
Inference of Finite Automata Using Homing Sequences
(Extended Abstract)

Ronald L. Rivest Robert E. Schapire

MIT Laboratory for Computer Science
Cambridge, MA 02139

Abstract
We present new algorithms for inferring an unknown finite-state
automaton from its input/output behavior in the absence of a
means of r e ~ r t t i n p the machine to a start d a t e . A key tech-
nique used is inference of a homing sequence for the unknown
automaton.
Our infknrnce procedufes experiment with the unknown ma-

chine, and from time t o time require a teacher to supply coun-
terexamplea to incorrect conjectures about the structure of the
unknown automaton. In this setting, we describe a learning algo-
rithm which, with probability 1 - 6, outputs a correct deecription
of the unknown machine in time polynomial in the automaton's
size, the length of the longest counterexample, and log(ll6). We
present an analogous algorithm which makes use of a diversity-
based representation of the finite-state system. Our algorithms
are the first which are provably eflecfive for these problems, in
the absence o j Q "reset."

We also present probabilistic algorithms for permutation au-
tomata which do not require a teacher t o supply counterexam-
ples. For inferring a permutation automaton of diversity D, we
improve the best previous time bound by roughly a factor of
D3 / log D.

1 Introduction
We address the problem of inferring a finite automa-
ton from its input/output behavior. This well-studied
problem continues to generate new interest. In the
past, a number of learning protocols have been con-
sidered. I t is now known that inferring finite automata
in many of these situations is computationally hard,
while feasible i n a few others.

Angluin [3] and Gold [4] show that it is NP-complete
to find the smallest automaton consistent with a given
sample of input/output pairs. Pitt and Warmuth [9]

This paper prepared with support from NSF grant DCR-
8607494, ARO Grant DAAL03-86-K-0171, and a grant from
the Siemens Corporation. Part of this resesrdr was done while
R. Schapire was visiting GTE Laboratories in Wallham, Mas-
sachusetts. AutilorsS net addresses: ri\~est@theory.lcs.mit.edu,
rsQtheory.lcs.mit .edu.

Permission to copy without fee all or pan of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM Copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

O 1989 ACM 049791 -307-8/89/0005/0411 $1 -50

show that merely finding an approximate solution is
intractable (assuming P # NP).

These NP-hardness results depend on a restriction
that the learner use a particular representation of the
automaton. In fact, learning is even hard when no
such restriction is made. Kearns and Valiant [6, 71
consider the "representation-free" problem of predict-
ing the output of the automaton on a randomly chosen
input, based on a sample of the machine's behavior.
Extending the work of Pitt and Warmuth [lo], they
show that this problem is as hard as factoring Blum
integers, inverting RSA, or deciding quadratic residu-
osity.

Thus, learning by passively observing the behavior
of the unknown machine is apparently infeasible. But
what about learning by actively experimenting with it?

Angluin [2] shows that this problem is also hard. She
describes a family of automata which cannot be identi-
fied in less than exponential time when the learner can
only observe the behavior of the machine on inputs of
the learner's own choosing. The difficulty here is in
accessing certain hard to reach states.

In spite of these negative results, Angluin [I], e labs
rating on Gold's results [5] , shows that a combination
of active and passive learning is feasible. Her inference
procedure is able to experiment with the unknown au-
tomaton, and is given, in response to each incorrect
conjecture of the automaton's identity, a counterexam-
ple, a string accepted by either the unknown automa-
ton or the conjectured automaton, but not by the other.
Her algorithm runs in time polynomial in the automa-
ton's size and the length of the longest counterexample.

A serious limitation of Angluin's procedure is its crit-
ical dependence on a means of resetting the automaton
to a fixed start state. Thus, the learner can never re-
ally "get lost" or lose track of its current state since it
can always reset the machine to its start state. In this
paper, we extend Angluin's algorithm, demonstrating
that an unknown automaton can be inferred even when
the learner is not provided wilh a reset.

This problem of inferring an automaton from its in-
put/output behavior in the absence of a reset is rele-
vant to the problem of identifying an environment by
experimentation. We imagine a robot placed in an un-

Figure 1: An Example Robot Environment

familiar environment who must learn the structure of
its world to function effectively in it. For example, the
robot might find itself on a directed graph, such as the
one in Figure 1. In this environment, the robot can
sense his local environment (e.g., can see whether the
node it's on is shaded or not), and can select one of
the out-going labeled edges to traverse. It is natural
to assume that the robot does not have a means of
"resettingn the environment to some start state, or of
"backing up" to a previous state. As in real life, the
robot must gather data in one continuous experiment.

The generality of our results allows us t o handle any
directed graph environment. This means that we can
handle many special cases as well, such as undirected
graphs, planar graphs, and environments with special
spatial relations. However. our procedures do not take
advantage of such special properties of these environ-
ments, some of which could probably be handled more
effectively. For example, we have found that permu-
tation automata are generally easier to handle than
non-permutation automata.

In our previous papers [l l , 121, we introduced the
"diversity-based" representation of finite automata and
described an algorithm which we proved to be effective
for permutation automata. We also described some
general techniques for handling non-permutation au-
tomata which, although not provably effective, seemed
to work well in practice for a variety of simple environ-
ments.

In this paper, we generalize these results, demon-
strating probabilistic inference procedures which are
provably effective for both permutation and non-
permutation automata. More generally, we present
new inference procedures for the usual global state rep-

resentation, as well as for the diversity-based represen-
tation.

Like Angluin, we assume that the inference proce-
dures have an unspecified source of counterexamples
to incorrectly conjectured models of the automaton.
This diflers from our previous work where the learning
model incorporated no such source of counterexamples;
as already mentioned, this limitation makes learning of
finite automata infeasible in the general case. For a
robot trying to infer the structure of its environment,,
a counterexample is discovered whenever the robot's
current model makes an incorrect prediction. For the
special class of permutation automata, we show that
an artificial source of counterexamples is unnecessary.

Our algorithms use powerful new techniques based
on the inference of homing sequences. Informally, a
homing sequence is a sequence of inputs that, when fed
to the machine, is guaranteed to "orient" the learner:
the outputs produced for the homing sequence com-
~ le te ly determine the state reached by the automaton
a t the end of the homing sequence. Every finite state
machine has a homing sequence. For each inference
problem, we show how a homing sequence can be used
to infer the unknown machine, and how a homing se-
quence can be inferred as part of the overall inference
procedure.

2 Two Representations of Fi-
nite Automata

2.1 Global State-Space or Standard
Representation

Definition 1 The standard representation of an en-
vironment or finite state automaton & is a tuple
(9 , B, 6, qo, 7) where:

Q is a finiie nonempty set of states,

B is a fin,iile nonempty set of input symbols or
basic actions,

6 i s the next-state function, which maps Q x B
into Q,

go, a member of Q , is the initial state, and

7 i s the output function, which maps Q t o (0, I).

For example, the graph of Figure 1 depicts the global
state representation of an automaton whose states are
the vertices of the graph, whose transition function is
given by the edges, and whose output function is given
by the shading of the vertices.

We denote the set of all finitely long action sequences
by A = B*, and we extend the domain of the function
6(q, a) to A in the usual way: 6(q , A) = q, and 6(q, ab) =
6(6(q, a), b) for all q E Q, a E A , b E B. Here, A denotes

the empty or null string. For shorthand, we write qa to
mean b(q, a), the state reached by executing a from q.
We say that E is a permutation automaton if for every
action b, the function 6(.,b) is a permutation of Q.

We refer to the sequence of outputs produced by exe-
cuting a sequence of actions a = b1b2 . . . bt from a state
q as the output ofa at q, denoted q(a):

(Don't confuse y(qa) and q(a). The former is a single
value, the output of the state reached by executing a
from q. In contrast, q(a) is a (la[+ 1)-tuple consisting of
the sequence of outputs produced by executing a from
state q.) Finally, for a E A, we denote by Q(a) the set
of possible outputs on input a:

Clearly, IQ(a) 1 5 [&I for any a.

Action sequence a is said to distinguish two states ql
and 92 if q1 (a) # q2(a). We assume that & is reduced:
for every pair of unequal states there is some action
sequence which distinguishes them.

2.2 The Diversity-Based Representa-
tion

In this section, we describe the second of our represen-
tations. See Ell, 121 for further background and detail.
The representation is based on the notion of tests and
test equivalence.

A test is an action sequence. (This definition differs
slightly from that given in previous papers where we
consider automata with multiple output ("sensations")
at each state.) The value of a test t a t state q is y(qt),
the output of the state reached by executing t from g.

Two tests t1 and t z are equivalent, written t l F i2, if
the tests have the same value a t every state. It's easy
to verify that this defines an equivalence relation on
the set of tests. We write It] t o denote the equivalence
class of t , the set of tests equivalent t o t . The value
of [t] at q is well defined as y(qt). The diversity of
the environment, D(E), is the number of equivalence
classes of the automaton: D(&) = ({It] : t E A] 1. In [l l ,
121, it is shown that lg((Q1) 5 D(&) 5 2181, so the
diversity of a finite ailtornston is alwz~ys finite.

The equivalence classes can be viewed as state van'-
ables whose values entirely describe the state of the
environment. This is true because two states are equal
(in a reduced sense) if and only if every test has the
same value in both states.

It is often convenient t o arrange the equivalence
classes in an update graph such as the one in Figure 2
for the environment of Figure 1. Each vertex in the
graph is an equivalence class so the size of the graph is
D(E). An edge labeled b E B is directed from vertex

Figure 2: The Update ~ r d ~ h for the Environment of
Figure 1

[tl] to [t2] iff t l I btz. ~ d c t ha t each vertex has ex-
actly one in-going edge lab'eled with each of the basic
actions. This is because if d l r t 2 then btl E bt2.

We associate with each vkrtex [t] the value o f t in the
current state g. In the figuie, we have used shading to
indicate the value of each vmtex in the robot's current
state. The output of the cJrrent state is given by ver-
tex [A], s o this is the only vertex whose value can be
observed by the robot. When an action b is executed
from q, each vertex [t] is rkplaced by the old value of
[b t] , the vertex at the tail bf [ti's (unique) in-going b-
edge. That is, in the newsta te qb, equivalence class
[t] takes on the old value of [bt] in the starting state
q. This follows from the fact that y((qb)i) = y(q(6t)).
Thus, the update graph cdn be used to simulate the
environment. I

On first blush, the s t r u k r e s of the update graph
of Figure 2 and the transition diagram of Figure 1 ap-
pear to be quite similar. IA fact, their interpretations
are very dicerent. in the klobai state representahon,
the robot moves from state to state while the output
(shading) of the states rekains unchanged. On the
other hand, in the diversith-based representation, the
robot remains stationary, only observing the output of
one vertex ([A]), and allowing the values of the other
vertices to come to him. ~ h ' u s , the diversity-based rep-
resentation is more egocentric - the world is repre-
sented relative to the robot, while in the state-based
representation, the world ik represented by its global
structure which the robot rhoves within.

Input: E - a finite state automaton
Output: h - a homing sequence
Procedure:

h - X
while (%I, 92 E Q)q~(h) = q2(h) but qih $ q2h do

let z f A distinguish g1 h and qz h
h + hz

end

Figure 3: A State-Based Algorithm for Constructing a
Homing Sequence

3 Homing Sequences

Henceforth, we set D = DIE), n = IQI, k = JB(.

Definition 2 A homing sequence i s an action se-
quence h for which the stale reached by executing h
is uniquely determined by the output produced: h is a
homing seqvence iff

As a quick example, the string consisting of the single
action "x" is a homing sequence for the environment of
Figure 1. If q (x) = , then gx = 3; if q (x) = Om,
then q x = 2; and, if q (x) = m m then qx = 1.

Kohavi [8] gives a complete discussion of homing se-
quences. Re distinguishes between "preset" and "adap-
tive" homing sequences. We make use only of the for-
mer in this abstract because they are simpler; we show
in the full paper that our inference procedures can be
improved using adaptive homing sequences.

Given full knowledge of the structure of &, it is easy
to construct a homing sequence h, as shown in Figure 3.
Initially, h = A. On each iteration of the loop, a new
extension x is appended to the end of h so that h now
distinguishes two states not previously distinguished.
Thus, [Q(h)I < IQ(hr)l 5 n, and therefore the program
will terminate after a t most n iterations. Further, since
each extension need only have length n, we have shown
how to construct a homing sequence of length at most
n2.

A diversity-&used homing sequence is an action se-
quence h which has the property that for every test
1 , there exists a prefix p of h such that p s ht. Ev-
ery diversity-based homing sequence h is a homing se-
quence. For if q l h # qZh then there is some t for which
~ (q l ht) f y(q2ht). Since ht is equivalent to some prefix
P of h , we have 7(9l P) # f i (q2~)- Thus, ql (h) # 92(h).

Figure 4 shows an algorithm for constructing a
diversity-based homing sequence h. Again, h is built
up from A by appending extensions x . On each itera-
tion, ({[p] : p prefix of h)l increases by a t least one, so
there are a t most D iterations. Each extension need
be no longer than D, so we can find a diversity-based
homing sequence of length at most R2.

Input: & - a finite state automaton
Output: h - a diversity-based homing sequence
Procedure:

h + A
while (32 E A)(Vp prefix of h)p $ h z do

h + h z
end

Figure 4: A Diversity-Based Algorithm for Construct-
ing a Homing Sequence

Some remarks about the length of homing sequences:
First, the homing sequences constructed by the pre-
ceding algorithms are the best possible ih the sense
that there exist environments whose shortest hom-
ing sequence has length n(n2) (or R(D2)). However,
given a state-based (or a diversity-based) description
of a finite-state machine, it is NP-complete to find the
shortest homing sequence for the automaton. (The re-
duction is from exact 3-set cover.)

4 Inference of Finite Automata
- The General Case

In this section, we describe algorithms for inferring the
structure of an unknown environment C.

We say that the learner has a perfect model of his
environment if he can predict perfectly the output of
the environment given any sequence of actions. The
goal of our inference procedures is to construct a perfect
model.

We assume that the learner is given access to E, that
the learner can observe the output of the environment
when actions of his choosing are executed. We also as-
sume lhat there is a "teacher" who provides the learner
with counterexamples to incorrectly conjectured mod-
els of the environment. A counterexample is a sequence
of actions whose true output from the current state dif-
fers from that predicted by the learner's model. Typi-
cally, there will be many sequences of actions which are
counterexamples to a given conjecture, and by choosing
an especially long or short counterexample, the leacher
can significantly afT'ect the running time of the proce-
dure. This fact is reflected in our running times which
depend on the length of the counterexamples provided.

In the framework of a robot learning about its envi-
ronment, we might imagine the robot, upon completion
of a model of the environment which it believes to be
correct, using that model to make predictions of the
output of tlie environment's next state until an incor-
rect prediction is made. In tliis situation, t,he sequence
of actions leading up to the error is the needed coun-
terexample.

We generally assume that the unknown automaton is
strongly connected, that is, every state can be reached

from every other state:

We make this assumption with little loss of general-
ity: if E is not strongly connected, then an experiment-
ing inference procedure, having no reset operation, will
sooner or later fall into a strongly connected compo-
nent of the state space from which i t cannot escape,
and so will have to be content thereafter learning only
about that component.

4.1 A Global State-Based Algorithm

In this section, we describe an algorithm based on the
global state representation for inferring an arbitrary
unknown automaton.

Our procedure is based closely on Angluin's L* al-
gorithm for learning regular sets [I]. Angluin shows
how to efficiently infer the structure of any finite-state
machine in the presence of what she calls a minimally
adequale teacher. Such a teacher can answer two kinds
of queries: On a membership query, the learner asks
whether a given input string w is in the unknown lan-
guage U, that is, whether the string is accepted by
the unknown machine. On an equivalence query, the
learner conjectures that the unknown machine is iso-
morphic to one it has constructed. The teacher replies
that the conjecture is either correct or incorrect, and in
the latter case provides a counterexample w, a string
accepted by one machine but not the other.

The idea of Angluin's algorithm is to maintain an
observation table (S,E,T) . Here, S and E are prefix-
closed sets of strings. We can think of S as a set of
strings that lead from the start state to the states of
the automaton, and E as experiments which are exe-
cuted from these states. The last variable T is a two-
dimensional table whose rows are given by S U SB,
and whose columns are given by E. Each entry T(se),
where s € S U SB and e E E, records whether the
string se is in the unknown language. For fixed s,
Angluin denotes by row(s) the vector of entries T(se)
for varying e E E. Her algorithm extends S and E
based on the results of queries, and ultimately out-
puts the correct automaton based on an equivalence
between the states of the unknown machine and the
distinct rows of the tabie T. -We denote by NM and
NE the number of membership and equivalence queries
made by L*. These variables are implicit functions
of n, k and m, where m is the length of the longest
counterexample received. For Angluin's procedure L' ,
we have NM = O(kmn2), NE = n - 1. However, an
unpublished result due to Schapire improves IVM to
O(kn2 + n log m).

In our framework, the learner could easily simulate
Angluin's algorithm L* if it were given a reset: to per-
form a membership query on w , the learner resets the

Input: access to &, a finite state automaton
h - a homing sequence for E

Output: a perfect model of &
Procedum:

repeat
execute h, producing output u
if it doesn't already exist, create L:, a new copy of L'
simulate the next query of L::

if Lz queries the membership of action sequence a
then execute a and supply L: with the output
of the final state reached

if L: makes an equivalence query then
if the conjectured model E' is correct then

stop and output &'
else

obtain a counterexample and supply it to LE
end

Figure 5: A State-Based Algorithm for Inferring E
Given a Correct Homing Sequence

environment, and executes the actions of w, observ-
ing the output of the last state reached. To perform
an equivalence query on E', the learner resets the au-
tomaton and conjectures that 8' is a perfect model of
the environment. The teacher returns an action se-
quence w on which the conjectured model fails; this is
the counterexample needed by L*.

However, in our model the learner is not provided
with a reset. The main idea of our algoriihm is io
replace ihe reset with a homing sequence. In many
respects, a homing sequence behaves like a reset: by
executing the homing sequence, the learner discovers
"where it is," what state it is at in the environment.
However, unlike a reset, the final state is not fixed, and
the learner does not know beforehand what state it will
end up in. (Note that an automaton need not possess a
synchronizing sequence, a sequence that forces the au-
tomaton into a given state independent of its starting
state. So we use homing sequences instead.)

We begin b y supposing that the learner has been pro-
vided with a correct homing sequence h. Later, we will
show how to remove this assumption.

Suppose we execute h from the current state q, pro-
ducing output a = q (h) . If we ever repeat this exper-
iment from state q' and find ql (h) = u, then, because
h is a homing sequence, the states where we finished
must have been the same in both cases: qh = q'h. If we
could guarantee that the output of h would continue to
come up a with good regularity, then we could simply
infer C by simulating Angluin's algorithm, treating qh
as the initial state. When L* demands a reset, we ex-
ecute h: if the output comes up u, then we must be
a t qh, and our "reset'l has succeeded; otherwise, try
again. Unfortunately, in the general case, it may be
very difficult t o make h produce a regularly.

Instead, we simulaie an independent copy L: oj L*

for each possible ouiput u of execuiing h , as shown in
Figure 5. Since IQ(h)l 5 n, no n~ore than n copies
of L* will be created and simulated. Furthermore, on
each iteration of the loop, at least one copy makes one
query and so makes progress towards inference of E .
Thus, this algorithm will succeed in inferring E after
no more than n(NM + NE) iterations.

We now describe how to combine construction of the
homing sequence h wiih the inference of &. We main-
tain throughout the algorithm a sequence h which we
presume is a true homing sequence. When evidence
arises indicating that this is not the case, we will see
how h can be extended and improved, eventually lead-
ing to the construction of a correct homing uequence.
Initially, we take h = A.

We use our presumably correct homing sequence h
as described above and in Figure 5. If h is indeed a true
homing sequence, we will of course succeed in inferring
&.

On the other hand, if h is incorrect, we may discover
inconsisieni behavior in the course of simulating some
copy of L* : suppose on two different iterations of the
loop in Figure 5, we begin in states ql and q2, execute
h, produce output ql (h) = q2(h) = a, and, as part of
the simulation of L z , execute action sequence x . If h
were a homing sequence, then z's output would have to
be the same on both iterations since qlh and qzh must
be equal.

However, if h is not a homing sequence, then i t may
happen that qlh(x) # qzh(z) . That is, we have dis-
covered that z distinguishes qlh and qzh, and so, just
as was done in the algorithm of Figure 3, we replace
h with hz, producing in a sense a "better" approxima
tion to a homing sequence. A t this point, the existing
copies of L* are discarded, and the algorithm begins
from scratch (except for resetting h , of course). Since
h can only be extended in this fashion n times, this only
means a slowdown by at most a factor of n , compared
to the algorithm of Figure 5.

Figure 6 shows how we have implemented these
ideas. Here we have assumed n, the number of global
states, has been provided to the learner. In fact, this
assumption is entirely unnecessary. Although we omit
the details, we can show that the stated bounds below
hold (up to a constant) for a slightly modified algo-
rithm which does not require that the learner be ex-
plicit!~ prcVvided with the vall;e of n. The trick i the
usual one of repeatedly doubling our estimate of n.

Recall that L* requires maintenance of an observa-
tion table (S, E, T). Let (So, E,, T,) denote the ob-
servation table of L+,. Of course, T, can only record
output produced when executing an action sequence
from what is only presumed to be a fixed initial state.

Angluin's analysis implies that if Lz makes more
than NM + NE queries, then the number of distinct
rows will exceed n . This can only happen if h is not a
homing sequence, but how do we know how to correctly

Input: access to f, a finite state automaton
n - the number of states of &

Output: a perfect model of &
Procedure:

h c A
repeat

execute h , producing output a
if it doesn't already exist, create L:, a new copy of L*
if ({ r o w (s) : 3 E S,) [5 n then

simulate the next query of L: as in Figure 5
(and check for inconsistency)

else
let {a], . . . ,s,+l) c Sa be such that

row(s.) # roU)(a,)
randomly choose a pair si, 3j from this set
let e E E, be such that T'(sie) # Tu(sje)
with equal probability, re-execute either s,e or s,e
(and check for inconsistency)

if inconsistency found execuling some string z then
h + hz
discard all existing copies of L'

until a correct conjecture is made

Figure 6: A State-Based Algorithm for Inferring &

extend h if we have not actually seen an inconsistency?
We show that if an inconsistency has not been found by
the time the number of rows exceeds n , then we can use
a probabilistic strategy to find one quickly with high
probability.

Suppose we execute h from state q, with output u,
and we find that for Lz, there are more than n distinct
rows. Then let 81,. . . ,s,+l be as in Figure 6. By the
pigeon-hole principle, there is a t least one pair of dis-
tinct rows si, s j such that qhs, = qhsj. Further, since
row(si) # row(sj), there is some e E E, for which
Tu(sie) # TU(sje). However, y(qhsie) = y(qhsje).
Therefore, either y(ghsie) # T,(sie) or y(qhsje) #
Tu(sje), and so re-executing sie (or s j e , respectively)
from the current state qh will produce the desired in-
consistency.

So the chance of choosing the correct pair si ,s j as

above is a t least (":')-I, and the chance of then choos-
ing the correct experiment to re-run of 6ie or s j e is at
least 1/2. Thus, it can be verified that the probability
of finding an inconsistency using the technique of Fig-
ure 6 in this situation is at least l / n (n + 1). Repeating
iliis tecliniqiie n(n + l);11(1/6) tiiiies gives a yrolabil-
ity of a t least' 1 - 6 of finding an inconsistency. Also,
no more than n2 copies of L* are ever created, and Ih(
does not exceed O(n2 + nm).

Putting these facts together, we can show:

Theorem 1 Given 5 > 0 , the algorithm described in
Figure 6 will correctly infer the structure of & with prob-
ability at least 1 - 6 after executing

actions, and in time polynomial in n,m,k and 1/6.

If we assume rn = O(n) and k = O(1) and use the
previously given bounds on NM and N E , then the num-
ber of actions executed by the procedure (and the run-
ning time as well) simplifies t o O(n6 log(n/d)).

Finally, the procedure can be modified, replacing the
preset homing sequence which we have been using with
an adaptive one (see (8)) whose input a t each step de-
pends on the output seen up that point. This modific&
tion shaves a factor of n off the bounds described above.
(Details omitted.) Again assuming m = O(n) and
k = 0(1), this gives a time bound of O(n5 log(n/d)).

It is an open question whether this bound can be sig-
nificantly tightened. I t seems likely that an algorithm
which combines the many copies of L* into one would
have a superior running time, although we have not
been successful in implementing this intuition.

4.2 A Diversity-Based Algorithm

We only sketch some of the main ideas of our diversity-
based algorithm for inferring finite automata in the
general case.

In [l l , 121, we show how the update graph can be
constructed given access t o an oracle for deciding the
equivalence of any two tests. We therefore focus on
the problem of deciding if any two tests are equivalent
since with this capability, we can use previous results
t o fully construct the update graph.

Suppose we have been given a diversity-based hom-
ing sequence h. Let t be any test of interest, say one
of a pair of tests which we are testing for equivalence.
Then ht is equivalent t o some prefix of h. We maintain
for each such test t a candidate set C(t) of the prefixes
of h which could plausibly be equivalent t o ht.

Initially, we let C(2) = (p : p prefix of h). Suppose
we execute ht from some state q, and let p E C(1).
Since pis a prefix o fh , in executing ht we have observed
both the outputs y(qp) and y(qht). If we find these
outputs differ, then clearly p f ht so we eliminate p
from C(t).

If we find for tests t l and i2 that C(t l) and C(t2) are
disjoint, then t l and t 2 cannot possibly belong t o the
same equivalence class. Moreover, if for any a C A we
find that C(at l) and C(atz) are disjoint, then at f a t2
and therefore tl $ tz . These are the basic techniques
for determining inequivalence between tests, given a
diversity-based homing sequence.

When such a sequence is not provided, we again pre-
sume that h is a true homing sequence until i t becomes
necessary to extend and improve h. Initially, h = A. If
for some test x , C(x) is reduced t o the empty set, then
clearly h cannot be a diversity-based homing sequence
since hx is inequivalent t o every prefix of h. Thus, we
start again from scratch, replacing h with hx as is done
in the algorithm of the preceding section. Extending

h in this manner a t most D times, we converge to a
correct homing sequence.

Theorem 2 There etzsts an algorithm which, given
d > 0, access to an unknown environment £, and a
source of couniemzamples, outputs a correcf descrip-
tion o f 8 with probability a i least 1 - 6 in time

5 Inference of Permutation Au-
tomata

In this section, we sketch algorithms for inferring per-
mutation automata. Unlike the procedures described
up to this point, these procedures do nof rely on a
means of discovering counterexamples; the procedures
actively experiment with the unknown environment,
and output a perfect model with arbitrarily high prob-
ability.

As before, we describe both a state-based and a
diversity-based procedure. In both cases, we describe
deterministic procedures that, given a (diversity-based)
homing sequence h, will output a perfect model of the
environment in time polynomial in n (or D) and (hl.
T o construct the needed homing sequence, we show
that any sufficiently long random sequence of actions
is likely to be a homing sequence.

5.1 A Global State-Based Algorithm

Imagine a simpler situation in which the identity of
each state is readily observable, i.e., the automaton
is visible. For instance, suppose each state, instead
of outputting 0 or 1, outputs its own name. In this
situation, inference of the automaton is almost trivial.
From the current state q, we can immediately learn the
value of 6(q, b) by simply executing b and observing the
state reached. If 6(q,b) is already known for all the
basic actions, then either we can find a path based on
what is already known about 6 to a state for which
this is not the case, or we have finished exploring the
automaton. I t is not hard t o see that O(kn2) actions
are executed in total by this procedure.

Now suppose tha t the unknown environment C is a
permutation automaton and that a homing sequence h
has been provided. Because C is a permutation environ-
ment, we can easily show tha t h is also a distinguishing
sequence, that is, h distinguishes every pair of unequal
states of £. Put another way, ql (h) = q2(h) iff q1 = q?,
and thus the identity of any state is uniquely given by
the output of h a t that state. The identity of each state
is almost directly observable.

T o infer the environment, we therefore use the infer-
ence procedure described above for 'visible automata.

Each state q is named or represented by q(h), the out-
put of h at that state. To identify the current state,
simply execute h and observe the output produced.

Although executing h is helpful in identifying the
state a t the start of the sequence, doing so is also likely
to leave us in a state at the end of the sequence whose
identity is unknown. This is a problem because the
visible automaton inference procedure requires that we
be able to find a state whose identity is known even
without executing h. We can overcome this problem,
however, by maintaining a table u which records the
fact that if a = q{h) was just observed as the output
of executing h , then the output of h if executed from
the current s ta te qh is given by u(u).

Thus, we can reach a state whose identity is known
(without executing h from it), we can execute an ex-
periment as dictated by the visible automaton inference
procedure, and we can identify the last state reached
by executing h. This can of course be repeated as many
times as necessary. Thus, we can show:

Theorem 3 There exists an algorithm which, given
access to a pennutation environment E , and a hom-
ing sequence h for E, outp?lls a perfect model of E in
Zime O(kn(Jh1 + kn)). Furthermore, the total num-
ber of actions ezecuted b y Zhis algorithm is at most
nlhl+ kn(lhl+ n).

Finally, we must consider how t o construct h . In
fact, any sufficiently long random sequence of actions
is almost certain to be a homing sequence:

Theorem 4 Let 6 > 0 , and let h be a random action
sequence of length 4kn6 . ln(n) . ln(n/6). Then h is a
homing sequence with probability at least 1 - 6 .

Proof: (sketch) The idea is t o construct the homing se-
quence in the manner described in Figure 3. On each it-
eration, an appropriate extension z which distinguishes
some pair of states as needed by the algorithm is likely
to be given by any sufficiently long random walk. This
follows from the results on random walks in 1121. .

These theorems give our inference procedure a run-
ning time of O(k2n7 log(n) . log(n/6)).

5.2 A Diversity-Based Algorithm -

We can show in a similar manner haw a permutation
environment can be inferred using a diversity-based
representation. As before, we reduce the problem t o
that of inferring a visible automaton - in this case, one
for which all of the test equivalence classes are known,
and for which the value of each test da s s is observable
in every state. The problem of inferring sucli automata
is solved in Chapter 4 of [12]; the solution is based on
the careful planning of cxperirnents, and on the main-
tenance of candidate sets similar to those described in
Section 4.2.

Figure 7: A Crossword Puzzle Environment

Let h be a given diversity-based homing sequence
for the unknown permutation environment C. As be-
fore, to simulate the inference algorithm for visible au-
tomata, it suffices to show tha t the state of the au toma
ton (i.e. the values of the test classes) can be observed
by executing h, and further tha t i t is possible to reach
a state whose identity is known even without executing
h.. Since C is a permutation environment, we can show
that every test class is represented by some prefix of h.
Therefore, a t the current state q, the values of all the
test classes can be observed simply by executing h.

To find a state in which the output of h is known (and
thus the values of all the test classes as well) without
actually executing the sequence, we maintain for each
prefix p of h a candidate set C (p) as in Section 4.2.
Suppose u = q(h) is the output just produced by exe-
cuting h , and consider the set X = {y(qp') : p' E C(p))
which is easily computed from cr. At all times, there
is some prefix p' E C(p) for which p' r hp. Therefore,
the output of p from the current state qh is the same
as that of p' from q for some p' E C(p). Thus, if C(p)
is coherent, that is, if X is a singleton, then y(qhp),
the value of p at the current state qh, is known. If the
candidate sets for all t h e prefixes are coherent, then
qh(h), the output of the entire sequence, is known in
the current state. 011 the other hand, if one of the can-
didate sets is incoherent, then by re-executing h we arc
guaranteed t o eliminate a t least one prefix from one of
the candidate sets. Thus, we can quickly reach a state
in which the output of h is known without actually
executing it.

Combining these ideas, we can show:

Theorem 5 There e z i ~ l s an algorithm which, gzuen
access 20 a p e r m u i n t i o n e n v i r o n m e n t E , and a h o m -

ing sequence h for E, outputs a perfect model of & in
time O(kD(lh(+ kD2)). Furthermore, the total num-
ber of actions executed by this algorithm is at most
Dlhl+ kD(lhl+ D).

Again, we can construct h by randomly choosing a
sequence of actions:

Theorem 6 Let 6 > 0, and let h be a random se-
quence of length 2 k ~ ~ ~ ~ a ln(D) . ln(D/6). Then h
is a diversity-based homing sequence wiih probability at
least 1 - 6.

Here, H, is the nth harmonic number. Thus, our
inference procedure runs in time O(k2D4 1 o g 2 (~) .
log(D/6)). This improves the previously best-known
bound of O(k2D7 log(D) . log(kD/6)) given in [12] by
roughly a factor of D3/ log(D).

6 Experimental Results
The algorithm described in Section 4.1 has been im-

plemented and tested on several simple robot environ-
ments.

In the "Random Graph'' environment, the robot is
placed on a randomly generated directed graph. The
graph has n vertices, and each vertex has one outgoing
edge labeled with each of the k basic actions. For each
vertex a', one edge (chosen at random) is directed to ver-
tex i + 1 mod n; this ensures that the graph contains a
Hamiltonian cycle, and so is strongly connected. The
other edges point to randomly chosen vertices, and the
output of each vertex is also chosen a t random.

In the "Knight Moves" environment, the robot is
placed on a square checker-board, and can make any
of the legal moves of a chess knight. However, if the
robot attempts to move off the board, its action fails
and no movement occurs. The robot can only sense
the color of the square i t occupies. Thus, when away
from the walls, every action simply inverts the robot's
current sensation: any move from a white square takes
the robot to a black square, and vice versa. This makes
it difficult for the robot to orient itself in this environ-
ment.

Finally, in the "Crossword Puzzle" environment, the
robot is on a crossword puzzle grid such as the one in
Figure 7. The robot has three actions available to it: it
can step ahead one square, or turn left by 90 degrees,
or turn right. Tlle robot can only occupy the white
squares of the crossword puzzle; an attempt to move
onto a black square is a "no-op." Attempting to step
beyond the boundaries of the puzzle is also forbidden.
Each of the iour "walls" of the puzzle has been painted
a different color. The robot looks as far ahead as pos-
sible in the direction it faces: if its view is obstructed
by a black square, then it sees "black"; otherwise, it
sees the color of the wall it is facing. Thus, the robot

has five possible sensations. Since this environment is
essentially a maze, it may contain regions which are
difficult to reach or difficult to get out of.

In the current implementation, we have used an
adaptive homing sequence or homing tree. We have
also used a modified version of L' that is guaranteed to
require fewer membership queries. Finally, we have i m
~lernented a heuristic that attempts to focus effort on
copies of L* that have already made the most progress:
if the homing sequence is executed and the L* copy
reached is not very far along, then the procedure is
likely to re-execute the homing sequence to find one
that is closer to completion. The idea of the heuristic
is not to waste time on copies that have a long way to
go. The heuristic seems to improve the running time
for these three environments by as much as a factor of
six.

For the "Random Graph" and "Crossword Puzzlen
environments, the inference procedure was provided in
some experiments with an oracle which would return
the shortest counterexample to an incorrect conjecture.
All three environments were also tested with no exter-
nal source of counterexamples; to find a counterexam-
ple, the robot would instead execute -random actions
until its model of the environment made an incorrect
prediction of the output of some state.

Table 1 summarizes how our procedure handled each
environment. In the table, L'Source" refers to the
robot's source of counterexamples: "S" indicates that
the robot had access to ,the shortest counterexample,
and "R" indicates that it had to rely on random walks.
The column labeled "]range(y)l" gives the number of
possible sensations which might be experienced by the
robot. (Extending our algorithms to the case that the
range of y consists of more than two elements is triv-
ial.) "Copies" is the number of copies of L' which were
active when a correct conjecture was made, "Queries"
is the total number of membership and equivalence
queries which were simulated, "Actions* is the total
number of actions executed by the robot, and "Time"
is elapsed cpu time in minutes and seconds. The pro-
cedure was implemented in C on a DEC MicroVax 111.
For example, inferring the 8 x 8 "Knight Moves" en-
vironment using randomly generated counterexamples
required about 400,000 moves and 19 seconds of cpu
time.

Note that for the "Random Graph" environment,
the learning procedure sometimes did better with ran-
domly generated counterexamples than with an oracle
providing the sllortest counterexample. It is not clear
why this is so, although it s e e m plausible that in some
way the random walk sequences give more information
about the environment. For example, the counterex-
amples often become subsequences of the homing se-
quence, and it may be that random walk countercx-
amples make for better, more distinguishing homing
sequences.

Environment 1) size I n) C I I rangc(y)J I Sou~ce 1 Copies 1 Queries) Actions I Time (min:sec))

11 I 7:12.5 I

Table 1 : Experimental Results

In sum, the running times given are quite fast, and
the number of moves taken far less than allowed for by
the theoretical worst-case bounds. Nevertheless, it is
also true that t he number of actions executed is still
somewhat large, much too great t o be practical for a
real robot. There are probably many ways in which our
algorithm might be improved - both in a theoretical
sense, and in terms of heuristics which might improve
the performance in practice. We leave these questions
as open problems.

7 Conclusions

We have shown how t o infer an unknown automaton,
in the absence of a reset, by experimentation and with
counterexamples. For the class of permutation au-
tomata, we have shown that the source of counterexam-
ples is unnecessary. We have described polynomial time
algorithms which are both state-based and diversity-
based.

References

[4] E. MarkGold. Complexity of automaton identification
from given data. Jnformation and Control, 37:302-320,
1978.

[5] E. Mark Gold. System identification via state charac-
terization. Aulomatico, k621-636, 1972.

[6] Michael Kearns and Leslie G. Valiant. Cryptographic
limitations on learning boolean formulae and finite au-
tomata. In Proceedings o j tlte Twenty-First Annual
ACM Sgmposium o n Theory of Computing, Seattle,
Washington, May 1989.

(71 Michael Kearns and Leslie G. Valiant. Learning
Boolean Formulae or Finite Automata i~ a8 Hard as
Factoring. Technical Report TR 14-88, Harvard Uni-
versity Aiken Computation Laboratory, 1988.

(81 Zvi Kohavi. Switching and Finite Automata Theory.
McGraw-Hill, second edition, 1978.

[9] Leonard Pitt and Manfred K. Warmuth. The min-
imum DFA consistency problem cannot be approxi-
mated within any polynomial. In Proceedings o j the
Twentg-First Annual ACM Symposium on Theory of

Computing, Seattle, Washington, May 1989.

[lo] Leonard Pitt and Manfred K. Warmuth. Reduc-
tions among prediction problems: on t h e difficulty
of predicting automata (extended abstract). In 3rd
IEEE Conference on Structure in Commplezity The-
ory, pages 60-69, Washington, DC, June 1988.

[l] Dana Angluin. Learning regular sets from queries [ll] Ronald L. Rivest and Robert E. Schapire. Diversity-
and counterexamples. Information and Computation, based inference of finite automata. In Proceeding of t he
75:87-106, November 1987. Twenty-Eighth Annual Symposium on Foundations of

Computer science, pages 78-87, Los Angeles, califor-
[2] Dana Angluin. A note on the number of queries needed nia, October 1987.

to identify regular languages. Information and Control,
51:76-87, 1981. [12] Robert E. Schapire. Diversity-Based Inference of

Finite Automota. Master's thesis, MIT Lab. for
[3] Dana Angluin. On the complexity of minimum infer- Computer Science, May 1988. Technical Report

ence of regular sets. Injormation and Control, 39:337- MIT/LCS/TR-413.
350, 1978.

