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Abstract 
We present new algorithms for inferring an unknown finite-state 
automaton from its input/output behavior in  the absence of a 
means of r e ~ r t t i n p  the machine to a start d a t e .  A key tech- 
nique used is inference of a homing sequence for the unknown 
automaton. 
Our infknrnce procedufes experiment with the unknown ma- 

chine, and from time t o  time require a teacher to supply coun- 
terexamplea to incorrect conjectures about the structure of the 
unknown automaton. In this setting, we describe a learning algo- 
rithm which, with probability 1 - 6, outputs a correct deecription 
of the unknown machine in time polynomial in the automaton's 
size, the length of the longest counterexample, and log(ll6). We 
present an analogous algorithm which makes use of a diversity- 
based representation of the finite-state system. Our algorithms 
are the first which are provably eflecfive for these problems, in 
the absence o j  Q "reset." 

We also present probabilistic algorithms for permutation au- 
tomata which do not require a teacher t o  supply counterexam- 
ples. For inferring a permutation automaton of diversity D,  we 
improve the best previous time bound by roughly a factor of 
D3 / log D. 

1 Introduction 
We address the problem of inferring a finite automa- 
ton from its input/output behavior. This well-studied 
problem continues to  generate new interest. In the 
past, a number of learning protocols have been con- 
sidered. I t  is now known that inferring finite automata 
in many of these situations is computationally hard, 
while feasible i n  a few others. 

Angluin [3] and Gold [4] show that it is NP-complete 
to find the smallest automaton consistent with a given 
sample of input/output pairs. Pitt and Warmuth [9] 
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show that merely finding an  approximate solution is 
intractable (assuming P # NP). 

These NP-hardness results depend on a restriction 
that the learner use a particular representation of the 
automaton. In fact, learning is even hard when no 
such restriction is made. Kearns and Valiant [6, 71 
consider the "representation-free" problem of predict- 
ing the output of the automaton on a randomly chosen 
input, based on a sample of the machine's behavior. 
Extending the work of Pitt and Warmuth [lo], they 
show that this problem is as hard as  factoring Blum 
integers, inverting RSA, or deciding quadratic residu- 
osity. 

Thus, learning by passively observing the behavior 
of the unknown machine is apparently infeasible. But 
what about learning by actively experimenting with it? 

Angluin [2] shows that this problem is also hard. She 
describes a family of automata which cannot be identi- 
fied in less than exponential time when the learner can 
only observe the behavior of the machine on inputs of 
the learner's own choosing. The difficulty here is in 
accessing certain hard to reach states. 

In spite of these negative results, Angluin [I], e labs  
rating on Gold's results [5 ] ,  shows that a combination 
of active and passive learning is feasible. Her inference 
procedure is able to experiment with the unknown au- 
tomaton, and is given, in response to each incorrect 
conjecture of the automaton's identity, a counterexam- 
ple, a string accepted by either the unknown automa- 
ton or the conjectured automaton, but not by the other. 
Her algorithm runs in time polynomial in the automa- 
ton's size and the length of the longest counterexample. 

A serious limitation of Angluin's procedure is its crit- 
ical dependence on a means of resetting the automaton 
to a fixed start state. Thus,  the learner can never re- 
ally "get lost" or lose track of its current state since it 
can always reset the machine to  its start state. In this 
paper, we extend Angluin's algorithm, demonstrating 
that an unknown automaton can be inferred even when 
the learner is not provided wilh a reset. 

This problem of inferring an automaton from its in- 
put/output behavior in the absence of a reset is rele- 
vant to the problem of identifying an environment by  
experimentation. We imagine a robot placed in an un- 



Figure 1: An Example Robot Environment 

familiar environment who must learn the structure of 
its world to function effectively in it. For example, the 
robot might find itself on a directed graph, such as the 
one in Figure 1. In this environment, the robot can 
sense his local environment (e.g., can see whether the 
node it's on is shaded or not), and can select one of 
the out-going labeled edges to  traverse. It is natural 
to assume that the robot does not have a means of 
"resettingn the environment to some start state, or of 
"backing up" to  a previous state. As in real life, the 
robot must gather data in one continuous experiment. 

The generality of our results allows us t o  handle any 
directed graph environment. This means that we can 
handle many special cases as well, such as undirected 
graphs, planar graphs, and environments with special 
spatial relations. However. our procedures do not take 
advantage of such special properties of these environ- 
ments, some of which could probably be handled more 
effectively. For example, we have found that permu- 
tation automata are generally easier to  handle than 
non-permutation automata. 

In our previous papers [ l l ,  121, we introduced the 
"diversity-based" representation of finite automata and 
described an algorithm which we proved to be effective 
for permutation automata. We also described some 
general techniques for handling non-permutation au- 
tomata which, although not provably effective, seemed 
to work well in practice for a variety of simple environ- 
ments. 

In this paper, we generalize these results, demon- 
strating probabilistic inference procedures which are 
provably effective for both permutation and non- 
permutation automata. More generally, we present 
new inference procedures for the usual global state rep- 

resentation, as well as for the diversity-based represen- 
tation. 

Like Angluin, we assume that the inference proce- 
dures have an unspecified source of counterexamples 
to incorrectly conjectured models of the automaton. 
This diflers from our previous work where the learning 
model incorporated no such source of counterexamples; 
as already mentioned, this limitation makes learning of 
finite automata infeasible in the general case. For a 
robot trying to infer the structure of its environment,, 
a counterexample is discovered whenever the robot's 
current model makes an incorrect prediction. For the 
special class of permutation automata, we show that 
an artificial source of counterexamples is unnecessary. 

Our algorithms use powerful new techniques based 
on the inference of homing sequences. Informally, a 
homing sequence is a sequence of inputs that, when fed 
to the machine, is guaranteed to  "orient" the learner: 
the outputs produced for the homing sequence com- 
~ le te ly  determine the state reached by the automaton 
a t  the end of the homing sequence. Every finite state 
machine has a homing sequence. For each inference 
problem, we show how a homing sequence can be used 
to  infer the unknown machine, and how a homing se- 
quence can be inferred as part of the overall inference 
procedure. 

2 Two Representations of Fi- 
nite Automata 

2.1 Global State-Space or Standard 
Representation 

Definition 1 The standard representation of an en- 
vironment or finite state automaton & is a tuple 
( 9 ,  B, 6, qo, 7) where: 

Q is a finiie nonempty set of states, 

B is a fin,iile nonempty set of input symbols or 
basic actions, 

6 i s  the  next-state function, which maps Q x B 
into Q,  

go, a member of Q ,  is the initial state, and 

7 i s  the output function, which maps Q t o  (0, I). 

For example, the graph of Figure 1 depicts the global 
state representation of an automaton whose states are 
the vertices of the graph, whose transition function is 
given by the edges, and whose output function is given 
by the shading of the vertices. 

We denote the set of all finitely long action sequences 
by A = B*, and we extend the domain of the function 
6(q, a )  to A in the usual way: 6(q ,  A) = q, and 6(q, ab) = 
6(6(q, a), b )  for all q E Q, a E A ,  b E B. Here, A denotes 



the empty or null string. For shorthand, we write qa to  
mean b(q, a), the state reached by executing a from q. 
We say that  E is a permutation automaton if for every 
action b, the function 6(.,b) is a permutation of Q. 

We refer to  the sequence of outputs produced by exe- 
cuting a sequence of actions a = b1b2 . . . bt from a state 
q as the output ofa at q,  denoted q(a): 

(Don't confuse y(qa) and q(a). The former is a single 
value, the output of the state reached by executing a 
from q. In contrast, q(a) is a ( la[+ 1)-tuple consisting of 
the sequence of outputs produced by executing a from 
state q.) Finally, for a E A, we denote by Q(a) the set 
of possible outputs on input a: 

Clearly, IQ(a) 1 5 [&I  for any a. 

Action sequence a is said to distinguish two states ql 
and 92 if q1 (a)  # q2(a). We assume that & is reduced: 
for every pair of unequal states there is some action 
sequence which distinguishes them. 

2.2 The Diversity-Based Representa- 
tion 

In this section, we describe the second of our represen- 
tations. See Ell, 121 for further background and detail. 
The representation is based on the notion of tests and 
test equivalence. 

A test  is an action sequence. (This definition differs 
slightly from that  given in previous papers where we 
consider automata with multiple output ("sensations") 
at each state.) The value of a test t a t  state q is y(qt), 
the output of the state reached by executing t from g. 

Two tests t1 and t z  are equivalent, written t l  F i2, if 
the tests have the same value a t  every state. It's easy 
to  verify that this defines an equivalence relation on 
the set of tests. We write It] t o  denote the equivalence 
class of t ,  the set of tests equivalent t o  t .  The value 
of [ t ]  at  q is well defined as y(qt). The  diversity of 
the environment, D(E), is the number of equivalence 
classes of the automaton: D(&) = ({It] : t E A] 1. In [ l l ,  
121, it is shown that lg((Q1) 5 D(&) 5 2181, so the 
diversity of a finite ailtornston is alwz~ys finite. 

The equivalence classes can be viewed as state van'- 
ables whose values entirely describe the state of the 
environment. This is true because two states are equal 
(in a reduced sense) if and only if every test has the 
same value in both states. 

It  is often convenient t o  arrange the equivalence 
classes in an update graph such as the one in Figure 2 
for the environment of Figure 1. Each vertex in the 
graph is an equivalence class so the size of the graph is 
D(E). An edge labeled b E B is directed from vertex 

Figure 2: The Update ~ r d ~ h  for the Environment of 
Figure 1 

[tl] to [t2] iff t l  I btz. ~ d c  t ha t  each vertex has ex- 
actly one in-going edge lab'eled with each of the basic 
actions. This is because if d l  r t 2  then btl E bt2. 

We associate with each vkrtex [t] the value o f t  in the 
current state g. In the figuie, we have used shading to  
indicate the value of each vmtex in the robot's current 
state. The  output of the cJrrent state is given by ver- 
tex [A], s o  this is the only vertex whose value can be 
observed by the robot. When an action b is executed 
from q, each vertex [t] is rkplaced by the old value of 
[b t ] ,  the vertex at the tail bf [ti's (unique) in-going b- 
edge. That  is, in the newsta te  qb, equivalence class 
[t] takes on the old value of [bt] in the starting state 
q. This follows from the fact that  y((qb)i) = y(q(6t)). 
Thus, the update graph cdn be used to  simulate the 
environment. I 

On first blush, the s t r u k r e s  of the update graph 
of Figure 2 and the transition diagram of Figure 1 ap- 
pear to  be quite similar. IA fact, their interpretations 
are very dicerent. in the klobai state representahon, 
the robot moves from state to state while the output 
(shading) of the states rekains unchanged. On the 
other hand, in the diversith-based representation, the 
robot remains stationary, only observing the output of 
one vertex ([A]), and allowing the values of the other 
vertices to come to  him. ~ h ' u s ,  the diversity-based rep- 
resentation is more egocentric - the world is repre- 
sented relative to the robot, while in the state-based 
representation, the world ik represented by its global 
structure which the robot rhoves within. 



Input: E - a finite state automaton 
Output: h - a homing sequence 
Procedure: 

h - X  
while (%I, 92 E Q)q~(h) = q2(h) but qih $ q2h do 

let z f A distinguish g1 h and qz h 
h + hz 

end 

Figure 3: A State-Based Algorithm for Constructing a 
Homing Sequence 

3 Homing Sequences 

Henceforth, we set D = DIE), n = IQI, k = JB( .  

Definition 2 A homing sequence i s  an action se- 
quence h for which the stale reached by executing h 
is uniquely determined by the output produced: h is a 
homing seqvence iff 

As a quick example, the string consisting of the single 
action "x" is a homing sequence for the environment of 
Figure 1. If q ( x )  = , then gx  = 3; if q ( x )  = Om,  
then q x  = 2; and, if q ( x )  = m m  then qx = 1. 

Kohavi [8] gives a complete discussion of homing se- 
quences. Re distinguishes between "preset" and "adap- 
tive" homing sequences. We make use only of the for- 
mer in this abstract because they are simpler; we show 
in the full paper that our inference procedures can be 
improved using adaptive homing sequences. 

Given full knowledge of the structure of &, it is easy 
to construct a homing sequence h, as shown in Figure 3. 
Initially, h = A. On each iteration of the loop, a new 
extension x is appended to the end of h so that h now 
distinguishes two states not previously distinguished. 
Thus, [Q(h)I < IQ(hr)l 5 n,  and therefore the program 
will terminate after a t  most n iterations. Further, since 
each extension need only have length n, we have shown 
how to construct a homing sequence of length at  most 
n2. 

A diversity-&used homing sequence is an action se- 
quence h which has the property that for every test 
1 ,  there exists a prefix p of h such that p s ht. Ev- 
ery diversity-based homing sequence h is a homing se- 
quence. For if q l h  # qZh then there is some t for which 
~ ( q l  ht)  f y(q2ht). Since ht is equivalent to  some prefix 
P of h ,  we have 7(9l P )  # f i (q2~)-  Thus, ql  (h) # 92(h). 

Figure 4 shows an algorithm for constructing a 
diversity-based homing sequence h. Again, h is built 
up from A by appending extensions x .  On each itera- 
tion, ({[p] : p prefix of h)l increases by a t  least one, so 
there are a t  most D iterations. Each extension need 
be no longer than D, so we can find a diversity-based 
homing sequence of length at most R2. 

Input: & - a finite state automaton 
Output: h - a diversity-based homing sequence 
Procedure: 

h + A 
while (32 E A)(Vp prefix of h)p  $ h z  do 

h + h z  
end 

Figure 4: A Diversity-Based Algorithm for Construct- 
ing a Homing Sequence 

Some remarks about the length of homing sequences: 
First, the homing sequences constructed by the pre- 
ceding algorithms are the best possible ih the sense 
that there exist environments whose shortest hom- 
ing sequence has length n(n2)  (or R(D2)). However, 
given a state-based (or a diversity-based) description 
of a finite-state machine, it is NP-complete to find the 
shortest homing sequence for the automaton. (The re- 
duction is from exact 3-set cover.) 

4 Inference of Finite Automata 
- The General Case 

In this section, we describe algorithms for inferring the 
structure of an unknown environment C. 

We say that the learner has a perfect model of his 
environment if he can predict perfectly the output of 
the environment given any sequence of actions. The 
goal of our inference procedures is to  construct a perfect 
model. 

We assume that the learner is given access to E, that 
the learner can observe the output of the environment 
when actions of his choosing are executed. We also as- 
sume lhat there is a "teacher" who provides the learner 
with counterexamples to incorrectly conjectured mod- 
els of the environment. A counterexample is a sequence 
of actions whose true output from the current state dif- 
fers from that  predicted by the learner's model. Typi- 
cally, there will be many sequences of actions which are 
counterexamples to a given conjecture, and by choosing 
an especially long or short counterexample, the leacher 
can significantly afT'ect the running time of the proce- 
dure. This fact is reflected in our running times which 
depend on the length of the counterexamples provided. 

In the framework of a robot learning about its envi- 
ronment, we might imagine the robot, upon completion 
of a model of the environment which it believes to  be 
correct, using that model to make predictions of the 
output of tlie environment's next state until an incor- 
rect prediction is made. In tliis situation, t,he sequence 
of actions leading up to the error is the needed coun- 
terexample. 

We generally assume that the unknown automaton is 
strongly connected, that is, every state can be reached 



from every other state: 

We make this assumption with little loss of general- 
ity: if E is not strongly connected, then an experiment- 
ing inference procedure, having no reset operation, will 
sooner or later fall into a strongly connected compo- 
nent of the state space from which i t  cannot escape, 
and so will have to be content thereafter learning only 
about that component. 

4.1 A Global State-Based Algorithm 

In this section, we describe an algorithm based on the 
global state representation for inferring an arbitrary 
unknown automaton. 

Our procedure is based closely on Angluin's L* al- 
gorithm for learning regular sets [I]. Angluin shows 
how to efficiently infer the structure of any finite-state 
machine in the presence of what she calls a minimally  
adequale teacher.  Such a teacher can answer two kinds 
of queries: On a membership query, the learner asks 
whether a given input string w is in the unknown lan- 
guage U, that is, whether the string is accepted by 
the unknown machine. On an equivalence query,  the 
learner conjectures that the unknown machine is iso- 
morphic to  one it has constructed. The teacher replies 
that the conjecture is either correct or incorrect, and in 
the latter case provides a counterexample w, a string 
accepted by one machine but not the other. 

The idea of Angluin's algorithm is to maintain an 
observation table (S,E,T) .  Here, S and E are prefix- 
closed sets of strings. We can think of S as a set of 
strings that lead from the start state to the states of 
the automaton, and E as experiments which are exe- 
cuted from these states. The last variable T is a two- 
dimensional table whose rows are given by S U SB, 
and whose columns are given by E. Each entry T(se), 
where s € S U SB and e E E,  records whether the 
string se is in the unknown language. For fixed s, 
Angluin denotes by row(s )  the vector of entries T(se) 
for varying e E E. Her algorithm extends S and E 
based on the results of queries, and ultimately out- 
puts the correct automaton based on an equivalence 
between the states of the unknown machine and the 
distinct rows of the tabie T. -We denote by NM and 
NE the number of membership and equivalence queries 
made by L*. These variables are implicit functions 
of n, k and m, where m is the length of the longest 
counterexample received. For Angluin's procedure L' , 
we have NM = O(kmn2), NE = n - 1. However, an 
unpublished result due to Schapire improves IVM to 
O(kn2 + n log m). 

In our framework, the learner could easily simulate 
Angluin's algorithm L* if it were given a reset: to per- 
form a membership query on w ,  the learner resets the 

Input: access to &, a finite state automaton 
h - a homing sequence for E 

Output: a perfect model of & 
Procedum: 

repeat 
execute h, producing output u 
if it doesn't already exist, create L:, a new copy of L' 
simulate the next query of L:: 

if Lz queries the membership of action sequence a 
then execute a and supply L: with the output 
of the final state reached 

if L: makes an equivalence query then 
if the conjectured model E' is correct then 

stop and output &' 
else 

obtain a counterexample and supply it to LE 
end 

Figure 5: A State-Based Algorithm for Inferring E 
Given a Correct Homing Sequence 

environment, and executes the actions of w, observ- 
ing the output of the last state reached. To perform 
an equivalence query on E', the learner resets the au- 
tomaton and conjectures that 8' is a perfect model of 
the environment. The teacher returns an action se- 
quence w on which the conjectured model fails; this is 
the counterexample needed by L*.  

However, in our model the learner is not provided 
with a reset. The  main idea of our algoriihm is io 
replace ihe reset with a homing sequence. In many 
respects, a homing sequence behaves like a reset: by 
executing the homing sequence, the learner discovers 
"where it is," what state it is at in the environment. 
However, unlike a reset, the final state is not fixed, and 
the learner does not know beforehand what state it will 
end up in. (Note that an automaton need not possess a 
synchronizing sequence, a sequence that forces the au- 
tomaton into a given state independent of its starting 
state. So we use homing sequences instead.) 

We begin b y  supposing that  the learner has been pro- 
vided with a correct homing sequence h.  Later, we will 
show how to  remove this assumption. 

Suppose we execute h from the current state q,  pro- 
ducing output a = q ( h ) .  If we ever repeat this exper- 
iment from state q' and find ql (h)  = u, then, because 
h is a homing sequence, the states where we finished 
must have been the same in both cases: qh = q'h. If we 
could guarantee that the output of h would continue to 
come up a with good regularity, then we could simply 
infer C by simulating Angluin's algorithm, treating qh 
as the initial state. When L* demands a reset, we ex- 
ecute h: if the output comes up u, then we must be 
a t  qh, and our "reset'l has succeeded; otherwise, try 
again. Unfortunately, in the general case, it may be 
very difficult t o  make h produce a regularly. 

Instead, we  simulaie an  independent copy L: oj L* 



for each possible ouiput u of execuiing h ,  as shown in 
Figure 5. Since IQ(h)l 5 n, no n~ore  than n copies 
of L* will be created and simulated. Furthermore, on 
each iteration of the loop, at least one copy makes one 
query and so makes progress towards inference of E .  
Thus, this algorithm will succeed in inferring E after 
no more than n(NM + NE) iterations. 

We now describe how to combine construction of the 
homing sequence h wiih the inference of &. We main- 
tain throughout the algorithm a sequence h which we 
presume is a true homing sequence. When evidence 
arises indicating that this is not the case, we will see 
how h can be extended and improved, eventually lead- 
ing to the construction of a correct homing uequence. 
Initially, we take h = A. 

We use our presumably correct homing sequence h 
as described above and in Figure 5. If h is indeed a true 
homing sequence, we will of course succeed in inferring 
&. 

On the other hand, if h is incorrect, we may discover 
inconsisieni behavior in the course of simulating some 
copy of L* : suppose on two different iterations of the 
loop in Figure 5, we begin in states ql and q2, execute 
h, produce output ql (h) = q2(h) = a, and, as part of 
the simulation of L z ,  execute action sequence x .  If h 
were a homing sequence, then z's output would have to 
be the same on both iterations since qlh and qzh must 
be equal. 

However, if h is not a homing sequence, then i t  may 
happen that qlh(x) # qzh(z ) .  That is, we have dis- 
covered that z distinguishes qlh and qzh,  and so, just 
as was done in the algorithm of Figure 3, we replace 
h with hz, producing in a sense a "better" approxima 
tion to  a homing sequence. A t  this point, the existing 
copies of L* are discarded, and the algorithm begins 
from scratch (except for resetting h ,  of course). Since 
h can only be extended in this fashion n times, this only 
means a slowdown by at  most a factor of n ,  compared 
to the algorithm of Figure 5. 

Figure 6 shows how we have implemented these 
ideas. Here we have assumed n, the number of global 
states, has been provided to the learner. In fact, this 
assumption is entirely unnecessary. Although we omit 
the details, we can show that the stated bounds below 
hold (up to  a constant) for a slightly modified algo- 
rithm which does not require that the learner be  ex- 
plicit!~ prcVvided with the vall;e of n. The trick i the 
usual one of repeatedly doubling our estimate of n. 

Recall that L* requires maintenance of an observa- 
tion table (S, E, T). Let (So, E,, T,) denote the ob- 
servation table of L+,. Of course, T, can only record 
output produced when executing an action sequence 
from what is only presumed to be a fixed initial state. 

Angluin's analysis implies that if Lz makes more 
than NM + NE queries, then the number of distinct 
rows will exceed n .  This can only happen if h is not a 
homing sequence, but how do we know how to  correctly 

Input: access to f, a finite state automaton 
n - the number of states of & 

Output: a perfect model of & 
Procedure: 

h c A  
repeat 

execute h ,  producing output a 
if it doesn't already exist, create L:, a new copy of L* 
if ( { r o w ( s )  : 3 E S,) [ 5 n then 

simulate the next query of L: as in Figure 5 
(and check for inconsistency) 

else 
let {a], . . . ,s,+l) c Sa be such that 

row(s.) # roU)(a,) 
randomly choose a pair si, 3j from this set 
let e E E, be such that T'(sie) # Tu(sje) 
with equal probability, re-execute either s,e or s,e 
(and check for inconsistency) 

if inconsistency found execuling some string z then 
h + hz 
discard all existing copies of L' 

until a correct conjecture is made 

Figure 6: A State-Based Algorithm for Inferring & 

extend h if we have not actually seen an inconsistency? 
We show that if an inconsistency has not been found by 
the time the number of rows exceeds n ,  then we can use 
a probabilistic strategy to find one quickly with high 
probability. 

Suppose we execute h from state q, with output u, 
and we find that for Lz, there are more than n distinct 
rows. Then let 81,. . . ,s,+l be as in Figure 6. By the 
pigeon-hole principle, there is a t  least one pair of dis- 
tinct rows si, s j  such that qhs, = qhsj. Further, since 
row(si) # row(sj), there is some e E E, for which 
Tu(sie) # TU(sje). However, y(qhsie) = y(qhsje). 
Therefore, either y(ghsie) # T,(sie) or y(qhsje) # 
Tu(sje), and so re-executing sie (or s j e ,  respectively) 
from the current state qh will produce the desired in- 
consistency. 

So the chance of choosing the correct pair si ,s j  as 

above is a t  least (":')-I, and the chance of then choos- 
ing the correct experiment to re-run of 6ie or s j e  is at 
least 1/2. Thus, it can be verified that the probability 
of finding an inconsistency using the technique of Fig- 
ure 6 in this situation is at least l / n ( n  + 1). Repeating 
iliis tecliniqiie n(n  + l);11(1/6) tiiiies gives a yrolabil- 
ity of a t  least' 1 - 6 of finding an inconsistency. Also, 
no more than n2 copies of L* are ever created, and Ih( 
does not exceed O(n2 + nm). 

Putting these facts together, we can show: 

Theorem 1 Given 5 > 0 ,  the algorithm described in 
Figure 6 will correctly infer the structure of & with prob- 
ability at least 1 - 6 after executing 



actions, and in time polynomial in n,m,k and 1/6. 

If we assume rn = O(n) and k = O(1) and use the 
previously given bounds on NM and N E ,  then the num- 
ber of actions executed by the procedure (and the run- 
ning time as well) simplifies t o  O(n6 log(n/d)). 

Finally, the procedure can be modified, replacing the 
preset homing sequence which we have been using with 
an adaptive one (see (8)) whose input a t  each step de- 
pends on the output seen up that point. This modific& 
tion shaves a factor of n off the bounds described above. 
(Details omitted.) Again assuming m = O(n) and 
k = 0(1),  this gives a time bound of O(n5 log(n/d)). 

It is an open question whether this bound can be sig- 
nificantly tightened. I t  seems likely that an algorithm 
which combines the  many copies of L* into one would 
have a superior running time, although we have not 
been successful in implementing this intuition. 

4.2 A Diversity-Based Algorithm 

We only sketch some of the main ideas of our diversity- 
based algorithm for inferring finite automata in the 
general case. 

In [ l l ,  121, we show how the update graph can be 
constructed given access t o  an oracle for deciding the 
equivalence of any two tests. We therefore focus on 
the problem of deciding if any two tests are equivalent 
since with this capability, we can use previous results 
t o  fully construct the update graph. 

Suppose we have been given a diversity-based hom- 
ing sequence h. Let t be any test of interest, say one 
of a pair of tests which we are testing for equivalence. 
Then ht is equivalent t o  some prefix of h. We maintain 
for each such test t a candidate set C(t) of the prefixes 
of h which could plausibly be equivalent t o  ht. 

Initially, we let C(2) = (p : p prefix of h). Suppose 
we execute ht from some state q, and let p E C(1). 
Since pis a prefix o fh ,  in executing ht we have observed 
both the outputs y(qp) and y(qht). If we find these 
outputs differ, then clearly p f ht so we eliminate p 
from C(t). 

If we find for tests t l  and i2 that C(t l)  and C(t2) are 
disjoint, then t l  and t 2  cannot possibly belong t o  the 
same equivalence class. Moreover, if for any a C A we 
find that  C(at l )  and C(atz)  are disjoint, then at f a t2  
and therefore tl  $ tz .  These are the basic techniques 
for determining inequivalence between tests, given a 
diversity-based homing sequence. 

When such a sequence is not provided, we again pre- 
sume that h is a true homing sequence until i t  becomes 
necessary to extend and improve h. Initially, h = A. If 
for some test x ,  C(x)  is reduced t o  the empty set, then 
clearly h cannot be a diversity-based homing sequence 
since hx is inequivalent t o  every prefix of h. Thus, we 
start again from scratch, replacing h with hx as  is done 
in the algorithm of the preceding section. Extending 

h in this manner a t  most D times, we converge to a 
correct homing sequence. 

Theorem 2 There etzsts an algorithm which, given 
d > 0, access to an unknown environment £, and a 
source of couniemzamples, outputs a correcf descrip- 
tion o f 8  with probability a i  least 1 - 6 in time 

5 Inference of Permutation Au- 
tomata 

In this section, we sketch algorithms for inferring per- 
mutation automata. Unlike the procedures described 
up to  this point, these procedures do nof rely on a 
means of discovering counterexamples; the procedures 
actively experiment with the unknown environment, 
and output a perfect model with arbitrarily high prob- 
ability. 

As before, we describe both a state-based and a 
diversity-based procedure. In both cases, we describe 
deterministic procedures that,  given a (diversity-based) 
homing sequence h, will output a perfect model of the 
environment in time polynomial in n (or D )  and (hl. 
T o  construct the needed homing sequence, we show 
that any sufficiently long random sequence of actions 
is likely to be a homing sequence. 

5.1 A Global State-Based Algorithm 

Imagine a simpler situation in which the identity of 
each state is readily observable, i.e., the automaton 
is visible. For instance, suppose each state, instead 
of outputting 0 or 1, outputs its own name. In this 
situation, inference of the automaton is almost trivial. 
From the current state q, we can immediately learn the 
value of 6(q,  b) by simply executing b and observing the 
state reached. If 6(q,b) is already known for all the 
basic actions, then either we can find a path based on 
what is already known about 6 to a state for which 
this is not the case, or we have finished exploring the 
automaton. I t  is not hard t o  see that O(kn2) actions 
are executed in total by this procedure. 

Now suppose tha t  the unknown environment C is a 
permutation automaton and that a homing sequence h 
has been provided. Because C is a permutation environ- 
ment, we can easily show tha t  h is also a distinguishing 
sequence, that  is, h distinguishes every pair of unequal 
states of £. Put another way, ql (h) = q2(h) iff q1 = q?, 
and thus the identity of any state is uniquely given by 
the output of h a t  that  state. The identity of each state 
is almost directly observable. 

T o  infer the environment, we therefore use the infer- 
ence procedure described above for 'visible automata. 



Each state q is named or represented by q(h),  the out- 
put of h at  that  state. To identify the current state, 
simply execute h and observe the output produced. 

Although executing h is helpful in identifying the 
state a t  the start  of the sequence, doing so is also likely 
to leave us in a state at the end of the sequence whose 
identity is unknown. This is a problem because the 
visible automaton inference procedure requires that we 
be able to find a state whose identity is known even 
without executing h. We can overcome this problem, 
however, by maintaining a table u which records the 
fact that if a = q{h)  was just observed as the output 
of executing h ,  then the output of h if executed from 
the current s ta te  qh is given by u(u).  

Thus, we can reach a state whose identity is known 
(without executing h from it), we can execute an ex- 
periment as dictated by the visible automaton inference 
procedure, and we can identify the last state reached 
by executing h. This can of course be repeated as many 
times as necessary. Thus, we can show: 

Theorem 3 There exists an algorithm which, given 
access to  a pennutation environment E ,  and a hom- 
ing sequence h for E, outp?lls a perfect model of E in 
Zime O(kn(Jh1 + kn)). Furthermore, the total num- 
ber of actions ezecuted b y  Zhis algorithm is at most 
nlhl+ kn(lhl+ n).  

Finally, we must consider how t o  construct h .  In 
fact, any sufficiently long random sequence of actions 
is almost certain to  be a homing sequence: 

Theorem 4 Let 6 > 0 ,  and let h be a random action 
sequence of length 4kn6 . ln(n) . ln(n/6). Then h is a 
homing sequence with probability at least 1 - 6 .  

Proof: (sketch) The idea is t o  construct the homing se- 
quence in the manner described in Figure 3. On each it- 
eration, an appropriate extension z which distinguishes 
some pair of states as needed by the algorithm is likely 
to  be given by any sufficiently long random walk. This 
follows from the results on random walks in 1121. . 

These theorems give our inference procedure a run- 
ning time of O(k2n7 log(n) . log(n/6)). 

5.2 A Diversity-Based Algorithm - 

We can show in a similar manner haw a permutation 
environment can be inferred using a diversity-based 
representation. As before, we reduce the problem t o  
that of inferring a visible automaton - in this case, one 
for which all of the test equivalence classes are known, 
and for which the value of each test da s s  is observable 
in  every state. The problem of inferring sucli automata 
is solved in Chapter 4 of [12]; the solution is based on 
the careful planning of cxperirnents, and on the main- 
tenance of candidate sets similar to  those described in 
Section 4.2. 

Figure 7: A Crossword Puzzle Environment 

Let h be a given diversity-based homing sequence 
for the unknown permutation environment C. As be- 
fore, to  simulate the inference algorithm for visible au- 
tomata, it suffices to show tha t  the state of the au toma 
ton (i.e. the values of the test classes) can be observed 
by executing h,  and further tha t  i t  is possible to reach 
a state whose identity is known even without executing 
h.. Since C is a permutation environment, we can show 
that every test class is represented by some prefix of h. 
Therefore, a t  the current state q, the values of all the 
test classes can be observed simply by executing h. 

To find a state in which the output of h is known (and 
thus the values of all the test classes as well) without 
actually executing the sequence, we maintain for each 
prefix p of h a candidate set C ( p )  as in Section 4.2. 
Suppose u = q(h) is the  output just produced by exe- 
cuting h ,  and consider the set X = {y(qp') : p' E C(p))  
which is easily computed from cr. At all times, there 
is some prefix p' E C(p) for which p' r hp. Therefore, 
the output of p from the  current state qh is the same 
as that of p' from q for some p' E C(p). Thus, if C(p) 
is coherent, that is, if X is a singleton, then y(qhp), 
the value of p at the current state qh, is known. If the 
candidate sets for all t h e  prefixes are coherent, then 
qh(h), the output of the  entire sequence, is known in 
the current state. 011 the other hand, if one of the can- 
didate sets is incoherent, then by re-executing h we arc 
guaranteed t o  eliminate a t  least one prefix from one of 
the candidate sets. Thus,  we can quickly reach a state 
in which the output of h is known without actually 
executing it. 

Combining these ideas, we can show: 

Theorem 5 There e z i ~ l s  an algorithm which, gzuen 
access 20 a p e r m u i n t i o n  e n v i r o n m e n t  E ,  and a h o m -  



ing sequence h for E,  outputs a perfect model of & in  
time O(kD(lh( + kD2)). Furthermore, the total num- 
ber of actions executed by this algorithm is at most 
Dlhl+ kD(lhl+ D). 

Again, we can construct h by randomly choosing a 
sequence of actions: 

Theorem 6 Let 6 > 0, and let h be a random se- 
quence of length 2 k ~ ~ ~ ~  a ln(D) . ln(D/6). Then h 
is a diversity-based homing sequence wiih probability at 
least 1 - 6. 

Here, H, is the nth harmonic number. Thus, our 
inference procedure runs in time O(k2D4 1 o g 2 ( ~ )  . 
log(D/6)). This improves the previously best-known 
bound of O(k2D7 log(D) . log(kD/6)) given in [12] by 
roughly a factor of D3/ log(D). 

6 Experimental Results 
The algorithm described in Section 4.1 has been im- 

plemented and tested on several simple robot environ- 
ments. 

In the "Random Graph'' environment, the robot is 
placed on a randomly generated directed graph. The 
graph has n vertices, and each vertex has one outgoing 
edge labeled with each of the k basic actions. For each 
vertex a', one edge (chosen at random) is directed to ver- 
tex i + 1 mod n; this ensures that the graph contains a 
Hamiltonian cycle, and so is strongly connected. The 
other edges point to randomly chosen vertices, and the 
output of each vertex is also chosen a t  random. 

In the "Knight Moves" environment, the robot is 
placed on a square checker-board, and can make any 
of the legal moves of a chess knight. However, if the 
robot attempts to move off the board, its action fails 
and no movement occurs. The robot can only sense 
the color of the square i t  occupies. Thus, when away 
from the walls, every action simply inverts the robot's 
current sensation: any move from a white square takes 
the robot to a black square, and vice versa. This makes 
it difficult for the robot to orient itself in this environ- 
ment. 

Finally, in the "Crossword Puzzle" environment, the 
robot is on a crossword puzzle grid such as the one in 
Figure 7. The robot has three actions available to it: it 
can step ahead one square, or turn left by 90 degrees, 
or turn right. Tlle robot can only occupy the white 
squares of the crossword puzzle; an attempt to move 
onto a black square is a "no-op." Attempting to step 
beyond the boundaries of the puzzle is also forbidden. 
Each of the iour "walls" of the puzzle has been painted 
a different color. The robot looks as far ahead as pos- 
sible in the direction it faces: if its view is obstructed 
by a black square, then it sees "black"; otherwise, it 
sees the color of the wall it is facing. Thus, the robot 

has five possible sensations. Since this environment is 
essentially a maze, it may contain regions which are 
difficult to  reach or difficult to get out of. 

In the current implementation, we have used an 
adaptive homing sequence or homing tree. We have 
also used a modified version of L' that is guaranteed to 
require fewer membership queries. Finally, we have i m  
~lernented a heuristic that attempts to focus effort on 
copies of L* that have already made the most progress: 
if the homing sequence is executed and the L* copy 
reached is not very far along, then the procedure is 
likely to  re-execute the homing sequence to find one 
that is closer to completion. The idea of the heuristic 
is not to waste time on copies that have a long way to 
go. The heuristic seems to improve the running time 
for these three environments by as much as a factor of 
six. 

For the "Random Graph" and "Crossword Puzzlen 
environments, the inference procedure was provided in 
some experiments with an oracle which would return 
the shortest counterexample to an incorrect conjecture. 
All three environments were also tested with no exter- 
nal source of counterexamples; to find a counterexam- 
ple, the robot would instead execute -random actions 
until its model of the environment made an incorrect 
prediction of the output of some state. 

Table 1 summarizes how our procedure handled each 
environment. In the table, L'Source" refers to the 
robot's source of counterexamples: "S" indicates that 
the robot had access to  ,the shortest counterexample, 
and "R" indicates that it had to  rely on random walks. 
The column labeled "]range(y)l" gives the number of 
possible sensations which might be experienced by the 
robot. (Extending our algorithms to  the case that the 
range of y consists of more than two elements is triv- 
ial.) "Copies" is the number of copies of L' which were 
active when a correct conjecture was made, "Queries" 
is the total number of membership and equivalence 
queries which were simulated, "Actions* is the total 
number of actions executed by the robot, and "Time" 
is elapsed cpu time in minutes and seconds. The pro- 
cedure was implemented in C on a DEC MicroVax 111. 
For example, inferring the 8 x 8 "Knight Moves" en- 
vironment using randomly generated counterexamples 
required about 400,000 moves and 19 seconds of cpu 
time. 

Note that for the "Random Graph" environment, 
the learning procedure sometimes did better with ran- 
domly generated counterexamples than with an oracle 
providing the sllortest counterexample. It is not clear 
why this is so, although it s e e m  plausible that in some 
way the random walk sequences give more information 
about the environment. For example, the counterex- 
amples often become subsequences of the homing se- 
quence, and it may be that random walk countercx- 
amples make for better, more distinguishing homing 
sequences. 



Environment 1) size I n ) C I I rangc(y)J I Sou~ce 1 Copies 1 Queries ) Actions I Time (min:sec) ) 

11 I 7:12.5 I 

Table 1 : Experimental Results 

In sum, the running times given are quite fast, and 
the number of moves taken far less than allowed for by 
the theoretical worst-case bounds. Nevertheless, it is 
also true that  t he  number of actions executed is still 
somewhat large, much too great t o  be practical for a 
real robot. There are probably many ways in which our 
algorithm might be improved - both in a theoretical 
sense, and in terms of heuristics which might improve 
the performance in practice. We leave these questions 
as  open problems. 

7 Conclusions 

We have shown how t o  infer an unknown automaton, 
in the  absence of a reset, by experimentation and with 
counterexamples. For the class of permutation au- 
tomata, we have shown that  the source of counterexam- 
ples is unnecessary. We have described polynomial time 
algorithms which are both state-based and diversity- 
based. 
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