
Algorithms
L.D. Fosdick and
A.K. Cline, Editors

Submittal of an algorithm for consideration for publica-
tion in Communications of the A C M implies unrestricted
use of the algorithm within a computer is permissible.

Copyright @ 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted, provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

The neater Algol 68 construct:
while (boolean expression) do (statement)
is used here instead of the Algol 60 equivalent:
for dumn'ty := 1 while (boolean expression) do (statement)

References
1. Hoare, C.A.R. Algorithm 63 (PARTITION) and Algorithm 65
(FIND), Comm. A C M 4 (Jul~ 1961), 321.
2. Floyd, Robert W., and Ronald L. Rivest. Expected time
bounds tbr selection. Stanford CSD Rep. No. 349, Apr., 1973).
3. Sites, Richard. Some thoughts on proving clean termination of
programs. Stanford CSD Rep. 417, May 1974.

Algorithm 489

The Algorithm SELECT for
Finding the ith Smallest of n
Elements [M1]
Robert W. Floyd [Recd 26 Sept. 1974]
Computer Science Department, Stanford University,
Stanford, CA 94305
and
Ronald L. Rivest, M.I.T. Project MAC,
545 Technology Square, Cambridge, MA 02139

Key Words and Phrases: selection, medians, quantiles
CR Categories: 5.30, 5.39

Language: Algol (not strictly Algol 60)

Description
SELECT will rearrange the values of array segment X[L : R]

so that X[K] (for some given K; L < K < R) will contain the
(K- -L+l) - th smallest value, L < l < K will imply X[I] < X[K],
and K < 1 < R will imply X[I] > X[K]. While SELECT is thus
functionally equivalent to Hoare's algorithm FIND [1], it is sig-
nificantly faster on the average due to the effective use of sampling
to determine the element T about which to partition X. The average
time over 25 trials required by SELECT and FIND to determine the
median of n elements was found experimentally to be:

n 500 1000 5000 10000

SELECT 104~ ms. 141 ms. 493 ms. 877 ms.
FIND ms. 197 ms. 1029 ms. 1964 ms.

The arbitrary constants 600, .5, and .5 appearing in the algorithm
minimize execution time on the particular machine used. SELECT
has been shown to run in time asymptotically proportional to
N + m i n (l , N - - 1) , w h e r e N = L - - R + l a n d l = K - - L + 1.
A lower bound on the running time within 9 percent of this value
has also been proved [2]. Sites [3] has proved SELECT terminates.

Algorithm
procedure SELECT (X,L,R,K);

value L,R,K; integer L,R,K; array X;
begin

integer N,I,J,S,SD,LL, RR; real Z, T;
while R > L d o
begin

i f R -- L > 600 then
begin

comment Use SELECT recursively on a sample of size S
to get an estimate for the (K- -L+ l) - t h smallest element
into X[K], biased slightly so that the (K- -L+ l) - t h
element is expected to lie in the smaller set after partition-
ing;

N : = R - - L + I ;
I : = K - - L + I ;
Z := /n(N);
S := .5 X exp(2XZ/3);
SD := .5 X s q r t (Z X S X (N - S) / N) X sign(l--N~2);
LL := rnax(L,K--1XS/N+SD);
RR := min(R,K+(N-- l) X S / N + S D) ;
SELECT(X, LL, R R, K)

end;
T : = X[K];
comment The following code partitions X[L : R] about T. It

is similar to PARTITION but will run faster on most ma-
chines since subscript range checking on 1 and J has been
eliminated. ;

I : = L ;
J : = R ;
e xc han ge(X[L] ,X[K]) ;
if X[R] > T then exchange(X[R],X[L]);
w h i l e l < J d o
begin

exchange(X[l],X[J]);
I : = 1 + l ; J : = J - - 1;
while X[1] < T d o l : = I + 1;
whileX[J] > Tdo J := J - - 1;

end;
if X[L] = T then exchange(X[L],X[J])

else begin J := J -k- 1; exchange(X[J],X[R]) end;
comment Now adjust L, R so they surround the subset con-

taining the (K - L + I) - t b smallest element;
if J < K then L : = J -~- l ;
if K ~ J then R : = J -- 1 ;

end
end SELECT

173 Communications March 1975
of Volume 18
the ACM Number 3

