q(n)

for f ∈rand Fn. We say that F can be polynomially
inferred if there exist a polynomial Q and a probabilistic
polynomial-time algorithm A that Q-infers F .

The pseudorandom function collection constructed by
Goldreich, Goldwasser, and Micali is a set of functions
F ∗ = {F ∗n}, where each F ∗n = {fs}s∈{0,1}n is defined as
follows. Let G be a CSB generator that stretches a seed
s ∈ {0, 1}n into a 2n-bit-long sequence G(s) = bs1 · · · bs2n.
Let G0(s) be the leftmost n bits bs1 · · · bsn and G1(s) be
the rightmost n bits bsn+1 · · · bs2n. For t ≥ 1, let

Gx1···xt(s) = Gxt(Gxt−1(· · ·Gx1(s) · · ·)).

Then function fs:{0, 1}n → {0, 1}n is defined as

fs(x1 · · ·xn) = Gx1···xn(s) = Gxn(Gxn−1(· · ·Gx1(s) · · ·)).

Goldreich et al . showed that if CSB generators exist,
then the collection of functions F ∗ is polynomially in-
distinguishable from H = {Hn} where Hn is the set of
all functions from {0, 1}n to {0, 1}n. It is easy to see
that F ∗ also has the following two properties: (1) In-
dexing: each function fs ∈ Fn has a unique n-bit index

s associated with it. (2) Polynomial-time evaluation:
there exists a polynomial-time algorithm that on inputs
s, x ∈ {0, 1}n computes fs(x).

Goldreich et al . further studied how to infer a function
in F ∗n given its input-output values. They obtained the
following general result which immediately implies that
F ∗ = {F ∗n} cannot be polynomially inferred if CSB gen-
erators exist.

Theorem 1 [13] Let F = {Fn} be a collection of func-
tions, where each Fn consists of functions from {0, 1}n
to {0, 1}n. If F has the properties of indexing and poly-
nomial-time evaluation, then F cannot be polynomially
inferred if and only if F is polynomially indistinguish-
able from H.

We remark that the above theorem also holds for collec-
tions of functions with domain {0, 1}n and range {0, 1}
as opposed to {0, 1}n. This fact will be used in the next
section.

4 The power of teaching

In this section, we construct concept classes for which
the learner makes substantially fewer mistakes in teacher-
directed learning than in self-directed learning.

We first prove a useful lemma. Let Zn denote the set of
all functions from {0, 1}n to {0, 1} and let Z = {Zn}.

Lemma 2 If a concept class C = {Cn} is polynomially
indistinguishable from Z, then for any polynomial P and
for infinitely many n, optMS(Cn) > P (n).

Proof. We assume for contradiction that there exist
a polynomial-time self-directed learning algorithm A∗

and a polynomial P such that MS(Cn, A∗) ≤ P (n) for
sufficiently large n. Let π = 〈x1, x2, . . . , xt〉 be the query
sequence that A∗ chooses. (Note that for different target
concepts, π may be different. So each query xi depends
on the target concept.)

By the assumption MS(Cn, A∗) ≤ P (n), we obtain that,
for any fixed target concept c ∈ Cn, the number of pre-
diction mistakes that A∗ makes over the first 6P (n)
queries 〈x1, . . . , x6P (n)〉 is at most P (n). Therefore, for
sufficiently large n, with probability one, the number of
prediction mistakes that algorithm A∗ makes over the
first 6P (n) queries is at most P (n) if c ∈rand Cn.

On the other hand, by Theorem 1, we know that C can-
not be polynomially inferred . This implies that, for any
polynomialQ and for sufficiently large n, the probability
that A∗ predicts correctly for each xi (1 ≤ i ≤ 6P (n)) is



at most 1
2 + 1

Q(n) for c ∈rand Cn. Hence, for sufficiently
large n, the probability that A∗ predicts incorrectly for
each xi (1 ≤ i ≤ 6P (n)) is at least 1

2 −
1

Q(n) ≥
1
3 . On

average, algorithm A∗ makes at least 1
3 ·6P (n) = 2P (n)

prediction mistakes over the first 6P (n) queries. This
contradicts the fact that with probability one, A∗ makes
at most P (n) mistakes over the first 6P (n) queries if
c ∈rand Cn.

By the above lemma, we know that in order to construct
a concept class such that optMS(Cn) is superpolynomial,
it is sufficient to construct a concept class such that C
is polynomially indistinguishable from Z.

In what follows, we construct a concept class C∗ = {C∗n}
such that C∗ is polynomially indistinguishable from Z

and optMT (C∗n) is linear. We begin with some use-
ful notation. For x ∈ {0, 1}n, we use x(i) to denote
(x+ i) mod 2n. Given a concept c, we call the sequence
〈c(x), c(x(1)) . . . , c(x(2n−1))〉 (where x = 0 · · · 0) the la-
bel sequence of c. Note that the label sequence of c is a
0-1 sequence of length 2n.

Let G be a CSB generator with stretch 2n, and let
F ∗ = {F ∗n} be the Goldreich, Goldwasser, Micali pseu-
dorandom function collection constructed based on G,
where F ∗n = {fs}s∈{0,1}n . Starting with F ∗, we con-
struct C∗ = {C∗n}, together with two intermediate con-
cept classes L = {Ln} and L′ = {L′n}, by the following
three-step procedure.

Step 1: Define Ln = {ls}s∈{0,1}n , where

ls(x) = the least significant bit of fs(x).

Step 2: Define L′n = {l′s}s∈{0,1}n , where

l′s(x) =
{

0 if ls(x(i)) = 1, for i = 0, 1, . . . , n− 1,
ls(x) otherwise.

Step 3: Define C∗n = {cs}s∈{0,1}n , where

cs(x) =


1 if x ∈ {s, s(1), · · · , s(n−1)},
0 if x ∈ {s(−1), s(n)},
l′s(x) otherwise.

We remark that a somewhat similar construction was
used by Amsterdam [1] to distinguish learning by ran-
dom examples from learning by “experiments” (a cer-
tain extended queries). However, his construction does
not work for our problem of distinguishing self-directed
learning from teacher-directed learning.

We prove in the next two theorems that concept class
C∗ constructed above has the desired property.

Theorem 3 optMT (C∗n) ≤ n.

Proof. For any target concept cs ∈ C∗n, we prove
that the teacher only needs to present the n labeled
examples 〈s, 1〉, 〈s(1), 1〉, · · · 〈s(n−1), 1〉 in order to teach
cs. Consider Step 2 of our construction. For each con-
cept, we flip certain 1’s to 0’s in its label sequence to
eliminate all sequences of consecutive 1’s of length n or
longer. In Step 3, we further modify the label sequence
so that (1) there is a unique sequence of consecutive
1’s of length n in the label sequence for each concept,
and (2) for any given concept, the starting position of
its unique sequence of consecutive 1’s of length n is dif-
ferent from all of the other concepts. Therefore, the n
labeled examples 〈s, 1〉, 〈s(1), 1〉, · · · 〈s(n−1), 1〉 uniquely
specify cs. Furthermore, any polynomial-time consis-
tent learner can infer cs from these n labeled examples.
Therefore, a polynomial-time consistent learner will not
make more mistakes after seeing the n labeled examples.
Thus, optMT (C∗n) ≤ n.

Theorem 4 If one-way functions exist, then for any
polynomial P , optMS(C∗n) > P (n) for infinitely many
n.

By Lemma 2, we only need to show that C∗ and Z =
{Zn} are polynomially indistinguishable provided that
one-way functions exist. (Recall that Zn is the set of all
functions from {0, 1}n to {0, 1}.) The indistinguishabil-
ity will be proved via the next three lemmas.

We define a set of functions Z ′ = {Z ′n} by modifying
Z = {Zn}. For each f ∈ Zn, the corresponding f ′ ∈ Z ′n
is defined as

f ′(x) =
{

0 if f(x(i)) = 1, for i = 0, 1, . . . , n− 1,
f(x) otherwise.

Note that we modify Z to obtain Z ′ in the same way as
we modify L to obtain L′.

Lemma 5 Z and Z ′ are polynomially indistinguishable.

Proof. Assume for contradiction that Z and Z ′ are
polynomially distinguishable. Then there exist a prob-
abilistic polynomial-time algorithm A and a polynomial
Q such that for infinitely many n,

|Pn(A,Z)− Pn(A,Z ′)| ≥ 1
Q(n)

. (1)

Let P be a polynomial such that algorithm A makes
at most P (n) oracle calls (to request the value f(x) for
chosen x). Since A can distinguish between a function
f ∈rand Zn and a function f ′ ∈rand Z

′
n, A must detect

a sequence of n consecutive 1’s in the label sequence of



f . Since Zn contains all functions f :{0, 1}n → {0, 1},
we know that for a fixed x ∈ {0, 1}n and f ∈rand Zn,

Pr(f(x) = f(x(1)) = · · · = f(x(n−1)) = 1) =
1
2n
.

The probability that A detects a sequence of n consecu-
tive 1’s by using at most P (n) queries is less than P (n)

2n .
Therefore, for any polynomial Q,

|Pn(A,Z)− Pn(A,Z ′)| < 1
Q(n)

for sufficiently large n, which contradicts Equation 1.

Lemma 6 Z ′ and L′ are polynomially indistinguish-
able.

The proof of this lemma is technically the most difficult
one, and it relies on the assumption that one-way func-
tions exist. The basic idea, however, is quite simple. In
particular, we use a standard cryptographic technique
introduced by Yao [26]. Recall that the collection of
functions L′ is constructed based on CSB generator G.
If a probabilistic polynomial-time algorithm A can dis-
tinguish between Z ′ and L′, then we can use A to con-
struct another probabilistic polynomial-time algorithm
T such that T can distinguish the set of strings gener-
ated by G from set R (the set of all possible 0-1 strings).
This is a contradiction. A detailed proof is given in the
appendix.

Lemma 7 L′ and C∗ are polynomially indistinguish-
able.

Proof. Similar to the proof of Lemma 5.

Proof of Theorem 4. Using Lemmas 5, 6, and 7 and
the fact that polynomial indistinguishability is transi-
tive, we can easily prove that C∗ and Z are polyno-
mially indistinguishable. By Lemma 2, optMS(C∗) is
superpolynomial.

Remarks

We have seen that for each concept in C∗n, there exists
a small set of labeled examples that contains the “key”
information of the concept. However, the set of key
examples is hard to find by the smart learner for an
unknown target concept, and the learner may have to
make a large number of mistakes in self-directed learn-
ing. We have also seen that the teacher, who knows the
target concept, can easily select and present the key ex-
amples to the learner. This phenomenon also occurs in
the real world: A knowledgeable teacher can help stu-
dents to learn faster by providing key points that are
sometimes hard to find by the students themselves.

We have shown that concept class C∗ is not learnable
in self-directed learning assuming one-way functions ex-
ist. This result is stronger than most of the previous
non-learnability results that rely on cryptographic as-
sumptions in the following sense: The non-learnability
of C∗ is solely inherent in the structure of C∗ and does
not depend on having the learner see examples in a way
that is less desirable than could have been chosen by
itself.

5 Discussions

In this section, we further discuss some properties of
concept class C∗. First, we consider concept class C∗
in Littlestone’s mistake-bound model [19] and Valiant’s
distribution-free model [24]. It is not hard to obtain the
following non-learnability results from Theorem 4.

Corollary 8 If one-way functions exist, then concept
class C∗ is not learnable in the mistake-bound model.

Corollary 9 If one-way functions exist, then concept
class C∗ is not learnable in the distribution-free model.

We next consider some relation between the number
of mistakes in self-directed learning and the Vapnik-
Chervonenkis dimension of a concept class. Let C be a
concept class over an instance domain X. We say that
a finite set Y ⊆ X is shattered by C if {c ∩ Y | c ∈ C} =
2Y . The Vapnik-Chervonenkis dimension of C [25], de-
noted by vc(C), is defined to be the smallest d for which
no set of d + 1 instances is shattered by C. Note that
for any finite concept class C, vc(C) ≤ log |C|.

Goldman and Sloan [12] studied the relation between
vc(C) and optMS(C) and presented concept classes for
which vc(C) can be arbitrarily larger than optMS(C).
They also constructed a concept class C for which vc(C)
= 2 and optMS(C) = 3. Since this was the only known
concept class for which vc(C) is strictly smaller than
optMS(C), they posed the following question: Is there a
concept class C for which optMS(C) = ω(vc(C))? The
following corollary answers Goldman and Sloan’s open
question in the affirmative.

Corollary 10 optMS(C∗n) = ω(vc(C∗n)) assuming that
one-way functions exist.

Proof. By Theorem 4, optMS(C∗n) is superpolynomial
in n. Since the number of concepts in C∗n is 2n, we have
vc(C∗n) ≤ log |C∗n| = n.



6 Open problems

As we have pointed out in §1 and §4, for all the natural
concept classes studied prior to our work, the number of
mistakes is always smaller in self-directed learning than
teacher-directed learning. In particular, the smart self-
directed learner can always get useful information for
the target concept without making many mistakes. It
would be interesting to characterize such a property in
a rigorous way.

As we have pointed out, our results and most of the pre-
vious work rely on cryptographic assumptions to prove
the non-learnability of certain concept classes. There
has been some recent research in the reverse direction [5]:
Provably secure cryptosystems are constructed assum-
ing certain concept classes are hard to learn in the distri-
bution-free model. It would be interesting to construct
cryptosystems based on concept classes that are easy to
learn in teacher-directed learning but hard to learn in
self-directed learning.
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Appendix: Proof of Lemma 6

Assume for contradiction that Z ′ and L′ are polyno-
mially distinguishable. Then there exist a probabilistic
polynomial-time algorithm A and a polynomial Q such
that for infinitely many n,

|Pn(A,Z ′)− Pn(A,L′)| ≥ 1
Q(n)

. (2)

Thus, algorithm A can distinguish between a function
f ∈rand L

′
n and a function g ∈rand Z

′
n by oracle calls.

We next construct a sequence of n oracles that transits
smoothly from an oracle Of for f to an oracle Og for g.

Consider the computations of A in which A’s oracle
calls are answered by one of the following algorithms
Di(i = 0, 1, . . . , n). Let y be a query of A. Recall that
y(1), · · · y(n−1) are the n−1 instances immediately after
y in {0, 1}n and y(0) is y itself. For j = 0, 1, . . . , n − 1,
write y(j) as y

(j)
1 · · · y

(j)
n . Algorithm Di answers A’s

query y as follows:

for j = 0, 1, . . . , n− 1
if the pair (y(j)

1 · · · y
(j)
i , ·)

has not been stored
then select a string r ∈rand {0, 1}

n

store the pair (y(j)
1 · · · y

(j)
i , r)

compute bj = G
y

(j)
i+1···y

(j)
n

(r)

else retrieve the pair (y(j)
1 · · · y

(j)
i , v)

compute bj = G
y

(j)
i+1···y

(j)
n

(v)

if b0 = b1 = · · · bn−1 = 1
then answer 0
else answer b0

Define pin to be the probability that A outputs 1 when
n is given as an input and its queries are answered by
algorithm Di, 0 ≤ i ≤ n. Then p0

n = Pn(A,L′) and
pnn = Pn(A,Z ′). Hence, Equation 2 is equivalent to
|p0
n − pnn| ≥ 1

Q(n) .

We now use A to construct a probabilistic polynomial-
time algorithm T for distinguishing the set of strings
generated by CSB generator G from set R =

⋃
nRn.

(Recall that Rn is the set of all possible 0-1 strings of
length n.) Let P be a polynomial such that algorithm
A makes at most P (n) queries on input n. Algorithm T

works in two stages on input n and a set Un containing
P (n) strings each of which has 2n bits. In the first stage,
T picks i ∈rand {0, 1, . . . , n − 1}. In the second stage,
T answers A’s queries using set Un as follows (where y
is a query of A):

for j = 0, 1, . . . , n− 1
if the pair (y(j)

1 · · · y
(j)
i+1, ·)

has not been stored
then pick the next string u = u0u1 in Un

store the pairs (y(j)
1 · · · y

(j)
i 0, u0)

and (y(j)
1 · · · y

(j)
i 1, u1)

compute bj = G
y

(j)
i+1···y

(j)
n

(uα), where α = y
(j)
i+1

else retrieve the pairs (y(j)
1 · · · y

(j)
i+1, v)

compute bj = G
y

(j)
i+2···y

(j)
n

(v)

if b0 = b1 = · · · bn−1 = 1
then answer 0
else answer b0

We consider two cases for Un: (1) Un consists of (2n)-
bit strings output by the CSB generator G on random
seeds, and (2) Un consists of randomly selected (2n)-
bit strings. In case 1, T simulates A with oracle Di.
The probability that T outputs 1 is

∑n−1
i=0 (1/n) · pin. In

case 2, T simulates A with oracle Di+1. The probability
that T outputs 1 is

∑n−1
i=0 (1/n) · pi+1

n =
∑n
i=1(1/n) · pin.

For infinitely many n, the probabilities for the two cases
differ by at least (1/n) · |p0

n − pnn| ≥ 1
nQ(n) . Therefore,

algorithm T can distinguish the set of strings generated
by CSB generator G from set R, which is a contradic-
tion.


