How to Reuse a “Wriie - Once” Memoryt

(Preliminary Version)

Ronald .. Rivest
MIT Laboratory for Computer Science, Cambridge, Mass.

Adi Shamir
Weizmann Institute of Science, Rehovot, Israel

Abstract

Storage media such as digital optical disks, PROMS, or
paper tape consist of a number of “write-once” bit positions
(wits); each wit initially contains a “0” that may later be
trreversibly overwritten with a “1”. We demonstrate that
such “write-once memories” (woms) can be “rewritten” to
a surprising degree. For example, only 3 wits suffice to
represent any 2-bit value in a way that can later be updated
to represent any other 2-bit value. For large &, 1.29... -k
wits suffice to represent a k-bit value in a way that can
be similarly updated. Most surprising, allowing ¢ writes of
a k-bit value requires only ¢ + o(t) wits, for any fixed k.
For fixed ¢, approximately k - t/log(t) wits are required as
k — co. An n-wit WOM is shown to have a “capacity” (i.e.
k-t when writing a k-bit value ¢ times) of up to n - log(n)
bits.

" This rescarch was supported in part by NSF grant MCS-8006938.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-067-2/82/005/0105 $00.75

105

“Trouble him not, his wiis are gone.”
King Lear, {11.u1.89

I Introduction

Digitel optical disks (a variation of the “video disks”
used to store analog video daia) are an exciting new storage
medium. A single 12-inch disk costing $100 can be uscd to
store over 101! bits of data - the equivolent of 10 recls of
magnetic lape - and to provide access to any of it in 1/10
second. Such an order-of-magnitude improvement in the
cost/performance of memory technology can have dramatic
effects. (See [Bu80], [Mce81], [Go32].)

However, such capability is achicved at the cest of mak-
g the writing process irreversible, The disks are used as
follows.
coating of tellurium. To write on the disk, a laser is used to
melt subrnicron pits in the telluriuin at specified positions,
changing those positions from their virgin “0” state to a “1”
state. To read the disk, the laser (at low power) illuminates
cach position on the disk; the lower reflectivity of the pits
is casily sensed.

Ifach disk is manufactured with a thin reflective

The tremendous capacities and cheap cost per bit of
digital optical disks provides strong motivation to examine
closcly their one drawback - their “write-once” nature. The
purpose of this paper is thus to explore the true capabilities
of such “write-once memories” (or woms). Other familiar
examples of woms are punched paper tape, punched cards,
and PROMS (programmable recad-only meinories - in which
the wits are microscopic fuses that can be selectively
blown).

Large woms might naturally be used to store data that
is more or less static: programs, documents, pictures, data
bases, or archival sterage duinps. If the data requires up-
dating, the wom can be replaced by a freshly written wom.
A large wom can be divided into blocks that are used up
as needed; a index on an associated magnetic disk can
keep track of the valid blocks. The magnetic disk can be
climinated by using linked-list or tree-like data structures
on the wom itself to link obsolete blocks to their replace-
ments, at some cost in terms of access time.

Moce forraally, we model a wom as an array of “write-
once bits” (or wits) which are mancfactured in a “0” state
tut which cau later be independently but irreversibly trans-
formed into a “1” state. (We unleestand that some of
the covrent recorder/player designs for digital optical disks
are not capable of selectively changing individual zero bits
within a previously written block. 1Towever, Lhis seems to
ke more a matter of engineering than of fundamentals.)

The main result of this paper is that by using ap-
propriate coding techniques, a wem can be “rewritten”
many times, and that its “bit-capacily” is much greater
than the number of its wits. Mauy of the codiug techuiques
proposed here are simple to implement, and can have a
significant impact on the cost of using woms.

As an example of the kind of behavior we are interested
in, the following coding scheme was a prime “motivating
example” for this research.

Lemma 1. Only 3 wits are needed to “write 2 bits twice”.
Prool: We show how to represent a 2-bit value z in 3 wits
so that it can later be changed to represent any other 2-
bit value y. First, represent = with the pattern r(z) given
in Table 1. Later, a value y (y 55 z) can be wrilten by
changing the pattern to r(y). (If z == y no change is made).
Observe that r'(y) will i.ave ones wherever r(z) does, so that
we neced only change zeros to ones.

T r(z) | r'(z)

00 0060 111

01 100 011

10 010 101

11 001 110

Table 1. A {2%)?/3-Womcode
Decoding is easy: the memory word abc represents the

2-bit value (b ¢}, (¢ D c), no matter whether the wom has
been written once or twice. A

1L Notation

Let weight of a hinary codewcird be the number of ones
it contains. Let z @ y denote the bitwise XOR of the bit
vectors z and y (assumed to have the same length). We
say that an binary word z == z;...z, is “above” another
binary word y = y1...y, {denoted z > y) if r = s and
z; > yi for 1 < ¢ < r. Let log(z) denote the logarithm
(base 2) of = (or, if the context requires an integer value,
[logy(z)]). We use Z, to denote the set {0,1,...,uv— 1},
and Z7 to denote the set of all binary words of length n.
We say “f(n) == g(n)" if lim,_,e f(n)/a(n) = 1. (The
variable being taken to the limit should be clear from the
context.) We also let H(p) denote the “cntropy function”
H{p) = plog(1/p) + (1 — p) log(1/(1 — p)).

A coding scheme that uses n wits to represent one
of v values so that it can be written a total of ¢ times
{i.e. written once and changed ¢ — 1 times) we call a
“(v)t/n-womcode” (read: a “v t-times into n-wit wom-
code”). The “/n” may be dropped for an optimal wom code
(with minimal n) (read: an “optimal v t-times womcode”).
The general case - where the number of values may differ
from generation to generation — we call a “(vy,...,v,)/n-
womcode” (read: a “vj to v; into n-wit womcode”); here the

value stored on the -th write may be any oncof {0, ..., v;—
t}.

Let w({vy,...,v:)) denote the least n for which a
{01, .., ve)/n-womeode exists. Similarly, we use w({v)t) to
denote the nurmber of wits needed by an optimal {v)t wom-
code. We are interested in characterizing the behavior of
w({v)?) for large values of v or £ as well as finding “practical”
coding sclicmes for small values of v or ¢.

It secms at first paradoxical that w{{v)) < log(v) -t
could happen. Intuitively, the reason is that only the last
value written needs to be accessible - previous values may

\
’ 2nd
generation
> 1st
generation
J

Figure 1. The (2%)2/3-womcode on the Boolcan 3-cube

become irrctrievable. In fact, if all previously written values
were always accessible then log(v) -t wits would be required.

To make our definition of a womcode precise, we note
that a (vq,...,v)/n womcode can be defined to consist of
the following parts (here let v = max(vy,...,v)):

(1) An interpretalion function o that maps ecach z €

Z73 to a value ofz) in Z,,

(2) An update function p which gives for any z €
7% and for any value y in Z,, either “]” (i.e.
undelined), or clse a codeword u(z,y) == z € Z%
such that a(z) =y and z > =.

We say that a and p define a correct {vy,...,v;)/n-
womcode if they “guarantee at least ¢ writes” as defined
below. In order to define this condition we first make the
following auxiliary definitions.

An acceptable sequence (iy,. .., %) for a (vq,...,v;)/n-
womcode satisfies the conditions that 0 < m < t and each
15,1 < j < m,isin Z,;. Note that in particular the null
sequence X is acceptable. .

We define the “write function” p mapping acceptable
sequences to codewords (or |) as the iteration of u starting
from the all-zero word 0™ (corresponding to the “initial
state” of the wom) by the following equations:

0",
wel(zy, -

if j =0

p{ir, - 25)) = { ifj>1.

'rij——l)): iJ'):
(We assumne that p{] ,y) = _| for all y.) We say that
an acceptable sequence “arrives at z” if that sequence is
mapped by p to z.

We say that a codeword 2 is “used in generation m,” or
“Is an m-th generation codeword” il there is an acceplable
saquence of length m that arrives al z. A cedeword « is
s1d to be “unused” if no acceptable sequence of positive
l:ngth arrives al x, otherwisc we say z is “used.”

If every codeword belongs to at most one generation
vie coll the womeode “synchronized” ~ since all acceptable
szquences that arrive at a codeword word arrive there “at
the same time” (i.c. at the same generation). Ciherwise the
womcode is called “unsynchronized.” With a synchronized
womcode one can always deterimine how many generations
have been written. Note that our (22)2/3 womcode is not
synchronized since 000 belongs to the zeroth, first, and
sccond gencrations. We say that a womcode is “almost
synchronized” if the all-zero word is the only codeword that
belongs to more than one generation, and it belongs only
to the zeroth and Grst gencrations.

The laminar womcodes are an interesting special case
of the synchronized womecodes: a womcode is laminar if it
is synchronized and the weight of every (used) codeword
determines its generation. (That is, no two codewords of
different generations have the same weight.)

107

We say that the womcode defined by « and p “guarantees
at least t writes” if no acceptable sequence of length ¢
arrives at | . ‘This completes our formal definition of a
(vi,...,v}/n-womcode defined by o and y; such a wom-
rcode is correct if it guarantees at least ¢ writes.

We will often identify an interpretation a(z) with its
binary representation. (For example, in a {(2¥) /n-womcode
each n-bit codeword represents & k-bit word.)

We would like to note that we initially studied only
the (2¥)t/n-womcodes, but that we have since scen enough
interesting examples of womecodes of the morce general form
to warrant including the more general definition here.

We now introduce our three “complexily measures”:
P, I, and C.

l.et P(t) denote the “penalty expansion factor” needed
to guarantee t writes of values from Z,, for large v, com-
pared to that nceded for just a slagle write:
w(()')

o) = vl—il‘c}o loglv)

We will prove that £(2) == 1.29... and P(t) =z t/ log(t).
Let [(v) denote the asymptotic “incremental cost” of
increasing ¢ by one for a {v)t-womcode:

L(('.'))t)

)

[{(v) == lim

Jim ()
We shall prove the surprising result that I{v) == 1.

We define the apparent capacity (in bits) of a {vy, ..., u)/n-
womcode to be log(vy- - -v,); we denote this as C{{ve,. .., v)/n).
Similarly, let C(n) denote the apparent capacily (in bits) of
an n-wit memory field:

C(n) == max{log(vy- - v,) | w({vy, .. wuw)) <n} (3)

We shall demonstrate that C(n) = n- log(n) + ofn - log(n)).
As an auxiliary definition, we let R{(vq,.. u)/n) =
C({v1,...,v¢)/n)/n denote the rate of the womcode. (This
is just the capacity per wit of the womecode.)

I. Elementary Observations

Lemma 2.

w({vr - v2)') < w((v1)’) + w({vz)?) (4)
Proof. Concatenate a (v;)t-womcode and a {va)*-womcode
to make a (v;-v;)! /(w({v)*)+w((v2)!)) womcode. (Represent
each value y in Z,, .., as an ordered pair (y1,92), with y; €
7y, and ya € Z,,. Use the womcodes to record y1 and y2
separately.)

Lemma 3.(w({v)!) is subadditive in ¢.)

w((v)*F*2) < w((v)') 4+ w((v)*2) (5)
Proof. Use side-by-side optimal (v)*:- and (v)**-womcodes
to represent the sum (mod v) of the values represented by
the two subcodes. To update, change one subcode to rep-
resent the dilference (mod v) of the new value to be repre-

sented and the value of the other subcode. This guarantees
at least t; -+ ¢y writes. (The alternative approach of writing
the new value into one of the two subcedes would need ex-
tra wits to indicate which subcode was written last, unless
the zero word is unused in onc of the subcodes.) R

Ihe above lemumas (and w({24)') ==
U((2°)) < k-t

For small values of k and £, we can derive w({2%)!) as
given in Table 2. (Obviously, w({25)1) == k and w({2')}) =

)

() imply that

1] ¢t 2 3 4 5 8
21 2 3 6
31 3 5
k 41 4 8
5] 5 8
61 6 9
T 7
Table 2. W({2*))

We do not know the exact values corresponding to the
empty positions of the table.

The (2%)3/7 (rate 1.28...)and {22)?/3 (rate 1.33...)
womcodes indicated by the table are special cases of the
general “linear” scheme presented in section V.,

The {22)5/7 (rate 1.42...) womcode indicated by the
table is an ad hoc scheme; we show here how to decode a
T-wit pattern abcdefg. If the pattern has weight four or
less, the value represented is 01 - co; € 10 - ¢10 (B 11 - €44,
where cpy = 1 iff ab == 10 or (ab = 11 and one of cd or ef
is 01), ¢10 = 1 iff ¢d == 10 or (¢d == 11 and one of ab or ef
is 01), and ¢33 = 1 iff ef = 10 or (ef = 11 and one of ab
or ¢d is 01). (For example, the pattern 1101100 represents
10. At most one of ab, cd, ef will be 11 if another is 01.)
Otherwise the interpretation is ab P cd @ ef D gg. The
first three writes change at most one wit, while the last two
might each change two wits.

The following notation for the size of the tail of a bi-
nomial distribution and a related inverse quantity will be
usefuk

(6)

§(v, m) = min{k | (('" - “)) >).

MNote that a (v)"/n-womeode must have n > m - (v, m) if

()

every first gencration codeword must have at least m zeros.
We derive a lower bound Z{v,) to w{{v)!} by generalizing
this obscrvation:

108

Z(v,0) == 0, and

(8)

Z(v,t 1) = Z(v, L) -+ 6(v, Z(v, 1)) for t > 0. (9)
Lemma 4.

w((v)) > Z(v,1) (10)

Proof. By induction on t. The case ¢ = 0 is trivial.

A

(v}t /n-womcode must have at least Z(v,t) zcros in
every first-generation codeword, and must turn on at least
8{v, Z(v, t)) wits in the worst case on the first write to have
v codewords in the first gencration. §i

Corollary.

w((25)) 2 k+¢—1 (11)

Note that Z(2%,1) = k and Z(2%,t +1) > Z(2%,¢)4- 1 for
k > 0. The following lemma improves this result (by one).

Lemma 5.

w((25)) > k+tfork>2and t > 3. (12)
*Proof. Suppose to the contrary that a (2%)¢/(k -+t — 1)-
womcode existed for & > 2 and t > 3. Since Z(2%,1) =k,
the generation t — 1 codewords must each have weight less
than t. On the cther band, if t > 3 then for every value y €
Zyx there is a t — 1-st generation codeword z with a(z) =y
and weight at least t — 1. (For ¢ = 2 the claim fails if the
zero-weight word is in the first generation.) There wust
be at least 2¥ — 1 > 3 different values y associated with
first-generation codewords of weight 1 or more. Thus for
every value y € Z,« there is a t — 1-st generation codeword
z with a(z) = y and weight ezactly ¢ — 1. But then no
possible interpretation for the codeword 1¥4t—1 is distinct
from each of these values (required since the last k levels
are “tight”). This contradiction p-roves the lemma. @

IV. How many wits are needed for a sixed nuraber of genera-

tions?

IV.A. How many wits are needed for two geuerations?

Theorein 1.

w((v)?) ~ 1.293315. .. log(v) (13)

Proof. For auy v, choose h to be §(v, log(v)) and then choose
n to satisfy:

(14)

We will prove that w{{v)?) < n. Choose the first genera-
tion representations arbitrarily as distinct codewords with
weight at most A, and randomly assign to the remaining
9n _ y codewords interpretations from Z,. There are

Ol

n — h = [log(v) + log log(v) -+ 1 — log log(e}].

(15)

ways to do this. How many ways do not guarantee two
writes? Such a bad assignment must contain a first-
generation codeword z and a valuc y € Z, — {a(z)} such
that no codeword z > z represenls y. If we select z in
one of v ways, select y in less than v — 1 ways, assign all
codewords z > z values different than o(z) and assign all
other codcwords arbitrary values, we will have overcounted
the bad codes but examined no more than

1)2 . ('U . 1)2"_" X (v)2"—~u-—2"_".

(16)

codes. Whenever (16) is less than (15) some “good” codes
must exist. This happens when

2 v
v S(v—l)

which will happen if

on—h

(17)

2log(v) < 2" 1°8() Jog(e) (18)

which is implied by

n = h -+ [log(v) -} loglog(v) -+ 1 — loglog(e)]. (19)

T'hus (19) implics the existence of a {v)! /n-womecode. Since
1. 2 h - jog(v) (from Lemma 4), we conclude that for an
oplisnal {v)?/n-womcode

n = h + log(v) -- o{log(v)). (20)

Now the logarithm of the number of words of length n
wvith at most h ones is
n-H(h/n) 4 o(n), for h < n/2. (21)
(See [PWT2, Appendix A], or [MS77, Ch. 10, §11].) Since
there are v values in the first generation,

n - I{h/n) 4 o(n) = log(v) (22)
or (since log(v) = n — h 4 o(log(v)) and n < 2 - log(v))
(n—h)

I(hn) = "1

+ o(1) (23)

The equation H(p) 1 — p has a solution at p ==
0.22709219.. ., so for an optimal womcode h/n == .227...,
or log(v) = n - {1 —.227..) or

n A2 1.29381537... - log(v)

(24)

which was to be proved.§

The random womcodes of the theorem will have an
asymptotic rate of 2/1.29. .. = 1.5458. . ., much better than
the rate 1.33... womecode of lemma 1. However, we could
not construct by hand a (2’“)2-womcode of rate higher than
1.33.... Lemma 4 implies that such a schemne must have

= T,n = 10 or k > 9. Using a computer we found a
slightly more efficient method with rate 1.34.. ..

The new scheme is a (26)% /7-womcode (rate = 1.3429...).
So a seven-track paper tape is “reusable” for writing just
letters! Row 4, column j of Table 3 gives the value (a let-
ter) of the 7-bit string with binary value 7% 32 +- 7. The
first-generation is in upper case. Thus a “T” (0011000) is
made into an “h” by changing bits 1,2, and 5 (to obtain
1111100). We were unable to find a (27)%/7-womcode or
to prove one docsn’t exist, although we can prove that a
(29)2/7 womeode doesn’t exist.

00000000001111111111222222222233

01234567890123456789012345578901

0 AGGFYLwEZYrX{fpuDWVzUdjoTwkeltdu

1 CSRcQiozPpihuexydzsjsniwveqgfkbm

2 BNMzLbgmXutbngfwlwrhkvxymjpsoqci

3 Ikmglckusteosdjvubdfgetpyinlhrza
Table 3. A ({26)2;7)-womcode

IV.B. What is P(t)?

By reasoning similar to that of the proof of Theorem
1, we derived the following estimates for (t). Note how
closely the estimates are to t/log(t).

t P(t) (est.) t/log(t)

1 1.000 -—=
2 1.294 2.000
3 1.549 1.893
4 1.783 2.000
5 2.003 2.153
10 2.983 3.010
20 4.668 4.628
50 8.960 8.859
100 15.191 15.051
200 26.346 26.164

Table 4. P(t)(est.) vs. t/log(t)

To demonstrate our main result that P(t) == t/log(t),
we define an upper bound to w({v)!) which is asymptotically
cqual to our lower bound Z(v,t) of Lemma 4, to within a
small additive term.

Theorem 2. [For fixed ¢ and v sufficiently large, a suflicient
condition for the existence of a {v)*/n-womcode is the ex-
istence of t numbers [;, 1 <7 < ¢, such that

(a)t-loglv) >2n2>li 212> - 21 20,

(b) () > v,

(¢) (,_il) >v-(t41)-log(v), for 1 < ¢ < ¢t
Proof.

We prove the existence of a (v /n womncode in which

all z-th generation codewords contain exactly l; zeros. Con-
dition (b) immplies that there are cnough codewords with {

zeros for the v values of the first geaeration. We now show
(by a counting argument) that for all 4, 1 < ¢ < ¢ it is pos-
sible to assign interpretations to the codewords with liga
zeros for the 7 -4 1-st gencration in such a way that for
every 7, 0 < 5 < v, every codeword with [; zeros is below
sotne codeword with [; 1 zevos that has been assigned in-
terpretation j.

The total number of ways in which the (,':‘) codewords
with {; 1 seros can assigned values is:

'U(l':‘l).

We can overcount the number of “bad” ways of assigning
interpretations to the codewords with I, 1 zeros (assuming
we have alrcady assigned interprclations to the earlier
generations), in the following way. Choose a codeword
z with [; zeros, choose a “missing value” y € Z,, assign
the (,f;l) codewords with [;1; zcros above = with the v —
1 remaining values (other than y), and assign the other
codewords with [; ., zeros arbitrary interpretations. The

(25)

number of “bad” ways is thus at most:
(7) o (o — 1))
i

A “good” way must exist whenever (26) is less than (25).
By simplifying this inequality, we get:

()0 (1-" <n

Since n < ¢t -log(v) (otherwise the existence of the desired
worncode is trivial), () < vf, and thus it is enough to

prove:
N
ot .(1 — l)(lH'l) <1

(26)

(27)

28
: ()
By condition {c), (l.{;.l) > v-log{v) - (t + 1), and thus it
suffices to prove that:

<1

(29)

’ 1 v-log(v)-(t+1)
ot {1 ==
()

) approaches 1/e, and thus
tae left hand side is approximated hy:

But for large enough v, (1 —

,Ut—}—] Lo log(v)~(t—+—l)’ (30)

vehich approaches zero as v pgoes to infinity.

"T'o find the smallest (or nearly smallest) n for which the
existence of a {v)*-womeode is guaranteed by the theorem,
the numbers ; should be chosen in reverse order (from I
to ;). 'The last two numbers can be chosen as:

: log()

+ clog log(v), (31)

where ¢ is any constant greater than 1, and

li—y = log(v) + 2clog log(v), (32)

110

since

() ()
L L
Since ¢ > 1 and t is fixed, this becomes larger than v .
log(v) - (t 4 1) for v sulficiently large. The other I;’s can
chosen as the smallest numbers satisfying condition (c) of
the theorem. Finally, n can be chosen as the smallest
number satisfying (j}) > v.

We now proceed to analyze the performance of the
womcodes described above, in order to show that their per-
formance is asymptotically equal to that of the lower bound
we proved in Lemma 4. Then we prove our main theorem
(thearem 4) that P(t) == t/log(t).

We first introduce some necessary notation. Let

2% v - (log(v)?)
2l log(v) + 2cloglog(v)’

(33)

6'(v, m) = min{h | (m : ") > v}, (34)

(Note the similarity to the definition of & in (7).) Then we
define:

Y, (v,0) = l—o—%@l + cloglog(v), (35)
Y, (v, 1) = log(v) + 2clog log(v), and (36)

Yolv, - 1) = Yo (v,) -+ 8'(v-u-log{v), Yu(v, 1)), for ¢ > 1.
(37)
For convenience in the next theoren, we define Y(v,0) to
be Yiou(u)(v, £); note that for large o, Y (v, t) > Yipa(v, t).
From this definition it follows that ‘or v sulliciently large,
w(<v>z) < Y(v,t), (38)
suce l; = Y (vt —)fort <i<tandn < Yiga(v, t)
in the construction of last theorem.
Theorem 3. For ¢t > 1,

Y(v,t
lim ,(”’)1 (39)
vaoo Z(v,)
Proof.
By induction on ¢. The case t = 1 is trivial. By

comparing the forms of the definitions of Y and Z, we see
that it is enough to prove:

&' (v - (log(v))?, m')

;
o 8(v, m)

v— 0O

=1, (40)

where m = Z(v,t — 1) and m' = Y(v,t — 1). We observe
that

§(v,m) < 8'(v,m) < 6(v,m)+1 (11)

if m > log(v) (since that implies that 6(v,m) < (m/2)).
(Note that in (40) both m and m’ are > log(v).) Thus
we can replace 6’ by § in (40). Furthermore, §(v,m) is a
decreasing function of m, so that we can also replace m’ by

the sinaller value m in (40). In a similar vein, it is simple
to show that m > log(v) implies that

(v - (log(v))?, m) < é(v, m) + 2log log(v), (42)

and a little more complicated to show that log(v) < m <
7 - log(v) implies that

6(v, m) > log(v) - (2v- H™1(1/29)) (43)

Combining these observations lea.!s to the desired result. g

Theorem 4. P(/,) = t/ log(t).
Proof.

Let ny == Z(v,t). Then we must have:

Ny

v <)) s 2n¢‘I{(n¢_1/n¢)
- e — N1

so we derive

(14)

H(ngq/n,) == log(v)/n.. (15)

We consider [7(p) near p = 0 using the fact that 11{p)
H(t —p):

1—n_y/n, = H Ylog(v)/ne). (46)
Near p = 0, I{(p) == p-log(1/p), so H~(y) =~ —y/ log(y):

— log(v)/n,

1= n: ~ log(log(v)/n:) (47)
ny — nu—1 &= — log(v)/ log(log(v)/n:) (18)
dn, — log(v) (49)

a ™ Togllog)/)
_ los(nu/ log(v) i

dt o (o) (50)
t~= (log(v)) log(log(v)) (51)
LI ~ _,t_* 5
oge) = PO~ o™)

As a consequence of Theorem 4, for fixed ¢ and large
v, an optimal (v} womcode will have a rate approximately
equal to log(t), with the approximation improving as ¢ in-
creascs.

V. What is I(v)?

In this section we demonstrate that I(v) = 1 for any
v, using a “tabular” womcode. We also present a “lincar”
womecode that — while it only shows that I{v) < 4, gencral-
izes nicely our (22)%/3-womcode.

111

VAL The Tabular (v)f/n-Womeode

We assume here that ¢ > v, Let w denote an in-
teger parameter to be chosen later (imagine that u is about
log(n}). Our {v)!/n-womcode will have its n == r - s wits
considered as r == (w-{- 1)(v-—1) rows of s == log{v)-¢t/(u-
(v-— 1)) columns. lach row is divided into a log(v)-wit
“header” field and an (s -- log(v))-wit “count” ficld. The
log(v)-bit value represented by such a table is the sum
{.ned 7)) of the header ficlds of all rows that have an odd
number of “1”s in their count fields.

To write a valuc 2 when the table currently represents
y, it sullices to change a single “0” to a “1” in a row with
header 2 ——y (mod v). If every row with this header has all
ones in its count field, we find a new row which currently
iv all zeros both its header and count fields, change the
header to the desired value, and change one bit of the count
field. e can always find a new row up until u(v — 1)
rows are completely “full”, since there are only v —1 useful
header valucs. (The all-zcro value is useless.) Thus we are
guaranteed at least u(v — 1) - (s — log(v)) = t writes.

Since

n =t 4 t/u 4 log(v){u -} 1){v — 1),
by choosing u = [log(t)] implies that n = t 4 o(t).

This code has rate approximately log(v) < log(n).
With optimally chosen parameters, this code has a rate
nearly log(n), about twice as good as any other code
presented in this paper.

V.B. The “Linear” Womcode

This scheme has parameters v, ¢ = 1 + v/4, and
n = v — 1. The 7-th wit is associated with the number
7, for 1 < ¢ < v. The value represented by any pattern
is the sum (mod v) of the numbers associated with wits
in the “1” state. (An alternative definition, useful when
v = 2% inlerprets the pattern as the XOR of the k-bit
represcntations of the numbers associated with wits in the

“1” state. For example, in our (2?)?/3-womcode the pattern

abe can be decoded as 01-a€510-bH11.¢)

We now show that - as long as there are at least v/2
zeros ~ we can change the wom to represent a new value
by changing sl most two wits. Let z denote the diflerence
(imodulo v) of the new value desired, y, and the curvent
vaiue represented, . If the hit associated with z is now “0”
we can simply change it to a “1”. Otherwise let S denote
the set of numbers associated with vrits which are currently
z2ro, and let 1" denote the seb {z -~z (mod v} | 2 € S}
Since |S] == |7 > v/2 and |[SUT| < v —1 (scro is in
neither set), the set SNT must be nonempty. Their overlap
€y + 22 (mod v)

indicates a solution to the equation z

where ¢, and 7, are clements of S.

The code described above thus has rate roughly log(v)/4 ==

log(n)/4.

The linear womncode described above may have to stop
when there are as many as (v/2) — 1 zeros left (which can
bappen after as few as 1 -} (v/4) writes). The following
trick allows one to keep going a while longer. Divide the
n-wit ficld into n/3 blocks of size 3. By writing additional
“1”s if neccssary, force each block to have either one “1”
or three “1”s exactly. Those “bad” blocks having no zcros
remaining arc now considered as deleled, while each of the
remaining “good” blocks can be used to store one bit (by
changing one of its wits — the other one is left untouched
to indicate that the block is a good block and not a deleted
block). With at least (n — 1)/2 zeros remaining we are
guaranteed of getting at least n/12-—1 “good” blocks. The
recurrence: i(n) = n/4 - t(n/12} has the solution i{n) =
3n/11 + O(1), indicating that this trick can increase the

*number of writes we can achieve by a factor of 12/11 (from
n/4 to 3n/11 writes). At the moment this coding trick is
also the best general scheme we know of for making use of
a “dirty” WOM that may have been wrilten before in an
arbitrary manuer (i.e. without any thought of using some
sort of “worncoding” for better utilization).

VI. What is C(n)?
The schemes presented in the last section can be used
to show that C(n) = n - log(n) -+ o{n - log(n)).

Theorem 5.

C(n) > nlog(n) -} o(nlog(n))

Proof. Jlor a given large mewory size n, we can use the
“tabular” scheme of scetion V.A. and choose paramclers:

rows of length s = |n/r]. (We will “waste” n - rs wits.)
As belore, the total number of writes possible is n — o(n),
proving the theorem. g

Iv is also possible to show that this resalt is “best
possible”:
Theorem 6.

C(n) < n-log(n)

Proof. (Intuitively, changing one wit out of n should
provide at most log(n) bits of information.) Consider any
{v1, ..., v¢)/n-womeode.
most {¢ 4- 1)™ < n™ “histories” as it progresses from its
first state (all “0”s) 1o its final state (perhaps all “1”s), since

The n-wit field can undergo at

we can describe the history by specilying for each of the n
wits that it cither always remains “0” or that it is turned
to a “1” during one of the ¢ write operations. On the other
hand, the womcode has at least vy- - vy different acceptable
sequences of length ¢ to handle, each of which must have
its own history. The theorem follows. @

112

VI. Other Womcodes

Several of our colleagues have become intrigued by
the problem of designing high-rate womcodes, and have
graciously consented to our sketching or referencing their
preliminary results here.

e Prof. David Klarner (Dept. Math, SUNY Bin-
ghampton), has created an elegant (5)3/5 (rate 1.39...)
cyclic worncode, which works as follows. The first value
is represented by 10000 in the first generation, either
01001 or 00110 in the sccond gencration, and one of
01111, 10110, or 11001 in the third generation. The
other four values are handled similarly, using cyclic
rotations of the words given for the first value. {Since
n is prime all the cyclic rotations are distinct.)

¢ David Leavitt (an undergraduate working with Prof.
Spyros Magliveras, Dept. Math, Univ. Nebraska at
Lincoln), has found an even more efficient (7)*/7 (rate
1.60...) cyclic womcode by extending Klaruer’s tech-
nique. {To appear.)

o James B. Saxe (a graduate student at CMU) has

created the following beautiful (3, 3--1,...,1)/n wom-
code (rate asyniptotically L‘i*—".;,’(-’-l)), wherc the two halves
of cach codeword are the same except that the left
half has an extra “1” bit. The value represented is the
number of zeros in the left half to the left of the extra
bit. Ilach update (except the first), changes exactly

two wits — one in each half.

e Saxe also suggested the following narvelous recursive
womecode, which uses n = 2% wits, and changes cxactly
one wit per write. Using [{n) to denote the capacity
of Saxe’s code, we shall sce that f(2%) == k -2k,
using the base case f(1) = 0, giving a rate of lﬁ%(—"z.
Partition the »n wits into % pairs. With the first %
writes we turn on at most one bit in each pair, and
obtain capacity f(%)-+% by using the code recursively
on the 2 pairs, and getting an extra bit/writc using the
parity of the number of pairs whose left bit is on. For
the second % writes we obtain capacity f(%) recursively
on the pairs by turning on their s2cond bils as nceded.
The recurrence f(n) = % - 2f(3) gives the desired
result.

e Saxe has also created a (65,81,63)/12 (rate 1.52...)
womcode that can be improved to a (65,81,64)/12
(rate 1.53...) womcode if the “generation number” is
externally available when decoding.

VII. Discussion and Conclusions

The results presented in this paper provide much in-
formation about the nature of the function w({v)!). On the
basis of the evidence so far, we conjecture that

log(v) - t)
log(t)

for all large v and t. We expect that this result should
follow in a more-or-less straightforward manner from the

w{{v)?) =2 max

(t,

results and techniques given here, but we have not as yet
worked through a detailed demonstration. (Exercise for the
reader: prove that w({2%)%) = ©(k?/log(k)).)

The relationship between womcodes and crror-correcting
codes are interesting: we can view a womcode as a situation
where the channel is assymmetric (only 0 — 1 errors occur),
and where the transmitter knows where the crrors will oc-
cur before he has to choose a codeword. Of course, there
are still many differences, since the objective of womcoding
Is to allow wmany “messages” to be seut and the codeword
for one message determines what fthe “crrors” are for the
next message.

A more closely related problem may be that of devising
codes for random-access memories that have “stuck bits”.
leegard [HeR1] has sowme recent work in this arca. Again,
Lowever, the problem secms intrinsically different.

Sounc interesting work has been done on Turing machines

that have “nonerasing” work tapes (c.g. see [Mi67]), which
is peripherally related to the rescarch reported here.

We note that our formulation of the problem requires
that the dceoding scheme for an {v)!/n-womcode provide a
unique interpretation for cach possible pattern of the n wits,
independent of how many generations have been written. In
some cases the current “gencration number” might also be
available as input to the decoding scheme at no extra cost
(in wits). While this variation might permit some minor
performaice iinprovements in some instances, it remains an
open question as to how much this additional information
might help.

A number of questions nced further investigation:

e What if there is some restriction on the kinds of up-
dates that may occur? (For example, what if y can
replace z only if # is numerically greater than z7)

e What advantages are there to representing a different
nuinber of values at each generation?

» What is the complexity of the decoding and updating
algorithrus for the best codes?

e How can these coding schemes be adapted to handle
the possibility of errors occurring on the wom?

e If the underlying storage medium is viewed as storing a
modulated digital signal rather than a sequence of bits,
what kind of “womcoding” should be used to allow
updating yet to maximize bandwidth while minimizing
modulation {requency? (See [Br81], [HIG69))

113

o ‘What can be said about the average-case behavior of
womcodes?

e What if the storage elements had more than two pos-
sible states, and had a complicated dag that described
the set of legal state transitions?

o What truly practical womcodes exist?

Acknowledgements

We would like to thank [ric Brown, Abbas El Gamal,
David Klarner, David Leavitt, Andrew Odlyzko, Michael
Rabin, Jim Saxe, aud Michael Sipser for their helpful com-
ments and discussions.

References

[Br81] Brown, FEric Stewart. Digital Data Bases
on Optical Videodisks. Bachclor of Science
Thesis. (MIT, May 1981)

Bulthuls, K., M. Carasso, J. Heemskerk, P.
Kivits, W. Kleuters, and P. Zalin, “Ten Bil-
lion Bits on a Disk” 1EEE SPECTRUM (Aug.
1979), 26-33.

“Videodiscs: A Three-Way Race for a Billion-
Dollar Jackpot” Business Week (July 7, 1980),
72-81.

Gallager, R. G. Information Theory and Reli-
able Communication. (Wiley 1968).
Goldstein, C. M., “Optical Disk Technology
and Information,” Science 215, No. 4534 (12
February 1982), 862-868.

Heegard, C. “Capacity and Coding for Com-
puter Memory with Defects,” Ph.D. Thesis,
Stanford University Dept. of Statistics Tech-
nical Report No. 45, (May 1981).

Hecht, M. and A. Guida, “Delay Modula-
tion”, Proc. IEEE, (Letters), (July 1969).

MacWilliams, F. J., and N. J. A. Sloane, The
Theory of Error-Correcting Codes (North-
Holland, Amsterdam, 1977).

McLeod, J. “Optical Disks loom as replace-
ment for Tape” Flectronic Design (Sept. 30,
1981), 97-103.

Minsky, M. Computation: Finite and Infinite
Machines. (Prentice-Hall, 1967).

{Bu79]

[Bu8o]

[Ga68]

[Go82]

[Hes1]

[HG69)]

[MS77]

[Me81]

[Mi67]

——
=3

Peterson, W. aad [N Weidon Jr. Crror-

Correcting Codes. (MI1 Press, 1972).

[cwWi3]

