Ad-Hoc-Group Signatures from Hijacked Keypairs

Ben Adida Susan Hohenbergefr Ronald L. Rivest
June 24, 2005

Abstract

Ad-hoc-group signatures enable an individual to sign oralfedf a group without requiring prior
group membership setup. Such signatures are used to pireidibility — the signer must be one of the
group members — combined with some degree of anonymity -d#meity of the signer within the group
cannot be determined. Thus, in many instances, other greapaars might not cooperate in the creation
of such a signature. They may even wish to interfere withriggitton, refusing to generate keypairs of a
form that might facilitate such activity.

We present a combination of techniques for efficiently cioer@any user into an ad-hoc signatory
group, using only that user’s public key. This public key ntayrespond to almost any signature or
encryption scheme, as long as there exists an efficient &pdonest Verifier Zero Knowledge Proof
of Knowledge protocol for the secret key, or, alternatiy@yhash-and-sign algorithm for that keypair
type. Our approach effectively hijacks any public key foe thurpose of building an ad-hoc group
signature. We also present a new proof protocol that enaliésn our framework, the hijacking of
Boneh-Franklin and Waters identity-based encryption kaysvell as Camenisch-Lysyanskaya signature
keys.

1 Introduction

Ad-hoc-group signatures allow a signer (Alice) to produahgital signature for a message! such that a
verifier can confirm that\1 was signed byomeondrom the list of “ad-hoc group” members included with
the signature, but nothing more. Alice specifies the addrocp (which must include herself) when she
signs the message; there is no prior setup or group manageecde

We note that the other members of the ad-hoc-group don't teeleel aware of Alice’s signing activities,
or even to give Alice permission to include them in the ad-gomup. They may even disagree with or
resent Alice’s activity, and, most likely, they have takemsteps to facilitate Alice’s use of ad-hoc-group
signatures. The question asked in this paper is: under wdratitions can Alice rope other parties into
“participating” in her ad-hoc-group signature?

As we shall demonstrate, Alice has rather broad power tacinobhers into her ad-hoc group. In general,
Alice can get Bob into her group if Bob is using more-or-lesg kind of public-key encryption or signature
scheme. Merely knowing Bob’s public key enables Alice to lgjet to be a “co-signer.” Even if Bob's
public key is intended only for encryption, Alice can usudlljack his key anyway.

This paper presents a protocol compiler for handling hgemeous key types within a single ad-hoc-
group signature. As an example, we show how to handle publs kor two types of identity-based en-
cryption schemes and one type of clasical signature schaht@sed on bilinear maps, using new proofs of
knowledge of the corresponding secret keys.

*Computer Science and Atrtifical Intelligence Laboratory;sstchusetts Institute of Technology; 32 Vassar Streetp@dge,
MA 02139, USA. Email:{ben,srhohen,rives@mit.edu.
TSupported by an NDSEG Fellowship.

1.1 Motivating Applications

An ad-hoc-group signature allows Alice to gain some crditibfrom demonstrable group membership,
while maintaining anonymity within that group. Two immetiapplications arise from this technique: the
leaking of secrets from a committee, and one type of contibruof designated-verifier signatures.

Leaking Secrets. Imagine that Alice is a cabinet member, and that she wishélsdl” a documentM

to the press, so that it is verifiably authentic but so thatismet obviously the source. She can do this by
signing M with an ad-hoc-group signature, where the ad-hoc groupded all cabinet members and other
senior government officials (including herself, of course)

A journalist can verify the signature and determine thatwas, in fact, signed by some senior govern-
ment official, but he cannot identify the actual signer wittiiat group. The journalist can safely report, “A
senior government official has supplied the following doeamwhich says ...” without fear of being forced
to reveal his source (because he can't).

(Depending on your political views, you may or may not appro¥this application. Nonetheless, it is
interesting, and was a motivation for Rivest et al.'s depalent of ring signatures [21].)

Designated-Verifier Signatures. When Alice sends a messagd to Bob, she may want to prove the
message’s authenticity in a more private manner than byyeggph publicly verifiable signature taA.
Specifically, Alice may not want Eve, a third party, to be ableerify Alice’s signature oo\V. This concept,
introduced by Jakobsson et al [17], is caltlbignated-verifier signatureslice effectively designates Bob
as the sole verifier of her signature.

Alice can construct a type of designated-verifier signatisiag a carefully crafted ad-hoc group. Alice
will designate a two-person ad-hoc group including hersetf Bob, her intended recipient. Upon receipt of
such a signature, Bob can be certain that Alice was the sigadre knows that he himself did not produce
this signature. However, Bob is unable to prove this factigoae else, since others may simply believe he
is trying to frame Alice.

Using such a system, Alice effectively gains “repudiabititif Bob reveals their conversation to a third
party, Alice can plausibly deny any knowledge of such comication. It has been noted in the literature
that such a property is quite important for maintaining thiggey of casual online conversations such as
instant messaging or email [6].

1.2 Our Results

Our contributions in this paper begin with a protocol corapfbr creating ad-hoc-group signatures from any
collection of keypairs. We then present a new SHVZK protdopproving bilinear map pre-images, which
we use to enable Boneh-Franklin IBE [5], Waters IBE [27], @amenisch-Lysyanskaya signature [7]
keypairs within our compiler. We stress that these SHVZKarols are highly efficient, 3-round proofs
where each round involves at most one bilinear map computatirhe protocol compiler is also quite
efficient, as it adds comparatively little overhead to thelded proofs of knowledge.

Ad-Hoc-Group Signature Protocol Compiler. Our protocol compiler borrows heavily from Cramer et
al.’s proofs of partial knowledge [11] and includes a fewks from Abe et al.’s ring signature compiler [1].

Though our construction’s individual components are walllerstood, we believe this combination to be
both useful and novel. Our compiler takes inputs:

e messageM.
o pky,...,pk;_1,pk;\1,...,pk,, public keys, each with its own encryption or signature sohiem
e sk;, asecret key.

e for 0 < j <n, eitherll;, a Special Honest Verifier Zero Knowledge Proof of Knowlegdgetocol for
proving the secret key equivalent pf ;, or H;, a hash-and-sign algorithm compatible wjt;.

Proof of Knowledge of Bilinear Map Pre-Images. Consider the typical bilinear map setup, with groups
G andG,, of orderg and a non-degenerate, efficient, bilinear mapping funetian) from G; x G; to Gs.

We provide efficient SHVZK protocols for proving knowledgkaobilinear map pre-image. Givep € G-
andxz € Gy, our protocol proves knowledge afsuch thae(«, z) = Q. (We also provide similar protocols
for proving knowledge o&nypre-image tuple, or of a symmetric pre-image when one eXists

Proof of Knowledge of Bilinear-Map-based Secret Keys. Using this proof of knowledge protocol for
bilinear map pre-images, we present the natural proofs eivledge of secret keys for:

e Boneh-Franklin [5] identity-based keypairs wheree(pk, M PK) = e(sk,g). sk is the pre-image
againsty € GG; of the publicly computabl&) = e(pk, M PK).

e Waters [27] identity-based keypairswhere the secret key i = (51, .52) and, givenX a publicly
computable function of tha/ PK, e(S1,9) = Xe(S2, pk). PublishA = e(S1,g). Si is then the
pre-image ofd againsty, andS; the pre-image ofi/ X againstpk.

e Camenisch-Lysyanskaya [7] keypairsvherepk = (Py, P,), ande(Py, P») = e(sk,g). 1 sk is the
pre-image againgt of the publicly computabl€) = e(P, P»).

1.3 Related Work

Our construction relies heavily on Cramer et al.’s ProofBarttial Knowledge Protocol [11], which provides
the basis for the one-out-of-many group signature stractédditional tricks borrowed from Abe et al.'s
ring signature compiler [1] provide the ability to integrdtash-and-sign algorithm keypairs as well as full
separability, a concept first introduced by Camenisch archis [8].

While our construction is not exactly a ring signature, pyas ad-hoc-group signatures have been
implemented as rings, as first introduced by Rivest et al, [@4§l later adapted to identity-based keypairs
by Zhakim et al [28]. These signatures, including the one wasgnt, provide one implementation of
designated verifier proofsas introduced by Jakobsson et al. [17]. A similar cryptpbra construction
based on Jakobsson’s work is Naor's deniable signaturersefit8], including recent extensions [25, 26,
19]. Recently, Bellare et al. [4] created weaker ad-hoaxgrsignatures from general assumptions, such as
families of trapdoor permutations. (By weaker, we mean theyot allow for the broad key-hijacking that
we address.)

Note also that our new protocol for proving knowledge ofri@lr map pre-images is reminiscent of
Schnorr’s original discrete-log based protocol [23]. OWNZK proof of secret keys for Boneh-Franklin
keys effectively formalizes and proves the Hess identigda signature scheme [16]. Our signhature scheme
for Waters keys continues the identity-based signature&wegun by Shamir [24], first implemented by
Guillou and Quisquater [15], and recently summarized byaBelet al. [2].

1.4 Roadmap

In Section 2, we formally define our goals. In Section 3, wdaewvsome technical preliminaries and
notation. Our main construction is detailed in Section 4iclwltombines any key types that support: (1)
a SHVZK proof of knowledge protocol or (2) a Hash-and-Siggoakhm, into an ad-hoc-group signature.
Then, in Sections 5 and 6, we show how to achieve efficient SK'gbof of knowledge protocols for
Boneh-Franklin [5] IBE keys, Waters [27] IBE keys, and Cameh-Lysyanskaya [7] signature keys.

1The secret key was originally specified as the Pkig, (P1),log, (%)), but we observe that the above-specified secret key is
equivalent.

2 Definitions

Intuitively, an ad-hoc-group signature scheme is a methowlfich any user with a keypair can create a
signature on behalf of a group including himself and anymtisers with public keys. The important point is
that the public keys associated with these users may havedeserated according to different algorithms;
for example, one user may have an RSA encryption [20] keyphile another member may have a Hess
identity-based signature [16] keypair.

Notation: By negl(-), we denote a negligible function such that for all polyndsii#-) and all sufficiently
large integers:, negl(k) < 1/p(k).

Definition 2.1 (Ad-Hoc-Group Signature) Letn, i be positive integers such that< ¢ < n. Anad-hoc-
group signature scheniedefined as a set of algorithmgKeyGen,; } (1 ., GroupSign, and GroupVerify:

e KeyGen; produces a public key paiipk, sk), on input a security parametér’ .

e GroupSign produces a group signature, on input a set of public key®k, ..., pk,_1, pk; 1, ..., Pk, }
for n — 1 of the group members, a secret kgy for the remaining group member, and an arbitrary
string m.

e GroupVerify produces a verification bit (1 or 0), on inpat m, {pk;};c[1,,)- The resultis 1 if and
only if o is a valid group signature on messagefor the group designated by public keys;.

Correctness. We require that the usual property holds with probabilityeon
GroupVerify({pk } je(1,n, m, GroupSign(pky, ..., pk;_1, pkiy1, - - Pk, skiym)) = 1.
Security. We have two guarantees: (hforgeabilityand (2)signer-ambiguity

1. Unforgeable against adaptive chosen-message atféekuarantee that forgeries occur with no more
than negligible probability. A forgery is defined as a grougnsiture that passe&roupVerify, but
was not created by any of the group members. That is, for aitipe integers:, i, wherel < i < n,
all security parameterg”:, ... 1%», and all probabilistic polynomial-time (PPT) adversariagv,

Pr[(pky, sk1) — KeyGen,(1%),..., (pk,,, sk,) — KeyGen, (1%,
(m, o) = AV (fpk i}y)
GroupVerify({pk;}jei,n,m,0) =1 A m ¢ Q] < negl(min(ky, ..., ky)),

whereOGroupSign is an oracle that takes as input a messagand an index, and returns
GroupSign(pky, ..., pk;_1,0k;y1,- .., Dk, ski,m); Q is the set of messages querie®iGroupSign;
andmin(ky, ..., k,) represents the smallest security parameter.

2. Computational signer-ambiguitye guarantee that the original signer’s identity is conegbéven
if the secret keys of all group members are revealed. Thdbisall positive integersn, i, where
1 < <n,and all PPT adversarieddv,

Pr|(pky, sk1) — KeyGen, (151), ..., (pk,,, skn) — KeyGen,, (1%"),
m < Adv({(pkj> Skj)}je[l,n})>

4

P& (L)
0 GroupSign(pkl, cee 7p]€i—17 pki+17 cee 7pkn7 Skiy m)7
Yy — AdV(O‘,m, {(pkjv Skj)}je[l,n}) :
1
y=1] < - + negl(min(ky, ..., k,)).

If the above definition holds with respect to all infinitelywmoful adversarieAdv, we say that the
scheme is hagnconditionalsigner-ambiguity.

In the above definition and throughout this paper, we willydmd considering ad-hoc-group signatures
created by a single group member. One might also imagineeadytoup signatures created by a subset of
the group members. Our definition and construction can lEnded to those cases as well.

3 Number Theoretic Preliminaries and Notation
We briefly review some technical preliminaries which will lieed from this point on in the paper.

3.1 Bilinear Maps

Let Setup be an algorithm that, on input the security parameferoutputsy = (g, g, G1, G2, €), wheree

is a non-degenerate, efficiently computable bilinear mamitz; x G to G2, where bothG; andG, are
groups of prime ordeg = ©(2%), and whergy is a generator element 6t,. We assume that each group
element has a unique binary representation. More formallyy; x G; — G> is a function that is:

e Bilinear: for all g, h € Gy, for all a,b € Z,, (g%, h?) = e(g, h)?,
e Non-degenerateif g is a generator of7;, thene(g, g) generatess,, and
e Efficient computinge(g, h) is efficient for allg, h € G;.

By writing, G1 = (g), we mean thay generates+;. We recognize that, for some instantiations of the
mappings, it is more efficient to let: G; x G — G», whereG; andG are distinct groups of siz¢ Most
of our constructions will work in this setting as well.

3.2 Notation

By writing £ S, we denote that is chosen uniformly at random from a setBy writing P (A(z), B(y)),

we denote thaP is a protocol between two partieand3, whereA takes inputz andB takes inputy.
When discussing various proofs of knowledge, we will folldwe notation introduced by Camenisch

and Stadler [9] for proofs of knowledge of discrete logarth For example,

PK{(a,ﬂ) Ce(a,g) = X AR :Y}

denotes aZero-knowledge proof of knowledge of valueand 3 such thate(a, g) = X andh® = Y.
Greek letters denote values whose knowledge is being prewdle other parameters are public.

4 Our Construction

Our goal is to provide an efficient ad-hoc-group signatugmsihm that can “hijack” (i.e., combine) as
many different keytypes as possible. We begin this sectjoddscribing the broad classes of keytypes that
are eligible for use in our algorithm. As we shall see, thesdypes musefficientlysupport at least one of
two different types of protocols themselves. Then, we gueeathat the computations required to generate
and verify one of our ad-hoc-group signatures, beyond ngtinese individual protocols, is essentially
negligible. Thus, the complete signature scheme is alstiesdfi

5

4.1 Eligible Keytypes

A keytype mustefficientlysupport one of the following two protocols to be included i gonstruction:
(1) SHVZK Proof of Knowledge of Secret Key given the PublicyKer (2) a Hash-and-Sign algorithm.
By “efficient,” we mean that, for all keypairs of that type etihunning-times of all corresponding algo-
rithms are polynomial, and, more specifically, that the cotafions required to either create or verify the
proof of knowledge or the hash-and-sign values should beoat some small constant number (e.g., 6) of
exponentiations and/or bilnear pairings. The overallligntest is “is it fast enough to be used in practice?”

Property #1: SHVZK Proofs of Knowledge. For our purposes, a proof of knowledge is a three-round
protocol between a prové? and a verifier), where, for a given public keyk (and global information),
‘P convincesy that he knows the corresponding secret kky The three rounds are called the commit
challengecr, and the response The prover begins the protocol by sending

Loosely, we call such a scheme zero-knowledge if the vellifi@ns nothing in addition to being con-
vinced thatP knows sk. For our purposes, we will only need to considnest-verifierzero-knowledge
proofs of knowledge, wher® is honest-but-curious) always sends back a fresh random value for the
challengec. This makes it possible for a simulator to generate tupleb®form (¢, ¢, s) that are indistin-
guishable from conversations between an hofegtith sk) and an honesy.

Finally, we say that a protocol &pecial honest-verifier zero-knowled@@HVZK) if, given fixed public
parameters (including, in our cagg;), the transcript simulation can be performed by taking dmllenge
¢ and producing a valid commitmenand response, all under the same indistinguishability constraint.

Examples: A subsebf schemes with keytypes that support efficient SHVZK pradisnowledge follows.
(See the specific references for details on the system psenthis is just a quick review.)

| Scheme \ Keytype | (One) Eff. SHVZK PoK |
Waters IBE [27] pub info= (g, h, ¢°, g*) Section 5
sk = (h%¢g™", g") (for a randonv’)
Boneh-Franklin IBE [5] pub info= (g, 9%, ¢Y), sk = g*Y | Hess [16], Section 5

Hess IBS [16]

Cha-Cheon IBS [10]
Sakai-Ohgishi-Kasahara IBS [22]
Camenisch-Lysyanskaya Signatures [7] pk = (g, 9%, ¢¥), sk = g™V Hess [16], Section 5
Schnorr Signatures [23] pk = (y,y*), sk = x Schnorr [23]

El Gamal Encryption [14]
Cramer-Shoup Encryption [12]
Guillou-Quisquater IBS [15] pk = (N,e,z°mod N), sk = x | GQ [15]

Property #2: Hash-and-Sign. As described by AOS [1], we say that a keypgik, sk) has a hash-and-
sign algorithm if, together with an appropriate hash funrctl/ and trapdoor one-way functioR),;, (with
inverserjﬂl), the following algorithms are efficient:

Signing: On input(sk, m), computec = H(m, a), s = stfl(c), and output the signature = (s, «), for
an arbitrary stringy.

Verification: On input(pk, o), parses as(s, «), computec = H(m,) andd = Fy(s), accept ifc = d
and reject otherwise.

The security of such a scheme depends upon the inability atigarsary to comput&—! without sk.

Examples: One popular example in this category is the Full-domain RigAaure scheme [3].

4.2 The Ad-Hoc-Group Signature Construction

Many of the ingredients needed to hijack a variety of pubdiggairs for group signatures already exist. Our
contribution is two-fold. First, we provide a hybrid of twogvious ad-hoc-group signature schemes [11, 1]
which covers morsignaturekeypairs than either does individually. Along these limes also point out that,
while different signature schemes may share the same lkeyg/g., several IBS schemes [22, 16, 10] all
use the same keypairs), our construction can simply use tis¢ efficient corresponding algorithms known
(among those that are SHVZK proofs of knowledge of the sd>

Second, we broaden the scope of ad-hoc-group signaturensshgy includingencryptionkeypairs as
potential targets. We address certain technical diffiesifthat result: for example, in previous ad-hoc-group
schemes [11, 1] each keypair was required to be associategwash function that was necessary for the
ad-hoc-group construction. For some signature [7] andyption [14, 27] keys, such a hash function is not
inherently defined. Thus, we exert a little creativity tolute these types of keypairs as well.

As we said, our ad-hoc-group signature scheme is a hybridmékisting schemes: one due to Cramer,
Damgard, and Schoenmakers [11] (CDS) and a subsequent @mespd by Abe, Ohkubo, and Suzuki [1]
(AOS). Let us describe their relation to each other and ow seheme.

Combining CDS and AOS. In 1994, CDS [11] showed how to efficiently execute a proof aftial
knowledge; that is, for example, a protocol for proving, jresial honest-verifier zero-knowledge, that you
know either Alice’s secret key or Bob’s secret key. Such dqua has many uses, and the authors briefly
mention ad-hoc-group signatures as one possible applicafhey do not, however, deal explicitly with the
difficulties of constructing such a protocol when the keypaire heterogeneous, nor do they consider the
integration of SHVZK protocols with other mechanisms.

More recently, in 2002, AOS [1] provided an ad-hoc-groumaigre scheme that combines keypairs
which efficiently support either a hash-and-sign algorittma certain type of SHVZK proof of knowledge
(specifically ones where the zero-knowledge simulator wdmk generating the responsafter seeing the
challengec andthencomputes the commitment. The AOS scheme focused signaturekeypairs only.

In this work, we include all keypairs efficiently supportirgther any SHVZK proof of knowledge
protocol or a hash-and-sign algorithm. Thus, we providectionality which includes the union of that
of CDS [11] and AOS [1]. Furthermore, we go beyond their scapé includeencryptionkeypairs and
signature keypairs which are secure without random oracles

Details of Signing Algorithm (GroupSign): The inputis(pk,,...,pk; 1,0k, 1, ..., Dk, ski,m, info).
The index of the actual signerisn is the total number of group members,is an arbitrary bit string to be
signed, andnfo is some string containing information for the verifier (eagdescription of a hash function).
Furthermore s is the security parameter for member(These details are illustrated in Figure 1.)

1. For all group memberg= 1 to n, except signet, select a random string; from {0, 1}maX(’“1~~”“n).
This will serve as theaw challengefor member;.

2. Next, for each membegr(except:), map theraw challengevaluec; into thescheme-specifichallenge
valuec;- using the hash functiof/; such thatfd;(c;) = c;-. We assume that, for every type of keypair,
there is an efficient hash function mapping arbitrary sgit@gscheme-specifichallenge values; for
example, such a hash function for Schnorr signatures wouwd arbitrary strings to elements in
integers modulo a large primge The hash functior/; is specified concretely for the eventual verifier
of the signature by one of two methods: (1) it is specified at gfathe public keypk ;, or (2) its
description is appended to a stringfo. Of course, the verifier's confidence in the final signaturk wi

GroupSign(pky, ..., pki_1,0k; 1, - ., pky, ski, m, info)

@ C1 Ci—1 Ci+1

(t1,s1) - (tici,si-1) ti (tig1,Siv1)

@ C = Hash(t1,...,tn, m, info)
@ Ci:C@Cl@---@cifl@CiJrl@---@cn

@ o= ((t1,c1,81)s- -, (tn,Cn, Sn), m, info)

Figure 1: TheGroupSign Algorithm: a temporal view for a group of sizewith signer:.

be affected by the choice of this hash function; therefongrualent signer will choose well-known
(and standardized) hash functions for this purpose.

. For each member (excepti), compute a simulated proof of knowledge transcripj; c;, s;) given
c;- as input. This transcript may be completed by one of two nusthiepending on the properties
supported by its keypair. The method of its completion cambieated ininfo.

e SHVZK Proof of KnowledgeBYy definition, a SHVZK proof of knowledge has an efficient
algorithm for generating valid proof of knowledge tranptsiof the form(t;, c;-, s;), for a given
c;-. This is often (but not exclusively done) by selecting a mand;; and then computing the

corresponding ;.

e Hash-and-Sign AlgorithmThe observation that any hash-and-sign algorithm can bgewras
a SHVZK transcript is due to Abe et al. [1]. This is done asde®: choose a random value
from the appropriate range and sgt= Fyi(s;) + .

. Choose an appropriatgvalue for the actual signer

. ComputeC = Hash(ty,...,t,, m,info), whereHash : {0,1}* — {0,1}m&x(1kn) is @ hash
function whose description is appended to the enthfif.

. Compute the raw challenge for the actual signer, mem@sc; = C ®c1 B ... D cy.

. Compute the scheme-specific challenge for menlaerc, = H;(c;), where H; is the appropriate
hash function, whose description is appende¢hfo, as discussed in step 2.

. With knowledge ofsk;, compute the responsg to complete the transcript tuple;, ¢, s;). In the
case thask; is the trapdoor in a hash-and-sign algorithm, the tdple, s;) is formed as described
in step 3, witht; random, and;; = Fp‘kl(ti —d).

(2

8

9. Output the group signature= ({(t;,¢;,5;)}jcq,n, ™, info). Note thatc;'s are the raw challenges
(not the scheme-specific ones, which will need to be recomputdadgluerification). Furthermore,
the valuesn andinfo may optionally be omitted from.

Details of Verification Algorithm (GroupVerify): The inputis(pk,, ..., pk,,m, info, o). Parse the first
portion ofo as{(t;, ¢;, sj)}je[l,n].

1. Extract the description of the functidiash from info and compute&” = Hash(ty,. .., t,, m, info).
2. Check that the length @f and eaclry, ..., ¢, ismazx(ki, ..., k,) bits,and thall = ¢; & ... ® ¢,,.

3. Forj = 1ton, extract the description of functioH; from eitherpk ; or info. Computec; = Hj(c;).
According to the preference itnfo and the individual verification algorithm specified byfo or
pk;, verify that the triple(tj,c;-, s;) is either a valid SHVZK proof of knowledge tuple or a valid
hash-and-sign tuple.

There are many such possible algorithms for the SHVZK preoification (we will see some exam-
ples in Section 6). For the case of hash-and-sign, this gimpblves checking that; = F;(s;) +c;..

4. If all checks pass, accept; otherwise, reject. We noteahaerifier must further base his trust in
this signature on the quality of the hash functions, prodfsnowledge, and hash-and-sign schemes
included. Thus, a prudent verifier would only accept whems@fifunctions included are standardized
(e.g., SHA-256) and/or well-known (e.g., RSA hash-andksig

Theorem 4.1 The above ad-hoc-group signature scheme is correct, atigly unforgeable under adap-
tive chosen message attack, and unconditionally signdrgunous.

Correctness is by observation. The unconditional signdsiguity follows from the perfectly indistigu-
ishable transcripts that can be produced for either the SKWDof-of-knowledge or the hash-and-sign
protocols. The unforgeability is more involved; there wewhhat an adversary who can forge with
probability ¢ can be used to invert a trapdoor permutation or fake an SHV#Kegs with probability

W — negl(k), whereqy; is the number of queries the adversary makes to the hashdores-
Jj wide
sociated with the protocol we wish to break, ang, ., is the number of queries to the ad-hoc-wide hash

function. We provide more details in Appendix A.

5 Proofs of Knowledge of Bilinear Pre-Images

To hijack certain desirable bilinear-based keypairs, fhicl no previous efficient SHVZK or hash-and-sign
algorithms were known, we must first develop some tools: fsrobknowledge of bilinear pre-images.

We work in the common parameters model, where the globahpeteasparams = (q, g, G1, G2, €) are
obtained by running thetup algorithm on input the security parametér Letz € G, andQ, Q* € G, be
publicly known values, wher€ is any random value ity and@* = e(y, y) for somey € G1. We provide
the following novel proof-of-knowledge protocols, whicteall special honest-verifier zero-knowledge:

1. PoK of canonical bilinear pre-image @fwith respect tac: PK{(a) : e(a,) = Q}.
2. PoK of any bilinear pre-image @6}: PK{(«,3) : e(a,) = Q}.
3. PoK of the symmetric bilinear pre-image@f: PK{(«a) : e(a,a) = Q*}.

Each of these protocols naturally extends the Schnorr pobtor proving knowledge of a discrete
logarithm [23] into protocols for proving knowledge of cart pre-images of bilinear mappings. The first

9

P(params, Q, z,w) V(params, Q, x)
r &7, t=ce(g",x)
c c & ZLq
s =g e(s,x) z Q°t

Figure 2:Description of the HVZK proof of knowledge protoc®l.,.o»i..; for showing knowledge of the canonical
pre-image ofQ with respect to element (i.e.,w € G; such that) = e(w, x)). First, the prover sends= e(¢", x)

as a commitment to a random valgiee G, . Next, the verifier issues a random challerge Z,,. Finally, the prover
responds withs = w°g". The verifier accepts if and only if(s,2) = Q°t. Note that the prover need not know the
value ofr during this protocol; it is enough to knoy?, which can be selected at random fréh.

protocol is the only tool we will use to in Section 6 to effidignprove knowledge of several different
keypair types. Thus, for space reasons, we include onlyistepfiotocol here and include the second two in
Appendix B.

5.1 Proving Knowledge of the Canonical Pre-image of a Biline Mapping

For global parametergarams = (q, g, G1, G2, e) and any values € G; and@ € Go, thecanonicalpre-
image of@ with respect to the bilinear mappirgnd element: is the valuex € G; such thak(a, z) = Q.
We provide a protocol.....nicar IN Figure 2 for proving knowledge of theanonicalpre-image ofQQ with
respect to the bilinear mappirgand element; that is:

PK{(a): e(a,z) = Q}.

Observe that protoc,q;,onica; als0 Works smoothly for mappings of the fokem Gy x G — Gs. This
protocol generalizes a protocol proposed by Hess [16] (adartity-based signature scheme), which was
proven secure by Dodis et al. [13].

Lemma 5.1 Protocol 7..,.onicar 1S @ Special honest-verifier, zero-knowledge proof of kedgé of the
canonical pre-image of) with respect to the global parametepgrams = (q, g, G1, G2, e) and element:.
(Proof in Appendix B.1.)

6 Bilinear-Map Keypair Types

Recall that our goal is to construct an ad-hoc-group sigeattom as many key types as possible. In
particular, we are interested in including identity-bageg types, since we conjecture that they have the
best chance of seeing wide-spread use. We now use the pihaofwiedge from Section 5.1 to form efficient
SHVZK proofs of knowledge of the (user) secret key for the deminant IBE schemes, Boneh-Franklin [5]
and Waters [27], and for the Camenisch-Lysyanskaya [7jsiges.

6.1 Boneh-Franklin IBE Keypairs

The keypairs for the master authority and the users in theeBdtranklin [5] identity-based encryption
scheme are also used by a variety of identity-based sighathremes [22, 16, 10]. Thus, by providing
a SHVZK proof of knowledge protocol for these user secreskeye include keypairs published for sev-
eral distinct schemes in our ad-hoc-group signature cactgtn. This protocol is actually identical to one
proposed by Hess [16], although the proof that it is a full S\proof of knowledge is new.

10

Setup On input the security parametéf, run the bilinear map generation algorith®atup(1¥) —
(¢,9,G1,Go,e) = params. Select a hash functio’ : {0,1}* — G;. Select a random element
s € Zq. Output the master public key/ PK = (q,9,G1, G2, e, H, g°) and store the master secret
key MSK = (MPK,s).

User Keypair: On input an identity/ D € {0, 1}*, the master computes the secret key for identity as
SKip = H(ID)?®, where anyone can compute the corresponding publidik&y, = H(ID).

SHVZK Proof of Knowledge Protocol of SK;p: On common inpufM PK andI D, where the proveP
has additional inpus K;p, the proverP and verifierV:

1. both locally compute the valug = e(¢*, PK1p).
2. execute th@ ., onica(P(params, Q, g, SKrp),V(params, Q, g)) protocol from Section 5.1.

Let us explain why the above protocol works. The prover isipaisked to prove knowledge of the
canonical pre-image @) = e(g®, PK;p) with respect to element There is only one solution for this and
itis SK;p = H(ID)® = (PK;p)®. Interestingly, when one views the valli I D) asg® for someb € Z,,
it becomes apparent that the above identification protacatiually proving knowledge of thmompletion
of a DDH tuple inG;. To see this, note that we have public valyeg®, H(ID) = g*, and the prover must
show that he knows the valug® = H(ID)*. Thus, for anyg, X,Y € G, we have the following proof
protocol: PK{(«a) : X = g* NY = g¥ ANa = g"¥}.

Theorem 6.1 The above scheme is a SHVZK proof of knowledge protocol iratttom oracle model.

The above result follows from Lemma 5.1. We also note in pgsitiat the above protocol can be turned
into aregular signature scheme by applying the extended Fiat-Shamiistiewlue to Bellare et al. [2].

6.2 Waters IBE Keypairs

We now provide a SHVZK proof of knowledge protocol for usecrse keys in the Waters [27] identity-
based encryption scheme. This is the first such scheme fee teypairs. The technical difficulty is that
there is an exponentially-large set of secret keys corredipg to any specific public key: as we shall see
shortly the secret keys are a pair of the forAB", ¢") for an arbitrary value of. Thus, the goal is to prove
knowledge of a pair of values satisfying a certain relatigmao each other and the public values, rather
than proving knowledge of a specific value.

We note that this technical difficulty seems to prevent thegration of Waters keys into the AOS
protocol compiler. Thus, one notable advantage of our sehaver AOS is its ability to include this new

keypair type.

Setup: On input the security parametef, run Setup(1¥) — (q,g,G1, G2, e). Select random elements
h,u',ui,...,u, < Gy. Select a random elemeste Z,. Output the master public key/ PK =
(q¢,9,G1,Ga,e,h,u’ uq, ..., uy,,g°) and store the master secret kky)SK = (M PK, h®). (Note
that this scheme supports IDs of lengtle poly(k).)

User Keypair: On input an identity’ D € {0, 1}*, the master computes the secret key for identity by
selecting a random € Z, and outputtingSK;p = (h*F(ID)",g"), where the function'(I1D) =
u’ [1;p,—1 wi- Anyone can compute the corresponding public Kdy;p = F(ID).

SHVZK Proof of Knowledge Protocol of SK;p: On common inpufM PK andI D, where the proveP
has additional inpub K;p = (51, S2), the proverP and the verifiel:

1. both locally computeX = e(g®, h), whereg®, h € M PK.

11

2. P simultaneously sends the valueA = e(S1, g) with the first messages of the procotols:
Py = Teanonical(P(params, A, g, S1), V(params, A, g))
Py = Teononical(P(params, A/ X, PK p, S2),V(params, A/ X, PK1p))

Intuitively, the prover is simultaneously showing:
PK{(O[,ﬁ) : e(Oé,g) = Xe(ﬁ>PKID)}‘

3. Vissues a challenge that can be parse@:as:).
4. P jointly sends the response of protoddl on challenge:; with that of protocolP, on challenge
Co.

This protocol requires more creativity than the previous for Boneh-Franklin keys, because Waters’
user secret keys can be re-randomized. Thus, the proveramughce the verifier that he knows a pair of
valuesof a certain form rather than a fixed value. Proof of the following theoremessp in Appendix C.

Theorem 6.2 The above scheme is a SHVZK proof of knowledge protocol.

6.3 Camenisch-Lysyanskaya Signature Keypairs

The Camenisch-Lysyanskaya (CL) [7] sighatures supportiatyaof efficient protocols, which have allowed
construction of anonymous credentials, electronic casthp#her interesting schemes. If any user publishes
a CL keypair, then that keypair can be hijacked for our addpouip signature purposes. We describe these
key types followed by a SHVZK proof of knowledge protocol tbhese secret keys.

Setup On input the security parametéf, run the bilinear map generation algoritrGetup(1%) —
(q,9,G1,Ga,€) = params.

User Keypair: On input the system parametergrams, select random elementsy € Z, and output the
keypairPK = (g%, ¢Y) andSK = ¢g"V.

SHVZK Proof of Knowledge Protocol of SK: On common inpuparams and PK, where the proveP
has additional inpu K, the proverP and verifierV:

1. both locally compute the valug@ = e(g”, g¥).
2. execute th@ ., onica(P(params, Q, g, SKrp),V(params, Q, g)) protocol from Section 5.1.

Theorem 6.3 The above scheme is a SHVZK proof of knowledge protocol.

7 Conclusion

The purpose of an ad-hoc-group signature is to help a sigmearaedibility while maintaining a certain
degree of anonymity. The signer may be trying to leak a sdooet an in-the-know committee, or to
achieve designated-verifier signatures with a sendefieesignatory group. An ideal ad-hoc-group signa-
ture scheme will allow such a signer to proceed in the faceinimal or often inexistent cooperation from
other group members.

In this paper, we presented a scheme that allows a signeetalust any pre-existing cryptographic
setup to serve in the creation of such a signature. Thisiegisetup need not be group-signature specific:
if a user publishes just about any kind of public key, it carhid@cked for the purposes of constructing a
group signature that includes that user. We illustratedsthength of this approach by presenting specific
methods to integrate bilinear-map-based keypairs in thisrme.

Our scheme makes it easy to establish an anonymity-pregeauthentication mechanism in the face of
adversity. We have yet to identify a practical keypair thatrmot be integrated in our scheme.

12

Acknowledgements. We thank Brent Waters for useful discussions about his IBEes®. We also thank
Steve Weis for comments on an earlier version of this paper.

13

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-ofi signatures from a variety of keys.
In Yuliang Zheng, editorAdvances in Cryptology — ASIACRYPT,®@2lume 2501 olLNCS pages
415-432. Springer Verlag, 2002.

Mihir Bellare, Chanathip Namprempre, and Gregory Nev@&ecurity proofs for identity-based identifi-
cation and signature schemes. In Christian Cachin and Jae@sch, editorshdvances in Cryptology
— EUROCRYPT '04volume 3027 oL NCS pages 268-286. Springer Verlag, 2004.

Mihir Bellare and Phillip Rogaway. Random oracles araqgpical: A paradigm for designing efficient
protocols. INACM Conference on Computer and Communications Securitpj@ages 62—73, 1993.

Mihir Bellare, Haixia Shi, and Chong Zhang. Foundatiafigjroup signatures: The case of dynamic
groups. INCT-RSAvolume 3376 of LNCS, pages 136-153, 2005.

Dan Boneh and Matt Franklin. ldentity-based Encryptioom the Weil Pairing. SIAM Journal of
Computing 32(3):586-615, 2003.

N. Borisov, I. Goldberg, and E. Brewer. Off-the-recorohtmunication, or, why not to use PGP. In
WPES '04: the 2004 ACM workshop on Privacy in the electropitiety, pages 77-84. ACM Press,
2004.

Jan Camenisch and Anna Lysyanskaya. Signature schemlesn@nymous credentials from bilinear
maps. InAdvances in Cryptology — CRYPTO 208d4lume 3152 ofLNCS pages 56-72. Springer
Verlag, 2004.

Jan Camenisch and Markus Michels. Separability andieffay for generic group signature schemes.
In Advances in Cryptology — CRYPTO ;9%®lume 1666 of LNCS, pages 413—430, 1999.

Jan Camenisch and M. Stadler. Efficient group signatahemes for large groups. KWdvances in
Cryptology — CRYPTO 'Q&olume 1296 of LNCS, pages 410-424, 1997.

Jae Choon Cha and Jung Hee Cheon. An Identity-Basedtsignfrom Gap Diffie-Hellman Groups.
In Y.G. Desmedt, edito?KC 2003 volume 2567 of.NCS pages 18-30. Springer-Verlag, 2003.

Ronald Cramer, lvan Damgard, and Berry Schoenmakemof$of partial knowledge and simplified
design of witness hiding protocols. Advances in Cryptology — CRYPTO ;9%lume 839 of LNCS,
pages 174-187, 1994,

Ronald Cramer and Victor Shoup. A pratical public keyptosystem provably secure against adaptive
chosen ciphertext attack. KWdvances in Cryptology — CRYPTO ;9%lume 1642 of LNCS, pages
13-25, 1998.

Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Motnyu Strong key-insulated signature
schemes. In Y. Desmedt, editd?KC 2003 volume 2567 ofLNCS pages 130-144. Springer Ver-
lag, 2003.

Taher El Gamal. A Public Key Cryptosystem and a Sigreafscheme Based on Discrete Logarithms.
In Advances in Cryptology — CRYPTO ;8§#hges 10-18, 1984.

Louis C. Guillou and Jean-Jacques Quisquater. A “pawmal” identity-based signature scheme re-
sulting from zero-knowledge. In Shafi Goldwasser, ediéatyances in Cryptology — CRYPTO ;88
volume 403 ofLNCS pages 216-231. Springer Verlag, 1988.

[16] Florian Hess. Efficient identity based signature schern pairings. In K. Nyberg and H. Heys,
editors,Selected Areas in Cryptography — SAC,’08lume 2595 oL NCS pages 310-324. Springer
Verlag, 2002.

[17] Markus Jakobsson, Kazue Sako, and Russell Impaglia2esignated verifier proofs and their appli-
cations. In Ueli Maurer, editoAdvances in Cryptology — EUROCRYPT,'96lume 1233 oL NCS
Springer, 1996.

[18] Moni Naor. Deniable ring authentication. Rroceedings of Advances in Cryptology — CRYPTQ '02
volume 2442 oL NCS pages 481-498. Springer, 2002.

[19] Mario Di Raimondo and Rosario Gennaro. New approacbeddniable authentication. Morkshop
on Provable Security2004.

[20] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A huet for obtaining digital signatures and
public-key cryptosystemsCommunications of the ACNM1(2):120-126, February 1978.

[21] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How tklaaecret. In Colin Boyd, editoAdvances
in Cryptology — ASIACRYPT 'Q%olume 2248 oL NCS pages 552-565. Springer Verlag, 2001.

[22] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystenmsetheon pairing. IrProceedings of the
Symposium on Cryptography and Information Security — SG08, 2000.

[23] Claus-Peter Schnorr. Efficient Signature GeneratippS8imart CardsJournal of Cryptology4(3):161—
174, 1991.

[24] Adi Shamir. Identity-based cryptosystems and sigmatchemes. In George Robert Blakley and
David Chaum, editorsidvances in Cryptology — CRYPTO ,8®6lume 196 ofLNCS pages 47-53.
Springer Verlag, 1985.

[25] Willy Susilo and Yi Mu. Non-interactive deniable ringggatures. Irthe 6th International Conference
on Information Security and Cryptology (ICISC) Q#ages 397—412, 2003.

[26] Willy Susilo and Yi Mu. Deniable ring authenticatiormsited. InApplied Cryptography and Network
Security (ANCS) '04volume 3089 of LNCS, pages 149-163, 2004.

[27] Brent Waters. Efficient Identity-Based Encryption Witit Random Oracles. ikdvances in Cryptol-
ogy — EUROCRYPT 'Q%olume 3494 of LNCS, pages 114-127, 2005.

[28] Fangguo Zhang and Kwangjo Kim. ID-Based Blind Signatand Ring Signature from Pairings. In
Yuliang Zheng, editorAdvances in Cryptology — ASIACRYPT ,@®lume 2501 ofLNCS pages
533-547. Springer Verlag, 2002.

A Proof Sketch of Main Construction
Due to space limitations, we will only sketch the proof of dhem 4.1.

Proof sketchThe correctness property is fairly straight-forward.

For unconditional signer-ambiguity, observe that, in thedom oracle model, all raw, and thus all
scheme-specific challenge valugg-sare distributed uniformly at random. Given this fact, we \krioy the
definition of special honest-verifier zero-knowledge tlnat transcriptt;, c;, s;) produced as part of the
signature are perfectly indistinguishable from those d@nasigner would produce. For the case of hash-
and-sign algorithms, note that was chosen uniformly at random and by virtue of being a peatiurt
Fyi(s5) is also distributed uniformly at random. Since befrand I, (s;) are independently random, so is
the valuet; = Fyi(s;) + ¢}, exactly as a honest signer would create it. Finally, we ofesthat the XOR
secret sharing scheme we employ obviously reveals nottiogtahe actual signer, sin€eis also random.

The unforgeability of the scheme under adaptive chosenagesattack has two distinct parts: either
the adversanAdv can be used to invert the trapdoor one-way function assmtiadth a hash-and-sign
algorithm orAdv can be used to fake interactive SHVZK proof of knowledge &f secret key of some
scheme. Suppose the total success probabilitAderis =.

The security game requires thatlv be provided with a list of public keygk,, ..., pk, as well as
access to a signing oracle for messages of the adversanjtsechVe thus concodidy’, an adversary that
will use Adv as a black box to either (1) invert a trapdoor permutation2pisuccessfully act as a prover
in an SHVZK protocol for a secret keyAdv’ generateok,, ..., pk,_, with corresponding secret keys.
The last public keyk,, is set to bepk’, the public keyAdv' is trying to “break.” Note thaf\dv’ can easily
simulate theOGroupSign oracle forAdv, since it has at least one of the secret keys and can thusiperfo
real ad-hoc-group signatures on demand. The signer-aibbfgoperty ensures thdtdv cannot determine
which secret keyAdv' is using. Note also that, given the Random Oracle modié¥, can set the output
value of any call fromAdv to the random oracles.

We consider that, whetheit’ is a hash-and-sign or a SHVZK ke#dv’ will break them in the same
way: by acting as the prover in(a c, s) protocol. In the SHVZK case, this is obvious. In the hash-sigad
case, this is done via the usual AOS approads:random, and = F~1(t — ¢), wherec = H(c) where
H is the scheme-specific hash function modeled as a randarteoBeing able to act as the prover in such
a protocol trivially implies breaking the one-wayness @& trapdoor permutation.

Now, let us describe the way in whidkdv’ can perform dt, ¢, s) proof by usingAdv as a black box.

1. AdV’ sendsAdv the valuespk,, .. ., pk,,. (in a detailed proof, the index position of the algorithm to
break should be randomized so it isn't alway)s

2. Adv makes request§ for signatures, whictAdv’ can easily answer, since it has at least one of the
secret keys.

3. For some timeAdv’ responds to all Random Oracle queries (either schemefigpecithe ad-hoc-
wide random oracle) with random values.

4. At a certain pointAdv’ decides that a query it receives destined for the ad-hoe-veiddom oracle is
“the real one,” from which it extracts, and sends it to the external verifier.

5. AdV' receives, from the external verifier.

6. From that point onAdv’ picks one of the queries destined for schemserandom oracle as “the real
challenge query,” and returns, to Adv on that one. All other queries are answered with random
values.

7. EventuallyAdv outputs a forged signature, from whigrlv’ extractss,,, which it sends out to the
external verifier.

Note that, in the final forged signature, there must be, wittn@helming probability, at least orje ¢, s)
triple for which the first call to the appropriate random deaeith valuec cameafter the call the to ad-hoc-
wide random oracle with valug$, ... ,t,). Otherwise Adv is able to predict the output of one of those
two random oracles. We call these triples th-queried triples.

Thus, Adv’ succeeds if it picks the right random oracle query from whizlextractt,, and the right
random oracle query into which to inject. Also, for Adv’ to succeed, thét, c, s) triple that corresponds
to the key it is trying to break must be one of the late-quetigides (possibly the only one). Finally, it is
conceivable, though highly unlikely and, in fact, negligibrobable, thatAdv could forge a query without
ever querying the ad-hoc-wide random oracle on the sgt of . , ¢,,, or one of the scheme-specific random
oracles on that scheme’s corresponding

Thus, if Adv succeeds at forgery with probability thenAdv’ succeeds at faking an SHVZK proof or
inverting a trapdoor permutation with probabll%g— —negl(k). nis the size of the grougy,, is the

number of scheme-specific random oracle queries f8r theoraratacle of the attacked scheme, anrd
is the number of random oracle queries to the ad-hoc-widdoraroracle.

wide

g

B Proofs of Knowledge of Bilinear Pre-images and Their Secuty

B.1 Proving Knowledge of the Canonical Pre-image of a Bilinar Mapping
We now prove Lemma 5.1.

Proof. We first show thatZ..,onica; 1S @ proof of knowledge, and then show that it also has theialpec
honest-verifier zero-knowledge property.

For 7 ..onical 10 be a proof of knowledge, there must exist a PPT extrattbiat, after interacting with
any proverP which can convince an honestto accept with probability> 1/poly(k), can produce the
witnessw with probability > 1/poly(k). £ works as follows:

1. execUteZ ,,onica; With P exactly as an honest would to obtain the transcrigty, c1, s1);

2. rewind P until just after it sendg; and reply with a new random challenge, and receiveP’s
responses, to obtain the transcriptt, c2, s2). If an hones®’ would have accepted these transcripts,
then& now holds the values;, = w°t; andsy = wty, wherec; # co, and thusE can compute the
witness as

(81/32)1/(01—02) — (wcltl/wc2t1)1/(cl_c2) — (wcl—cz)l/(cl—CQ) = w.

Thus,P must know the witness.

(To see this, consider that on inpigt g%, g°), one sets = ¢ for a randomr € Z, andQ = (g%, ¢*),
and then carries out the proof with a cheating prover. Whemiitnessw is extracted, as above, it must be
the case that™ = ¢ sincee(w, z) = Q.)

For T.anonical t0 be a special honest-verifier zero-knowledge proof, tineust exist a PPT simulator
S that can simulate a prover for any honéswithout knowing the withess. The “special” aspect of
the simulation implies that, given a randammessageS can produce a tripl€t, ¢, s) with the proper
distribution. By sayingV is honest, we mean that has a fixed random tape from which he selects his
challengessS works as follows:

P(params, Q, w1, ws) V(params, Q)
2
x,T & ZLq (ti,t2) = (@, Q")
¢ il ZLq
(w’l,wé,s) = (w“f,w%’,yc%—r) (1) e(w/17wl2) ;tl
L
(2) Q° = tits
?
B)t1#1

Figure 3:Description of the HVZK proof of knowledge protoc®j,,,, for showing knowledge of any pre-image of
Q (i.e.,wy,wy € Gy such tha) = e(wy,ws)). First, the prover sends = QY andt, = Q", wherex, r are random
values inZ, andy = z? (mod ¢). Next, the verifier sends a random challenge Z,. Finally, the prover responds
with w] = w¥, wy, = w§, ands = yc + r. The verifier accepts if and only if the following relationslé: (1)
e(wy, wy) =11, (2) Q° = tit2, and ()t1 # 1.

1. send an arbitrary value (@, wait for } to send a challenge
2. pick a randons € Gy, computet = e(s, x)/Q°

3. rewindV, sendt as the first message, ards the response #'s challenge. Sinc& is honest and
its random-tape is fixed, he will send the same challerged thus accept the transcriptc, s). One
can observe that this simulation produces perfectly 8isted transcripts.

B.2 Proving Knowledge ofany Pre-image of a Bilinear Mapping

For global parametergarams = (g, g,G1,G2,e) and any valug) € G5, we provide a protocalyy,, in
Figure 3 for proving knowledge @ny pre-image of) with respect to the bilinear mappirgthat is:

PE{(e,) : e(, B) = Q}-

This is a generalization of the canonical pre-image prdtoEbough slightly less efficient, this protocol is
interesting because, unlike the previous one, there arg passible withesses.

Observe that protocdl,,,, also works smoothly for mappings of the form G x G — G,. Fora
witness indistinguishable proof of knowledge, the proverlyrsimply choose a randome Z; and send

the verifier(wg, w;/). However, this has the potentially negative side-effegirokiding the verifier with a
valid pre-image of). Thus, we achieve something strongefiy,,.

Lemma B.1 Protocol 7,,, is an honest-verifier, zero-knowledge proof of knowledge jofe-image of?)
with respect to the global parameteparams = (¢, g, G1, G2, ¢) under the Bilinear One-Way Assumption;
that is, given(params, Q) for arandom@ € G, itis hard to compute any, y € G such thake(z,y) = Q.

Proof. We first show that/,,, is a proof of knowledge, and then show that it also has the stareifier
zero-knowledge property.

For 7., the proof of knowledge extractér works as follows: (Step 1) execut&,,, with 7 exactly
as an honesy would to obtain the transcrigt(ty, t2), ¢, (w1, w2, s)); (Step 2) rewindP until just after it
sends(ty, t2) and reply with a new random challenge and receiveP’s response to obtain the transcript

P(params, Q,w) V(params, Q)

x,r il ZLq (t1,t2) = (QIQ>QT)
¢ c & ZLq
(w',s) = (W yc+r) (1) e(w', w') Lt
(2) Q° = t5ts
(3)t1 #1

Figure 4:Description of the HVZK proof of knowledge protoc®},,,,, for showing knowledge of a symmetric pre-
image ofQ (i.e.,w € G; such that) = e(w, w)). P andV follow the 7, protocol; except in round thre®, only
sends two values’ = w”® ands = yc+r, andy accepts if and only if the following relations hold: @', w’) = ¢4,

(2) Q° = t5ty, and (3)t1 # 1.

((t1,t2), ¢, (w),wh, s")). If an hones® would have accepted these transcripts, tieow holds the values
s = yc+rands’ = ycd + r, wherec # ¢/, and thus€ can recover the valugas(s — s')/(c —) = y.
Next, £ computese as the square root gfmodulog. Finally, £ can output the Witnes(:w}/x, w;/“’). Thus,
P must know a witness, or she breaks the Bilinear One-Way Apiam

For 7.y, the honest-verifier zero-knowledge simulatoworks as follows: (Step 1) select random
valuesa,b € G; andd € Gy, send toV the pair of valuegt; = e(a,b),d), and wait forV to send a
challengec; (Step 2) pick a random € G1, computet, = Q°/t{; (Step 3) rewindV to the beginning,
send(t1, t2) as the first message, ara@s the response #'s challenge. Sinc® is honest, he will send the
same challengeand thus accept the transcrift, t2), ¢, s). One can observe that this simulation produces

perfectly distributed transcripts. O

B.3 Proving Knowledge of the Symmetric Pre-image of a Bilinar Mapping

For global parametergarams = (q, g, G1, G2, e) and special values d¥ € G,, whereW is of the form
e(g,g)a2 for somea € Z,, the above protocol can be adjusted to become a prothgel in Figure 4 for
proving knowledge of theymmetriqore-image of) with respect to the bilinear mappirgthat is:

PK{(a):e(a,a) =Q}.

Lemma B.2 Protocol 7, is an honest-verifier, zero-knowledge proof of knowledgbhesymmetric pre-
image of@ with respect to the global parameteparams = (q, g, G1, G2, ¢) under the Bilinear One-Way
Assumption.

C Proof for Waters IBE Keypairs
We now provide proof of Theorem 6.2.

Proof. We first show that the protocol is a proof of knowledge; we taasgue that it is also special honest-
verifier zero knowledge.

The proof of knowledge extract@r works as follows: (Step 1) execute the protocol withexactly as
an hones® would to obtain the transcrif{ A, ¢1, t2), (c1, ¢2), (j1,j2)); (Step 2) rewindP until just after
it sends(A4, t1,t2) and reply with a new random challengé ,), and receiveP’s response to obtain the

transcript((A, t1,t2), (¢},), (41, 75)). 1f an honesty would have accepted these transcripts, tHezan
extract the witness (i.e., user’s secret key) as follows.

Sincec; # ¢} andey # ¢, £ can recover secret ké;, Sy) as(ja/75)Y(2=¢) = Sy and(jy /1) '/ 1=V
= S5. Thus,P must know the secret key.

The special honest-verifier zero-knowledge simulaoworks as follows: (Step 1) select a random
valuer € Z, andt),ty € G2, computeA = e(g°, h)e(g, f(ID))" (whereg® andh are part ofM PK),
and send to’ the tuple(4,t},t,), and wait forV to send a challengg;, c2); (Step 2) pick two random
valuesj, jo € G1, computet; = e(j1, f(ID))/(A/X) andty = e(j2,9)/A%; (Step 3) rewind) to the
beginning, sendA, ¢1,t2) as the first message, afg, j2) as the response d's challenge. Sincé’ is
honest, he will send the same challerigg, c2) and thus accept this conversation. Again, we observe that
the transcripts produced I8y are perfectly distributed. This follows in part from thetféltat a real prover
can randomize his witnes&® f(ID)", g") as(h*f(ID)" f(ID)" ,g"g"") = (h*f(ID)"t"" ¢ *"") for any
value of(r + ') € Z,. Thus,anyrandom value fronZ, used byS to createA in step one is valid and from
the correct distribution. O

