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ABSTRACT

We present here a simple yet effective technique for calculating
a lower bound on the number of tracks required to solve a given channel-
routing problem. The bound applies to the wiring model where horizontal
wires run on one layer and vertical wires run on another layer. One of
the major results is that at least 455 tracks are necessary for any
dense channel routing problem with n two-terminal nets that begin and
end in different columns. For example, if each net i begins in column
i and ends in column i+l, at least vﬁg tracks are required, even though
the channel "density" is only 2. This is the first technique which can
give results which are significantly better than the naive channel den-
sity arguments. A modification results in the calculation of an im-
proved bound, which we conjecture to be optimal to within a constant

factor.
I. TINTRODUCTION

The "channel-routing" problem has recently attracted a great
amount of interest and is becoming increasingly important with the
advent of VISI. The results of this paper are of both practical and
theoretical interest. On the practical side, the techniques allow a
channel-routing algorithm to estimate more accurately a bound on the
number of tracks required to solve a given problem, and thus to know
when to stop looking for an impossibly good solution. From a theoreti-
cal point of view, this paper makes two points. The first is that
channel "density" is not the only factor determining the limits of
channel-routing performance in this wiring model; we must also consider
how many nets must "switch columns'" in order to be routed. The second
point is closely related: the "traditional" wiring model - which we
study here - seems to be in some significant sense provably worse than
related wiring models where nets can overlap slightly (say at corners).
In these models twice channel density is provably an upper bound on the
number of tracks required [RBM81].

Related work has been done by, among others {us711, [p761, [T801,
and [DKSSU81].

II. DEFINITIONS AND THE WIRING MODEL

The (infinite) channel of width t consists of (1) the set V of
grid points (x,y) such that x and y are integers and 0= y < t+1,
-» < x <=, and (2) the set E of edges connecting points (x,y) and (x',
y') whenever these points are at distance 1 from each other and y and y'
are not both equal to 0 or t+l. Figure 1 shows a channel of width &4.
1f the width of the channel is t, we say that the channel has t tracks;
track i (for 1 < i < t) consists of all grid points with y=i and the

178



o ——————— T

Donna J. Brown and Ronald L. Rivest 179

(horizontal) edges connecting these points,
A (two-terminal) net N, consists of a pair of integers (p,,qi).
i

The intent is that a net specifies that a connection must be made be-
tween the point (qi,t+l) and the point (pi,O); these points are the
terminals of the net.

A connection is made by a wire; a wire is defined to be a simple
path (vo,lo,vl,ﬁl,...,vk_l,ik_l,vk) connecting v, to V. (Here 2 € E

is the edge connecting grid points Vil and Vi.) A channel-routing

problem is defined to be a set of nets (with 1 # pj and q; # qj for

i # j). A solution to a channel-routing problem is an integer t and a
set of wires in the channel of width t, such that one wire connects the
terminals of each net, and satisfying the restriction that two distinct
wires can meet at a grid point only if one wire has only vertical edges
touching that grid point and the other wire has only horizontal edges
touching that grid point. (This grid point is then a crossover point.)
This corresponds to the traditional model using one layer for
horizontal wires and another for vertical wires.

Given a channel-routing problem, it is desired to find the least
t permitting a solution. Szymanski [$81] has proved that this minimi-
zation problem is NP-hard if each net may require connection of an
arbitrary number of terminals; it is natural to conjecture (but as yet
unproven) that it is also NP-hard if each net connects only two
terminals (as in our case).

An obvious lower bound on the minimum achievable channel width is
the channel density: this is the maximum (over x) of the number of nets
Ni = (Pi’qi) for which 1 <x < q; or 4y <x < Py i.e., the maximum

number of nets whose wires must cross or touch some vertical line x in
order to make the necessary connection. Previous to this paper, mno
better lower bound has been published.

III, A SIMPLE LOWER BOUND

We begin with an investigation of the simple "shift~right-one"
channel-routing problem with n nets. Here the top terminal of net i
is in column q,=i and the bottom terminal of net i is in column
p; = i+l for iél,...,n. We can show that at least Y2n tracks are re-

quired for this problem, even though the channel density is only 2. In
fact, our simple argument does not depend upon the structure of the
problem except that it contains n closely-packed nets with different
starting and ending colums. Thus, an essentially same argument can be
applied to any channel-routing problem with two-terminal nets.

Suppose that the leftmost terminal of any net occurs in column 1
(i.e. with Py or 4y equal to 1), and that the rightmost terminal of any

net occurs in column w. We consider the "window" of columns 1 to w,
where obviously w2 n. While wires do not need to lie entirely within
the window, every wire must both start and end within the window. For
our shift-right-one problem we have a window of size w = n+l.
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Let m denote the number of nets which must be "moved" (i.e. which
must switch columns because piiéqi). The structure of our argument is

a track-by-track analysis of how many wires can be moved into their
final columns on each track. Consider the first track (i.e. y=1). If
below track 1 (i.e. connecting track 0 to track 1) we have my =m nets

which must be moved, after track 1 (i.e. between tracks 1 and 2) we

will have a number my of nets to be moved, where mlﬁ mye We continue

in this manner for each track; when m, =0 we are done (with t=1i).

How many nets can be moved into their target columns in one track?
The fundamental but simple observation is that if net i moves from its
current column to its target column q; on the track, then column 4

must have been empty, (i.e. there were no wires in column 95 between

this track and the previous one). Let e; denote the number of empty

columns between tracks i and i+l in our window. Then clearly
t-1

or m=< T e,
. i
i=0

The only way to change e from one track to the next is to route

m, - m, < e,
i i+l i

wires from a column inside the window to a column outside the window
(which increases e by one) or vice versa (which decreases e by one).

We also observe that e, - 2 < €1 < ei+2, since at most two wires can
cross the window boundary on any track.
Our initial conditions are ey = e =w-n (w is the width of the

t
window, n the number of nets), and we have the inequality

e; < minfey + 2i, e + 2(e-1)} .

i
This implies that, for t = 3:
Lt/2) t-1
m< 3 (e0+21'.) + b (et+2(t-i))
i=0 i=lt/2+1
Lt/2) L(t=-1)/2)
and so m< t(w-n) +2 Ti + 2 i
i=0 i=1
2

m< t(w-n) + ;—

t 2 -(w-n) + ly/(w-n) +2m-l (%)

Thus, in our shift-right-one example we have w-n=1 and m=n,

yielding:
t2 -1+ L/2n+17 .

Figure 2 illustrates a routing for this problem with n=13; the lower
bound of t =2 -1 + R/z_ﬂ = 5 is achieved. It is not true, however, that
the shift-right-one example can always achieve -1 + [2n+1 1 tracks.
For instance, for n=12, shift-right-one cannot be implemented using
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fewer than five tracks.

Notice that the argument ovtliwed above does not apply solely to
the shift-right-one example,and the bound (%) applies to all two-ter=-
minal channel-routing problems. It is in fact possible to show that
the bound (*) is tight in the sense that, for any values of w-n and m,
there is some channel-routing problem which achieves the minimum number
of tracks given by (*). Figure 3 illustrates a particular routing
problem with m=12, w-n=1 for which the lower bound of t=4 can
actually be achieved (even though it cannot be for the shift-right-one).

IV, AN IMPROVED LOWER BOUND

Let us examine the channel-routing problem specified by Figure 4a.
The density is three, and since w-n=4 and m=16, (*) tells us that at
least three tracks are required for a routing. But consider just the
left side of this problem, using a window of size eight: w=-n=0, m=8,
The bound (*) guarantees that at least four tracks are required for
this subproblem, and so it is certainly not possible to achieve a
routing with fewer than four tracks for the entire problem. Therefore
the routing illustrated in Figure 4a is indeed optimal. What is the
problem with our (*) bound? The difficulty is that the bound nowhere
takes into account the details of the particular routing or the loca-
tions of the initially empty columns. As shown by Figure 4b, there is
some channel-routing problem with w-n=4 and m= 16 which can be routed
using only three tracks. But the empty columns are more spread out, so
no subproblem is as "dense' as in Figure 4a.

We modify our Section III argument to consider not only the largest

window but also all 0(n2) "subwindows" it contains. A bound like (¥*) is
computed for each subwindow, and the overall lower bound is then the
maximum of the individual lower bounds.

The bound on a subwindow involves computing a solution to a quad-
ratic formula as we did above. The formula is, however, more compli-
cated because some nets may have only one terminal in the subwindow and
some nets may have both terminals on opposite sides of (and outside of)
the subwindow.

Consider a (sub)window of width w. Let D denote the number of nets
whose top terminal is within the window and whose bottom terminal is
outside of the window. Such a "departing' net may have its bottom
terminal either to the "left! or to the "right'" of the window; there

are DL and DR of these, respectively (D = DL<+DR). Similarly, let A

denote the number of "arriving" nets, those with top terminal outside
and bottom terminal inside the window; there are AL (AR) of these with

top terminal to the left (right) of the window. There are T nets which
have their terminals on opposite sides of the window and so must pass
all the way "through'". Finally, there are I nets which have both their
terminals "inside" the window. (Note that w = D+1I +et:=A-+I-+e0.)

In this extended abstract, we omit the (somewhat complicated)
derivation of the modified bound for an arbitrary subwindow and consider

only subwindows for which DL = DR and AL = AR.
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Clearly % tracks are required for the D 'departing'" nets. But
within these % tracks, as many as
-Dz— - 1
T (e_+2i)
. t
i=0

"inside'" nets might also be routed. Similarly, the A "arriving'" nets

; A .
require at least 7 tracks, which could also be used to route

2
& .1
b (e0-+21)
i=0
"inside' nets. This leaves max{0,I'}, where
>-1 2.1
I'=1=-"%2 (e _+2i) - "¢ (e,+21),
. t , 0
i=0 i=0

more "inside" nets to be routed. Bound (%), previously established,
gives a minimum number of additional tracks required to route these.
Recalling that T nets pass completely through the window, we obtain

D, A - / 2 '
t2T+2+2+max{0, (e +D) +4/(e +D)" +2I 1.

This formula is illustrated by the example in Figure 5 (where only
the left half has been drawn; the right half is the mirror image of the
left). For this problem, T =0, D =2, A =6, I = 42, ey = 0, e_ =4,

. t
and the above formula gives

t = 1+3+max{0,-6+4/36+64 } = 8.
This minimal number of tracks is in fact achieved by the routing shown.

The above formula can, of course, be extended to subwindows where
AL # AR and DL # DR. In addition, small improvements can easily be

made by considering relative positions of, say, the D nets and the e,
columns.

Finally, it should be noted that channel density is, in fact, a
subcase of what we are here computing. If the (maximum) density d is
in column i, then the subwindow of size one which includes i will
require at least d tracks. So the maximum over all subwindows can be
no less than d.

V. CONCLUSIONS

We have presented a new simple but powerful technique for deriving
a lower bound on the number of tracks required to solve a traditional
channel-routing problem for two-terminal nets. We have as of yet found
no example for which this bound is more than a constant factor from
optimal.




Donna J. Brown and Ronald L. Rivest 183

ACKNOWLEDGEMENTS

This research was supported by NSF grants MCS80-08854,
IST80-12240, MCS78-05849, and by DARPA grant NOO014-80-C-0622.

REFERENCES

[D76]

[DKSSu81]

[As71]

[RBM81]

[s81]

[T80]

Deutsch, D. '"A Dogleg Channel Router,”" Proceedings of the
13th Design Automation Conference (IEEE 1976), 425-433.

Dolev, D., K. Karplus, A. Siegel, A. Strong, and J. D.
Ullman, "Optimal Wiring between Rectangles," Proceedings
of the 13th Annual ACM Symposium on Theory of Computing
(1981), 312-317.

Hashimoto, A. and J. Stevens, "Wire Routing by Optimizing
Channel Assignment," Proceedings of the 8th Design Auto-
mation Conference (IEEE 1971), 214-224,

Rivest, R., A. Baratz, and G. Miller, "Provably Good
Channel Routing Algorithms," to appear.

Szymanski, T. Personal communication.
Tompa, M. "An Optimal Solution to a Wire-Routing Problem,"

Proceedings of the 12th Annual ACM Symposium on Theory of
Computing (1980), 161-176.

track

=N W

I

Figure 1. (Infinite) channel of width 4.




184 New Lower Bounds for Channel Width

|
.

||

Figure 2. Shift-right-one example for n = 13.
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Figure 3. Example achieving bound (*) for wen = 1, m = 12.
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(a) Optimal but does not achieve bound (*).
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(b) Does achieve bound (*).

Figure 4. Examples for w-n=4, m=16.
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Figure 5. Illustration for improved lower bound.
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