SPRITZ—A SPONGY RC4-LIKE STREAM
CIPHER AND HASH FUNCTION

Ronald L. Rivest! Jacob C. N. Schuldt?

"Vannevar Bush Professor of EECS
MIT CSAIL
Cambridge, MA 02139

rivest@mit.edu

2Research Institute for Secure Systems
AIST, Japan
jacob.schuldt@aist.go. jp

CRYPTO DAY
October 24, 2014

Outline

RC4

RC4 attacks

Spritz

Security Analysis of Spritz
Performance

Conclusion

Outline

RC4

RC4

» Stream cipher RC4 designed by Rivest (1987).
» Widely used (50% of all TLS connections).
» Simple, fast.
» Works for any set of N “bytes™ Zy = {0,1,... ,N—1}.
(All math is mod N.) Default is N = 256.
» State consists of:
» two mod-N “pointers” j and j
» a permutation S of Zy
» Key setup algorithm (KSA) initializes S from secret
key K
» Pseudo-random generator (PRG) updates state and
outputs pseudo-random byte; typically used as
pseudo-one-time pad.

RC4-PRG

RC4-PRG()
1 i=i+1 // update state
2 j=j+ Sl
3 SwaP(S]i], S[j])
4 z = S[S[i]+ S[j]] /I generate output
5 return z
0 1 i Ji S[i]+ S N—1
S e oo (S[|fe>S[]| o0 |z oo o

A

RC4-KSA

» input key K is a sequence of L bytes (mod N values)

RC4-KSA(K)

1 S[0.N—-1] =[0.N—1]

2 j=0

3 fori=0toN -1

4 j=J+ S[i] + K[i mod L]
5 SwaP(S[i], S[j])

6 i=j=0

» Common criticism is that loop of lines 3-5 is executed
too few times; some recommend executing it 2N-4N
times or more, or ignoring first 2N—4N outputs.

Outline

RC4 attacks

RC4 attacks

RC4 has numerous vulnerabilities and “soft spots” [see
paper for citations]:

Key-dependent biases of initial output

Key collisions (producing same internal state)
Key recovery possible from known internal state
Related-key attacks (WEP)

State recovery from known output (feasible?)

» Output biases; distinguishers

v

v

v

v

v

Outline

Spritz

SPRITZ

We started design after CRYPTO 2013. (Really after
AlFarden, ..., and Schuldt. USENIX 2013)
Design principles:

» Drop-in replacement for RC4

» Retain “RC4 style” (e.g. state is a few registers plus a
permutation Sof {0,1,... N—1})

» Minimize statistical vulnerabilities
» Redo key-setup entirely

» Expand API to have “spongy” interface: can
interleave “absorbing” input and “squeezing” out
pseudo-random bytes.

SPRITZ-PRG

» Automatically examined many thousands of
candidates

» Expressions generated and represented by postfix
expressions: ik jS++ means i+ Kk + S[j]
» Filtered by:

» syntactic criterion (e.g. invertible expressions containing s
but no ss),

» cryptographic criteria (e.g. can not swap two values in S
and leave evolution of j and k unaffected), and

» statistical criteria (very heavy testing of candidates for
smaller values of N. Approximately 12 “hyperthreaded
core-years” of CPU time used. About 253 Spritz outputs
tested.)

Winner is #4933

iw+, kjiS+S+, ikjS++, jikz+S+S+S
\',-/ [_'_/ N e

! J k z
RC4-PRG() SPRITZ-PRG()
1 i=i+1 1 i=i+w
2 j=j+ S[i] 2 j=k+S[j+ 5[]
3 k=i+k+ 9]
3 SwaPr(S][i], S[j]) 4 SwaAP(S[i], S[j])
4 z = S[S[i]+ S[j]] 5 z=S8[j+ S[i+ S[z+K]]]
5 returnz 6 return:z

» About 50% longer

» Uses new register k as well RC4 registers i, j; output
register z also used in feedback. Register w always
relatively prime to N.

Start SPRITZ with INITIALIZESTATE

v

State variable S initialized to identity permutation
» “Pointer” variables i, J, k, initialized to 0.

» “Last output” variable z initialized to 0

» “Number of nibbles absorbed” variable a set to 0
» “Step size” variable w initialized to 1

INITIALIZESTATE(N)

1 S§[0..N-1] = [0..N-1]

2 i=j=k=z=a=0
3 w=1

SQUEEZE to output r-byte array

SQUEEZE(r)

1 ifa>0 // last operation was ABSORB
2 SHUFFLE()

3 P = new array of size r

4 forv=0tor—1

5 Plv] = SPRITZ-PRG()

6 return P

Encryption

ENCRYPT(K, M)

1 KEYSETUP(K)
2 C = M+ SQUEEZE(M.length)
3 return C

KEYSETUP(K)

1 INITIALIZESTATE()
2 ABSORB(K)

Spritz-KSA

» ABSORB takes an arbitrary sequence K of bytes as
input.

» Absorbs each byte by absorbing its two four-bit
“nibbles”.

» After each 512 bits of input, or when output is
desired, SHUFFLE procedure called to “stir the pot”
(WHIP) and to “provide forward security (CRUSH).

» Variable a is number of nibbles absorbed since last
SHUFFLE

SHUFFLE

» SHUFFLE effects a “random” one-way transformation
on the current state.

SHUFFLE()

WHIP(2N)
CRUSH()
WHIP(2N)
CRUSH()
WHIP(2N)
a=>0

OO0k~ WN =

WHIP

» Purpose of WHIP(r) is to “stir the pot” vigorously, by
generating and ignoring r bytes of output, then
increasing w by 2 (so w remains odd and relatively
prime to 256.)

WHIP(r)

1 forv=0tor—1

2 SPRITZ-PRG() // output ignored
3 w=w+2

» (If N is not a power of 2, WHIP increases w to the
next value that is relatively prime to N.)

CRUSH for forward security

0123456789%9abcdeft
S [c[9[3[dB[0] 8] 2[6] e[a[4] T[1] 5] £

|

S [cIST[T4TOT8[2] e[e[a[B[d[3[9 £]
The elements of S are considered as N/2 pairs; each is sorted
into increasing order. The input is at the top; the output at the

bottom. Horizontal lines represent two-element sorting opera-
tions. CRUSH provides “forward security” for SHUFFLE.

Key-Setup (or general input) with ABSORB

ABSORB(K)

1 forv = 0to K.length — 1
2 ABSORBBYTE(K]|Vv])

ABSORBBYTE(b)

1 ABSORBNIBBLE(LOW(b))
2 ABSORBNIBBLE(HIGH(b))

ABSORBNIBBLE(X)

1 ifa=|[N/2]

2 SHUFFLE()

3 SwAP(S[a], S[[N/2] + x])
4 a=a+1

AbsorbNibble

012345606 789 abjcdetf
S:[9a08 4][5/6]/7|3 2 1b|c|[d]e|f]

Zrspots used| (N2 — a) free
N/2 D N2-D_

< » - <
< > <% > <4

Nibble sequence 1,2,1,0 has just been absorbed. When the
a-th nibble x is absorbed, S[a] is exchanged with S[N/2 + x];
note that 0 < x < D, where D = v/N. ABSORB never touches
the last N/2— D elements of S, greatly limiting how adversarial
input can affect S.

SPRITZ is spongy!

» SPRITZ is also a (modified) sponge function, and
usable as a hash function:

1 INITIALIZESTATE(N)

2 ABSORB(“abc”) — ACCEPT INPUT PIECEMEAL.
3 ABSORB(“def”)

4 SQUEEZE(32) — OUTPUT 32 BYTE HASH.

5 ABSORB(“ghi”) — KEEP GOING...
6 SQUEEZE(1000)

» Large state space (like KECCAK), but also has built-in
protection against inference of key from knowledge of
internal state (which KECCAK does not).

» (But very much slower than Keccak...)

ABSORBSTOP rather than padding

» ABSORBSTOP absorbs an “out-of-alphabet” symbol;
makes for easier interfaces than padding rules.

» All ABSORBSTOP does is increase a (the number of
absorbed nibbles) by one, without actually absorbing

a nibble.
ABSORBSTOP()
1 ifa=|N/2]
2 SHUFFLE()

3 a=a-+1

Spritz as a hash function

» Note that we include output length r in the hash input,
so r-byte hash outputs are not just a prefix of r'-byte
hash outputs for r < r’; these act as distinct hash
functions.

HASH(M, r)

1 INITIALIZESTATE()

2 ABSORB(M); ABSORBSTOP()
3 ABSORB(r)

4 return SQUEEZE(r)

Spritz as a MAC

» MAC example with r-byte output.

MAC(K, M, r)

INITIALIZESTATE()
ABSORB(K); ABSORBSTOP()
ABSORB(M); ABSORBSTOP()
ABSORB(r)

return SQUEEZE(r)

OO =

Outline

Security Analysis of Spritz

Statistical testing

» Primary tool: chi-square testing for uniformity.

» Typical test: chi-square for uniformity of triple (i, z1, z)
(aka “iz1z”) where zs is z delayed s steps. Table has
N3 entries for counts.

» Tests runinclude jsi, iksk, izsz, ijsz,and iksz
for sup to N.

» Tested N = 16: no biases for 232 outputs; for 236
outputs biases detected (strongest iz3z).

» Chi-square biases modelled as ¢cN—¢; good model for

all RC4-like designs; can fit curves to estimate ¢ and
d as function of N.

» Measured biases for N = 16,24, 32, extrapolate to
N = 64,128, 256.

Biases measured and extrapolated

N log, (#keystream bytes)
RC4 (iz1z) | Spritz (1z3z)
16 19.5799 31.7734
24 22.8294 39.0387
32 25.1350 44.1934
64 30.6900 56.6135
128 | 36.2450 69.0335
256 | 41.8000 81.4535

The expected number of outputs required for RC4 and Spritz
to reach a distribution with a chi-square deviating by one stan-
dard deviation from the expected chi-square statistic of a uni-
form distribution, for the best distinguisher in each case.

Graph
90 —
80 —
70 — Spritz
60 —
50 —

40 —
30
20

10 RC4

2 4 é 1 é 3% 6L1 1 58 2%6

log, of outputs required versus N

Much better statistics!

» Spritz statistical biases are much fainter than for RC4.
» For N = 256:

» Can distinguish RC4-256 from random with only 24’
samples.

» | Our tests suggest that 28" samples are required
to distinguish SPRITZ-256 from random.

Other security properties

Design of Spritz should also make the following hard:
» inferring state from observed output
» inferring key from known state
» related-key attacks
» finding collision for Spritz as hash function

Outline

Performance

Performance

» Squeeze output at 94MB/sec (24 cycles/byte)
(RC4 is 293MB/sec).

» Absorb data at 5SMB/sec (408 cycles/byte)
(Keccak is 11 cycles/byte)

The virtues of Spritz are more its simplicity of of
implementation, flexibility, and secure conservative design
than its speed.

Outline

Conclusion

Conclusion

SPRITZ is a spongy stream cipher in the style of RC4; it
shows excellent statistical properties and great flexibility
for applications.

More...

Our paper on SPRITZ is here:
people.csail.mit.edu/rivest/pubs.html#RS14

More security review needed; comments and analysis
appreciated!

Thank you!

	RC4
	RC4 attacks
	Spritz
	Security Analysis of Spritz
	Performance
	Conclusion

