Theoretical Computer Science 3 (1976) 371-384.
© North-Holland Publishing Company

ON RECOGNIZING GRAPH PROPERTIES FROM ADJACENCY
MATRICES*

Ronald L. RIVEST

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139,
US.A.

Jean VUILLEMIN

Computer Science Division, Department of Electrical Engineering and Computer Science, Univer-
sity of California, Berkeley, CA 94720, U.S.A,

Communicated by A. Meyer
Received 31 December 1975
Revised October 1976

Abstract. A conjecture of Aanderaa and Rosenberg [15] motivates this work. We investigate the
maximum number C(P) of arguments of P that must be tested in order to comnpute P, a Boolean
function of d Boolean arguments, We present evidence for the general conjecture that C(P)=d
whenever P(0?) # P(1%) and P is invariant under a transitive permutation group acting on the
arguments. A non-constructive argument (not based on the construction of an “oracle”) settles
this question for d a prime power. We use this result to prove the Aanderaa-Rosenberg
conjecture: at least v%/16 entries of the adjacency matrix of a v-vertex undirected graph G must
be examined in the worst case to determine if G has any given non-trivial monotone graph
property.

1. Introduction

A fundamental problem of computer science is to determine the relative efficiencies
of different data structures for representing a given problem. For example,
Hopcroft and Tarjan [6] mention that determining if a v-vertex graph is planar
from its adjacency matrix requires {2(v®) operations'; this should be contrasted
with Tarjan’s [16] linear O(v)-time algorithm for planarity based on an adjacency-
list representation of graphs. Similarly, Holt and Reingold [5] have shown that
(v®~ 1)/4 inspections of the adjacency matrix of a directed graph G are required in
the worst case to determine if G contains a directed cycle.

* This work was supported by IRIA-Laboria, 78150 Rocquencourt, France, and by the National
Science Foundation under NSF grant number GJ43634X, contract number DCR74~12997-A01, and
NSF grant no. MCS876-14294,

! We use the “omega” notation for lower bounds as the inverse of the “*big-0" notation for upper
bounds: f(v)= £(v? means v* = 0(f(v)) or equivalently (3¢ >0)(Vv)f(v)= cv®.
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Motivated by these results, Arnold Rosenberg conjectured [15] that, for any
nontrivial graph property, representing a graph by an adjacency matrix forces an
algorithm which recognizes the property to make 2(v?) inspections of the matrix in
the worst case. Aanderaa disproved this conjecture by showing that fewer than 3v
inspections are needed to determine if a directed v-vertex graph contains a vertex
with in-degree v —1 and out-degree 0 (a ‘‘sink”). To revive the conjecture,
Aanderaa suggests that the graph properties should be constrained to be
“monotone”: If the property holds for a graph G = (V, E) it must also hold for all
graphs G’ = (V, E’) such that E C E’. This eliminates the *‘sink” counterexample,
and leads to the following conjecture.

Aanderaa—Rosenberg Conjecture [15]. In the worst case, £2(v*) operations are
required to determine from the adjacency matrix of a graph G whether it has a
property P which is (i) nontrivial, (ii) monotone, (iii) independent of the labellings
of the vertices, and (iv) independent of the existence of self-loops (see [10]).

There is in fact no evidence to contradict the stronger conjecture that each of the
v(v —1)/2 independent entries of the adjacency matrix of an undirected graph
(v(v — 1) entries for a directed graph) must be examined in the worst case. In [2],
[7], and [11], many properties satisfying (i)-(iv) above are shown to require 2 (v?)
operations, and Kirkpatrick [5] shows that (v log.(v)) operations are always
required, giving support to the original conjecture. These result are all obtained by
oracle construction techniques, with the exception of Best, Van Emde Boas, and
Lenstra [1], who independently discovered the approach we will use here®.

In this paper we present a generalization of the Aanderaa~Rosenberg Conjec-
ture, and prove this generalized conjecture for Boolean properties having a
prime-power number of arguments. We use this result to prove the original
Aanderaa-Rosenberg conjecture.

2. Definitions

Functions and vectors

Let P(x,...,Xs) be a Boolean function (property) mapping {0, 1}* onto {0, 1},
denoted P :{0,1}¢ —{0,1}. We say *“P(x) holds” or “x has property P” iff
P(x)=1.Let x <y denote x; <y, for 1 <i=<d, with x,y €{0, 1}*. Let 0 (respec-
tively 1) represent the d-bit vector of zeros (respectively ones). We say that P is
monotone if x <y implies P(x)=< P(y) for all x,y in {0, 1}*. The weight w(x) of a
vector x is the number of ones in x.

? The key observation of the method, summarized in Lemma 1, was also independently made by
V. Chvatal.
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Permutation groups

We denote permutations and permutation groups by lower and upper case Greek
letters, respectively. The symmetric group of all permutations of degree d is
denoted by 3. Let | I'| denote the order of a group I, and I'y < I'; mean that I’y is'a
subgroup of I';. A permutation group I" acting on the set {1,..., d} is transitive if,
for each pair i, j of integers in {1,..., d}, there is a permutation of o € I" such that
o(i)=j.

If P:{0,1}* —{0, 1}, then I'(P) denotes the stabilizer of P;

I(P)={0 € 3| (Vx €{0, 1}*) P(x1,..., %) = P(Xotry - - ., Xotw)}-

For x €{0, 1}¥ and I' < 3, let xI" represent the orbit of x under the action of I
on {0, 1}*:

s ={y€{0,1}*|(FoceNMiE{L,...,d)x = you}

For example, note that y € xI"(P) implies that P(x)= P(y), but not conversely in
general. A Boolean function P:{0, 1} — {0, 1} is said to be rransitive whenever
I'(P) is itself transitive,

Graphs

An undirected graph G = (V, E) consists of a vertex set V of size v, and a set
E C V® of edges (V@ denotes the set of 2-subsets of V). Thus “multiple edges”
and “self-loops’’ are specifically excluded. The adjacency matrix for G is a Boolean
vector of length (3), with one position for each edge in V® which is 1 iff that edge is
in E. The complete graph K, is (V, V®); the empty graph E, is (V,#).

Let 3% denote the permutation group acting on V*® induced by the symmetric
group X, acting on V so that o({i,j})={c(i),o(j)} for each i j€ V, using
transparent notation. Two graphs G =(V,E) and G'= (V,E’) are isomorphic,
written G = G’, if there exists a permutation o € 3% such that ({i,j} € E) <>
(c({i, ihEe E).

A boolean function P :{0, 1} — {0, 1}, where d = (), is said to be a graph property
if 39 = I'(P). Intuitively, this means that P does not depend upon the labelling of
the vertices, or equivalently that (G = G') = (P(G) = P(G")). (We use P(G) to
mean P(x), where x is the adjacency matrix of G.) Note that any graph property is
transitive.

Algorithms

We consider “decision-tree’” algorithms for computing P(x). For a given function
P :{0,1}* — {0, 1}, and an input vector x € {0, 1}*, a decision-tree computes P(x) by
successively examining the various components {coordinates) x; of x. As an
example, the following tree (Fig. 1) determines whether a vector x € {0, 1} has
exactly two ones:



374 R.L. Rivest, J. Vuillemin

Fig. 1.

The algorithm is a binary tree T whose internal nodes are labelled with the indices i
of the x; to be tested. Testing begins with the x; specified at the root, if it is zero, the
algorithm continues with the x;-specified at the root of the left subtree, otherwise it
proceeds to the right. The leaf which is eventually reached specifies the value of P
for the input vector. Let ¢(T,x) denote the number of tests made using T to
compute P(x). In our example ¢(7;,000) =2 and ¢(T,101) = 3. The depth of a leaf
is the number of tests made in order to arrive at that leaf (the length of the path
from the root).

Let ¢(T) denote the maximum value of ¢(T, x) for any x € {0, 1}4, and let C(P),
the argument complexity of P, be the minimum value of ¢(T) of all trees T which
compute P. Thus C(P) is the minimum number of arguments which must be
examined in the worst-case, independent of the algorithm used. If C(P)= d we say
that P is exhaustive. (The term “evasive’ is used in [1, 8, 9].) Note that C(P) is a
Jower bound on the time any algorithm recognizing P must take in the worst case,
on any model of machine where no two operations can take place at the same time.

3. The argument complexity of arbitrary functions

Before attacking the Aanderaa-Rosenberg conjecture directly, let us step back and
try to see what are the important parts of the problem. The fact that we are
considering graph properties is not essential to the conjecture: matroid or
hypergraph properties might work as well. Requiring P to be a graph property
means only that I'(P) must have a “nice” structure.

Considering P, an arbitrary {0, 1} — {0, 1} function, and ignoring for the moment
restrictions on I'(P), what can we say about C(P)?

Note that a leaf L at depth k in a tree T for P is reached for exactly those 2¢7*
vectors which vary in all possible ways in the d — k untested positions and which
have specified values in the k tested positions. The value of P for each of these
vectors is the same. If every leaf L €T has depth less than d, say ko=
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max(depth(L)) < d then 2¢* must divide |{x € {0, 1} | x arrives at L}|, for any L.
From this simple observation, it follows that:

Lemma 3.1. If [{x | P(x)=1}| is odd, then P must be exhaustive,
Proof. An odd number is not the sum of even numbers. [

In order to strengthen this result define the weight enumerator P'(z) of P by

P (z) = Z wi(P) z'

=i=

where w,(P)=|{x | (P(x)=1) A (w(x)=1i)}|, so that the coefficient of z' is the
number of vectors x of weight i such that P(x) = 1. The contribution to P'(z) of a
leaf L at depth k specifying a value 1 for P is z/(1+2)*7% if j of the k bits
examined on the path to L were ones.

Theorem 3.2. If C(P)<k, then (1+ z)** divides P'(z).

Proof. In an optimal tree T for P, each leaf L specifying 1 for P contributes a
multiple of (1+z)*™ to P(z). O

Taking k =d -1 and z =1 in Theorem 3.2 yields Lemma 3.1, since P'(1)=
[{x €{0, 1}*| P(x)=1}].

Theorem 3.2 also implies the following corollary, since C(P) = d — 1 implies that
PY(-1)=0.

Corollary 3.3. If C(P)=<d — 1, then the numbers of even- and odd-weight vectors
for which P equals 1, are equal:

{x | P(x)=1Aw(x)odd}|=|{x | P(x)=1n w(x) even}|.
Corollary 3.4. As d — o, almost all functions P :{0,1}* — {0, 1} are exhaustive.

Proof. The number of functions P:{0,1}—{0,1} such that |{x [P(x) =
1A w(x)odd} =k =|{x | P(x) =1 w(x)even}| is () where n =2°""; thus

. 1 n\? 1 2n 1
Prob(P non-exhaustive) = — - ( ) = . ( > e
( ) 22" Os%n k 22" n \/n

which goes very rapidly to 0 as d » 0, [
Since most functions are exhaustive, it seems reasonable to expect that there are

large classes of functions, such as those for which I'(P) has a nice structure, which
are uniformly exhaustive.
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4. The Aanderaa-Rosenberg conjecture

The next question to ask is: If we restrict P to be a graph property (39 < I'(P)),
what are the characteristics of 3® that might enable us to show that P is
exhaustive?

The most noticeable feature of I, aside from the fact that it is a representation
of ¥, is that it acts transitively on V@, Each edge in V@ is equivalent to (can be
mapped into) any other edge, so the testing algorithm has no way of selecting an
initial edge which is preferable for testing to any other edge.

Is it possible that the transitivity of 3¢ is sufficient to ensure that P is
exhaustive? What can be said about functions P such that I'(P) is transitive?

Lemma 4.1. If I'(P) is transitive, then

w(x) [x[(P)|=d - b(x)
where
b(x)=|{y € xI'(P)|y.=1}|, foranyx €{0,1}". (1)

Proof. Let M denote the | xI'(P)| by d matrix whose rows are the vectors in xI"(P).
The left side of (1) counts the number of ones in M by rows, the right side by
columns. By transitivity each column contains b (x) ones, since a permutation of the
columns of M by an element ¢ € I'(P) is equivalent to a permutation of the rows of
M O

Corollary 4.2. If d = p* for some prime p and positive integer o, I'(P) is transitive,
and x €{0,1}, then p divides |xI'(P)| unless x =0 or x =1 in which case
|xI(P)] = 1.

Proof. Clearly |0I'(P)|= llF(PjI = 1; otherwise, the result follows from Lemma
4.1 since p* does not divide w(x) unless x =0 or x =1. O

Theorem 4.3. Any transitive boolean function P :{0, 1}* = {0, 1} such that d is a
prime power d = p* and P(0) # P(1) is exhaustive.

Proof. Consider evaluating P'(—1)(mod p) where we calculate the number of
vectors x of even and odd weight for which P(x)=1 on an orbit by orbit basis.
From Corollary 4.2 the only orbits of interest are 0I'(P) and 1I'(P). Thus
P(—1)=P(@0)+ (- 1)P(1)(mod p); from P(0)# P(1) we obtain PY(-1)=
+1 (mod p). In either case, P'(— 1) # 0 and the result follows by Theorem 3.2. [

We return to the Aanderaa—Rosenberg conjecture and apply the preceding
theorem to show that C(P) = Q(v?) if P is a monotone nontrivial graph property.
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While we believe that C(P) = (;) is always the case, the results of the preceding
sections do not directly apply since (3) is never a prime power unless » =2 or v = 3.
We have to reduce the problem to one we can handle, at some loss in the strength
of results.

It is not difficult to verify that C(P)=(3) for 2 =< v €4 by hand; we have also
shown this to be true for v =5,7,11, and 13. For the latter cases the following
lemma simplifies the calculation considerably.

Lemma 4.4. If v is prime, then |xI'(P)| =0 (mod v) unless x represents a graph with
cyclic symmetry (that is, invariant under a cyclic permutation of the vertices),

Proof. Observe that |xI"(P)| = (v!)/| Aut(x)|, where
Aut(x)={oc e 3?

x =ox}

is the automorphism group ¢f x. By Sylow’s theorem (see [2]), if v divides | Aut(x)]
and v is prime, then Aut(x) contains an element of order v. But the order of an
element of 3@ is the 1cm of the sizes of the various orbits that it divides the vertices
into, so an element of ¥% has order v only if it is a cyclic permuation of the
vertices, i.e,, it acts transitively on the vertices. [J

When v is prime, the fact that |xI"(P)| =0 (mod v) unless x represents a graph
with cyclic symmetry implies the following lemma.

Lemma 4.5. If v is prime and P is a monotone nontrivial graph property on v-vertex
graphs such that P(H,) =1 (where H, is a v-vertex Hamiltonian circuit), then P is
exhaustive.

Proof. Calculate P'(—1)(modv); this 1is the same as calculating
—{(~ P") (= 1)(mod v) since P*(z)+ (~ P)'(z)= (1+ z)* where d = (3). If a non-
empty graph with a prime number of vertices v has cyclic symmetry, it must contain
H, as a subgraph. Therefore (~ P)'(—1)=1(mod v), since E, is the only orbit
with size not divisible by v that is not counted in P'(— 1); the result then follows
again from Theorem 3.2. []

The preceding discussion gives some cases for which C(P) = (3). To prove for all
nontrivial monotone graph properties P the weaker result that C(P)= Q(v*) we
proceed in two steps: (1) we show that C(P)= 2(v*) for v a power of 2, and (2)
show that C(P) is more or less monotone increasing with v. First we treat the case
that » is a power of two.

Theorem 4.6. If v =2" and P is a monotone nontrivial graph property on v-vertex
graphs, then C(P)=v*/4,
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Proof. For any graphs G, G, and G let m - G denote m disjoint copies of G; let
G+ G denote the graph consisting of a copy of G copy of Gs; let G, X G. denote
the graph G+ G, with every point in G, joined to every point in G,. Let
8 =2"""- K, represent the graph formed by 2"™* distinct copies of the complete
graph on 2' vertices, so that S,= E,, S, = K, and S, is a subgraph of S..,, denoted
S < 8, for 0= i =< n;finally let J; = 2"7""'+ Ky so that S; = J; + J.. Since property
P is nontrivial and montone, there exists a j such that P(S;) =0 and P(S;..) = 1.
Since §; = J; + J; and S, < J; X J,, it follows that P(J; + J;} = 0and P(J; x J;) = 1.

To show that C(P) = v*/4 we will count only the edges that must be examined in
(J; X J;) = (J; + J;), assuming that the algorithm can determine “free of charge’ that
the input graph contains a subgraph isomorphic to J; + J. More precisely, letG =
(V,E) denote the unknown graph (input to the algorithm), where |V|=2"
V=V,U YV, with | V|| =]|V,|=2""". Since restricting the possibilities for G at
most decrease C(P) (it can only “help” the algorithm), we consider the case that
G =(V,EN V) and G,=(V;, E N V) are both isomorphic to J. Now P, as a
function of E'=E — VP — V), is still nontrivial by our choice of j. Furthermore,
|E'| =2°""?is a prime power, so we are almost ready to apply Theorem4.3to P asa
function of E’ (call this function P’).

To show that P’ must be invariant under a transitive permutation group acting on
E’, we note that J; is point-symmetric, i.e., its automorphism group acts transitively
on its vertices. Thus, for any pair of edges e ={v;, v} and e'={vi, v} in
V® - V@~ VO (where vy, vl € Vi; s, 05 € V) there is an automorphism of G,
carrying v, info v; and an automorphism of G, carrying v; into va, thus an
automorphism of G X G, carrying e into e’. Since p is invariant under permuta-
tions in 39, it is invariant under any subgroup of 5%, and in particular the
automorphism group of G, X G,. Thus P, as a function of the edges in (J; X J;)—
(J; + J;), is left invariant by the transitive permutation group .. X 3. (Here X,
(resp. X,) is the symmetric group on V, (resp. V), and (o, 7){v,,v3}=
{o(v), 7(v.)} for VIE VY, 1,E Vs, (0,T)E 20X 3lp, 0 € Zup, T E 3Jn) We can
then apply Theorem 4.3 to finish the proof. [

It remains to treat the cases where v is not a power of two. Let C(v) denote the
minimum value of C(P) as P ranges over all nontrivial monotone properties of
v-vertex graphs.

Lemma 4.7. C(v)=min(C(v ~1),2*7?%), where 2* < v <2**".

Proof. Consider a monotone property P of v-vertex graphs. Then either
(i P(Ki+K,-)=1,
(ii) P(K:X E,-))=0, or
(iii) neither of the above,
Cases (i) and (ii) directly imply that C(v)= C(v — 1) since the algorithm can obtain
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“free” the information that some vertex is either isolated or connected to all other
vertices, and P restricted to the remaining edges is still a monotone nontrivial graph
property.

In case (iii), let  =2*'and r = v —2u. Asin Theoorem 4.6, we construct from P
a property P’ satisfying the conditions of Theorem 4.3. First, we restrict attention to
graphs G such that K, XK, + E, < G s K, X (K, + E,) and define P' as P re-
stricted to those edges between K, and E, for each graphs. Since P’ is invariant
under independent arbitrary relabelling of vertices within either K, or E,, it is left
invariant by a transitive permutation group. Since property P is monotone, so is P';
from the conditions

(1) P(K,+K,-)=0 and K, XK, +E, <K+ K,;

() P(K;X E,.,)=1 and K;xE,., s K, Xx(K,+E.),
it follows by monotonicity of P that P’ is nontrivial. Thus all u®=2"*"? edges
between K, and E, must be examined in the worst case, proving Lemma 4.7. (]

From Theorem 4.6 and Lemma 4.7 follows:

Theorem 4.8. If P is a nontrivial monotone graph property of v-vertex graphs, then
C(P) = v¥/16.

Kleitman and Smith (alias Kwiatowski) ([8, 9]) have tightened this bound to
C(P)=v*/9 by showing C(P)=v?3 for v of the form 32" and improving on
Lemma 4.7,

5. The generalized Aanderaa-Rosenberg conjecture

Theorem 4.8 of the preceding section is the main result of this paper. In this section
we consider ways in which that result might be strengthened. In particular, we
present a generalized version of the Aanderaa—Rosenberg conjecture and consider
several approaches towards proving it, together with some examples demonstrating
the limitations of the methods of the previous section, We also include an
observation by Lovasz to the effect that our generalized conjecture would imply a
special case of a well-known open conjecture in graph theory, suggesting the
difficulty of this question.
Examination of many small cases has led us to the following.

The generalized Aanderaa—Rosenberg conjecture

If P:{0,1}* —{0, 1} is transitive and P(0)# P(1) then P is exhaustive. ,
The generalized conjecture clearly implies the orignal Aanderaa-Rosenberg

conjecture, since P(0)# P(1) if P is a nontrivial monotone function. Theorem 4.3
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lends support to the generalized conjecture by proving that it holds whenever d is a
prime power.

A proof of the generalized conjecture cannot be obtained by a simple extension
of the proof of Theorem 4.3, for the reason that if d is composite, the sizes of the
orbits may be any one of many sizes. The result is that there exist functions P
satisfying the conditions of the generalized conjecture having P'(~1) =0, so that
the proof technique fails. For the record, we note the smallest such P discovered:
Take d = 12, and P{x)= (dy € S)(x = y) where S contains all vectors in the orbits
under the cyclic group C.; of (1°0), 1°0°1°0, (120)*, and (1*0%)*. The corresponding
weight enumerator is

Pz)=92°%+522°+54z""+ 122" + 272,

For graphs a similar situation occurs if P(G) is the function: G is not a subgraph of
any of the graphs shown in Fig. 2 for 6-vertex graphs. The corresponding weight
enumerator is

PYz)=(1+z)"~152"~7452°~ 17312~ 1365z* - 4552 — 1052*- 15z — 1.

X1l AV, PN NN oK

Fig. 2.

Both of these functions are monotonic. Using arguments based upon an application
of Lemma 3.1 to the various functions induced from p by fixing some of its
arguments, they can, however, be shown to be exhaustive; we know of no
counter-examples to the generalized conjecture.

While there are functions which are exhaustive and yet have (1 + z) ! P'(z) (that
is, with P*(~1)=0), one might hope that they all satisfy (14 z)*4 P'(z). This
would be relevant due to the following theorem, aithough we shall see that this
approach is also limited.

Theorem 4.9. If P is transitive and non-exhaustive, then (1+ z)2| P'(z).

Proof. Let Q(x) be the Mébius inverse of P(x), so that P(x)= Zoay<. Q(¥),
implying that Q(x) = Leyex P(x)(— 1)**®? by Mobius inversion, where x @y is
component-wise ‘‘exclusive-or”. Since P is not exhaustive, by Theorem 3.2
Q)= P'(—1)=0. By the transitivity of I'(P), each of the restricted functions
Pi(x)=P(x [x,- =0) for 1=i=<d must be non-exhaustive, since it makes no
difference which argument is tested first. This implies similarly that Q(1'7'01¢7") =
P}(—1)=0 for each i. Thus
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Pz)= 3 P(x)-z"

0=x=1

Q(y)z w(x)

fsx<l 0<ysx

I

E QWy)z w(y)(l + z)d—w(y)}

O=sy=1

implying the theorem. More generally, it can be shown that if I'(P) is k-transitive
and P is not exhaustive then (1+ z)*"' divides P'(z). [

Unfortunately, there exist many exhaustive functions P with I'(P) transitive such
that (1+ z)?| P'(z). The previously mentioned property of 6-vertex graphs is an
example. Thus Theorem 4.9 cannot be used directly to give a proof of the
generalized conjecture,

Although Theorem 3.2 is, as we have noted, insufficient to prove the general
conjecture, it can be used to prove interesting subcases, where we require I'(P) to
have more structure than merely being transitive,

Theorem 4.10. Let E denote the smallest set of natural numbers such that (1€ E)
and (n € E)A(q prime)a(q >2""") => nq* € E for all natural numbers k. If
- P:{0,1}* = {0, 1} is such that P(0)# P(1), I'(P) is transitive and abelian, and
d E E, then P is exhaustive.

Proof. Let d = ng*, where q is prime, n € E, and g =2""". Since I'(P) is transitive
and abelian, it must also be regular (that is, have order d) [3]. Therefore, for each
i,j in {1,..., d} there is exactly one permutation o € I'(P) such that o(i) = j. Now
I'(P) contains a Sylow subgroup 8 of order ¢*, and since I'(P) is abelian, @ is
normal in I'(P) and 8 is the only subgroup of order q* in I'(P). The action of 8 on
{1,...,d} divides {1,..., d} into n blocks of size g*; i and j are in the same block
(denoted i ~j) if (Jo € 8)(a(i)=J).

We calculate P'(—1)(mod gq) on an orbit by orbit basis. Note that |xI'(P)|=
| (P)|/|Aut(x)|, where Aut(x) is the subgroup of I'(P) that fixes x € {0, 1}*. If
|xI"(P)| #0 (mod g), then 6 < Aut(x) follows by Sylow’s theorem, since 6 is the
only subgroup of size ¢g* in I'(P). Furthermore, if 6 < Aut(x), then
Vi )i~ ) => (1 =x).

The group I'(P)/6 is abelian. Its action is to permute the blocks of {1,..., d},
since I'(P) is the direct product of # and I'(P)/6. Clearly I'(P)/# must be a
transitive group acting on the set of blocks, since I'(P) is transitive. We can create
an induced function Q:{0,1}"—{0,1} such that I'(Q)=I(P)/6 and
Qi Y2+ -, ¥s) = P(x1, X2, ..., x4) where all of the variables x; in the i*" block are
set equal to y. Therefore Q satisfies the conditions of the theorem.,
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To prove P is exhaustive, our inductive assumption will be that (n € E)
A (q prime) A (g =2"7") A (P : {0, 1}" — {0, 1}) A (I'(P) transitive and abelian) ==>
PY(—1)#0. By our above remarks P'(—1)=Q'(—1)(mod g). Furthermore,
|Q'(—1)|=2"", so that P,(— 1) # 0 follows from q >2""". The base case (n = 1)
follows from Theorem 4.3.

The set E contains all prime powers and many composite numbers (having an
arbitrary number of prime factors) but not all natural numbers; its density in the
natural numbers is not significantly greater than that of the primes.

The same argument can be used for obtaining the following results: in Theorem
4.10 we can replace “P(0) # P(1)” by “P monotone non-trivial’” and “E” by “E"’,
where, in the definition of E’, we replace “2"""" by

)

Theorem 4.10 can also be used to settle the Generalized Conjecture when
|F(P)|=2-p® with p prime.

The Generalized Aanderaa-Rosenberg Conjecture seems quite difficult to
prove. Lovasz has pointed out to the authors that the generalized conjecture would
imply a special case of an open conjecture in graph theory, given in [12].

In a graph G = (V, E) a clique is a set of mutually adjacent vertices; a clique C is
maximal if, for any vertex v & C there exists a vertex in C which is not adjacent to
v. A graph is regular if every vertex has the same degree.

Conjecture. If a finite regular graph G is not the complete graph, then for every
clique A there exists a maximal clique B which is disjoint from A.

A special case of this conjecture obtains if G is point-symmetric, (and therefore
regular); this case is also unsettled.

Lovasz showed that if the special case of the above conjecture is false then so is
our generalized conjecture. Let Go( Vo, Eo) be a point-symmetric graph not equal to
Kjv, containing a clique A, which intersects every maximal clique B in G.
Associate a variable x; with each vertex v; in Go. Define the function f as follows:

flx,....,xv) =1 iff {u !x,- =1} is a clique.

Clearly f is transitive since G, is point-symmetric. Also, f is anti-monotone, and
nontrivial since G, is not the complete graph. It is never necessary to examine all of
the x’s to compute f. Let C denote the set of vertices {u 'x, =1}. One may
examine all the variables corresponding to vertices in V,— Ag; if we find two
nonadjacent vertices in C M (Vy— Ao) then f(x)=0. Otherwise C N (Vy— Ay) is
contained in a maximal clique C’ which intersects A,. We next determine
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CN(A,—C'); if every vertex in this set is adjacent to every vertex in
C N (Vo— Ag), then C must form a clique. The variables corresponding to AN C’
need not be examined, since any vertices in C N A, N C’ must be adjacent to each
other and all previously found vertices in C. Since |A,N C'[>0, f is not
exhaustive.

6. Conclusions

The technique introduced in this paper is a new means for establishing the
worst-case complexity of Boolean functions, measured in terms of the number of
arguments examined. It is not based on the construction of oracles, or on
information-theoretic considerations, but rather on a strong necessary condition for
C(P)<d to occur. Our generalized conjecture states the minimal conditions that
we believe necessary to ensure that C(P)= d: namely, that P(0)# P(1) and I'(P)
be transitive. A proof of our generalized conjecture in the case that d is a prime
power allows us to settle the Aanderaa-Rosenberg conjecture in the affirmative.
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