
Ad-Hoc-Group Signatures from Hijacked Keypairs

Ben Adida∗ Susan Hohenberger∗,† Ronald L. Rivest∗

June 24, 2005

Abstract

Ad-hoc-group signatures enable an individual to sign on behalf of a group without requiring prior
group membership setup. Such signatures are used to providecredibility – the signer must be one of the
group members – combined with some degree of anonymity – the identity of the signer within the group
cannot be determined. Thus, in many instances, other group members might not cooperate in the creation
of such a signature. They may even wish to interfere with its creation, refusing to generate keypairs of a
form that might facilitate such activity.

We present a combination of techniques for efficiently coercing any user into an ad-hoc signatory
group, using only that user’s public key. This public key maycorrespond to almost any signature or
encryption scheme, as long as there exists an efficient Special Honest Verifier Zero Knowledge Proof
of Knowledge protocol for the secret key, or, alternatively, a hash-and-sign algorithm for that keypair
type. Our approach effectively hijacks any public key for the purpose of building an ad-hoc group
signature. We also present a new proof protocol that enables, within our framework, the hijacking of
Boneh-Franklin and Waters identity-based encryption keys, as well as Camenisch-Lysyanskaya signature
keys.

1 Introduction

Ad-hoc-group signatures allow a signer (Alice) to produce adigital signature for a messageM such that a
verifier can confirm thatM was signed bysomeonefrom the list of “ad-hoc group” members included with
the signature, but nothing more. Alice specifies the ad-hoc-group (which must include herself) when she
signs the message; there is no prior setup or group manager needed.

We note that the other members of the ad-hoc-group don’t needto be aware of Alice’s signing activities,
or even to give Alice permission to include them in the ad-hoc-group. They may even disagree with or
resent Alice’s activity, and, most likely, they have taken no steps to facilitate Alice’s use of ad-hoc-group
signatures. The question asked in this paper is: under what conditions can Alice rope other parties into
“participating” in her ad-hoc-group signature?

As we shall demonstrate, Alice has rather broad power to induct others into her ad-hoc group. In general,
Alice can get Bob into her group if Bob is using more-or-less any kind of public-key encryption or signature
scheme. Merely knowing Bob’s public key enables Alice to gethim to be a “co-signer.” Even if Bob’s
public key is intended only for encryption, Alice can usually hijack his key anyway.

This paper presents a protocol compiler for handling heterogeneous key types within a single ad-hoc-
group signature. As an example, we show how to handle public keys for two types of identity-based en-
cryption schemes and one type of clasical signature scheme,all based on bilinear maps, using new proofs of
knowledge of the corresponding secret keys.

∗Computer Science and Artifical Intelligence Laboratory; Massachusetts Institute of Technology; 32 Vassar Street; Cambridge,
MA 02139, USA. Email:{ben,srhohen,rivest}@mit.edu.

†Supported by an NDSEG Fellowship.

1

1.1 Motivating Applications
An ad-hoc-group signature allows Alice to gain some credibility from demonstrable group membership,
while maintaining anonymity within that group. Two immediate applications arise from this technique: the
leaking of secrets from a committee, and one type of construction of designated-verifier signatures.

Leaking Secrets. Imagine that Alice is a cabinet member, and that she wishes to“leak” a documentM
to the press, so that it is verifiably authentic but so that sheis not obviously the source. She can do this by
signingM with an ad-hoc-group signature, where the ad-hoc group includes all cabinet members and other
senior government officials (including herself, of course).

A journalist can verify the signature and determine thatM was, in fact, signed by some senior govern-
ment official, but he cannot identify the actual signer within that group. The journalist can safely report, “A
senior government official has supplied the following document, which says ...” without fear of being forced
to reveal his source (because he can’t).

(Depending on your political views, you may or may not approve of this application. Nonetheless, it is
interesting, and was a motivation for Rivest et al.’s development of ring signatures [21].)

Designated-Verifier Signatures. When Alice sends a messageM to Bob, she may want to prove the
message’s authenticity in a more private manner than by applying a publicly verifiable signature toM.
Specifically, Alice may not want Eve, a third party, to be ableto verify Alice’s signature onM. This concept,
introduced by Jakobsson et al [17], is calleddesignated-verifier signatures: Alice effectively designates Bob
as the sole verifier of her signature.

Alice can construct a type of designated-verifier signatureusing a carefully crafted ad-hoc group. Alice
will designate a two-person ad-hoc group including herselfand Bob, her intended recipient. Upon receipt of
such a signature, Bob can be certain that Alice was the signer, as he knows that he himself did not produce
this signature. However, Bob is unable to prove this fact to anyone else, since others may simply believe he
is trying to frame Alice.

Using such a system, Alice effectively gains “repudiability:” if Bob reveals their conversation to a third
party, Alice can plausibly deny any knowledge of such communication. It has been noted in the literature
that such a property is quite important for maintaining the privacy of casual online conversations such as
instant messaging or email [6].

1.2 Our Results
Our contributions in this paper begin with a protocol compiler for creating ad-hoc-group signatures from any
collection of keypairs. We then present a new SHVZK protocolfor proving bilinear map pre-images, which
we use to enable Boneh-Franklin IBE [5], Waters IBE [27], andCamenisch-Lysyanskaya signature [7]
keypairs within our compiler. We stress that these SHVZK protocols are highly efficient, 3-round proofs
where each round involves at most one bilinear map computation. The protocol compiler is also quite
efficient, as it adds comparatively little overhead to the included proofs of knowledge.

Ad-Hoc-Group Signature Protocol Compiler. Our protocol compiler borrows heavily from Cramer et
al.’s proofs of partial knowledge [11] and includes a few tricks from Abe et al.’s ring signature compiler [1].
Though our construction’s individual components are well understood, we believe this combination to be
both useful and novel. Our compiler takes inputs:

• messageM.
• pk1, . . . , pk i−1, pk i+1, . . . , pkn, public keys, each with its own encryption or signature scheme.
• sk i, a secret key.

2

• for 0 ≤ j ≤ n, eitherΠj , a Special Honest Verifier Zero Knowledge Proof of Knowledgeprotocol for
proving the secret key equivalent ofpk j , or Hj, a hash-and-sign algorithm compatible withpk j .

Proof of Knowledge of Bilinear Map Pre-Images. Consider the typical bilinear map setup, with groups
G1 andG2 of orderq and a non-degenerate, efficient, bilinear mapping functione(·, ·) from G1×G1 to G2.
We provide efficient SHVZK protocols for proving knowledge of a bilinear map pre-image. GivenQ ∈ G2

andx ∈ G1, our protocol proves knowledge ofα such thate(α, x) = Q. (We also provide similar protocols
for proving knowledge ofanypre-image tuple, or of a symmetric pre-image when one exists.)

Proof of Knowledge of Bilinear-Map-based Secret Keys. Using this proof of knowledge protocol for
bilinear map pre-images, we present the natural proofs of knowledge of secret keys for:

• Boneh-Franklin [5] identity-based keypairs wheree(pk ,MPK) = e(sk , g). sk is the pre-image
againstg ∈ G1 of the publicly computableQ = e(pk ,MPK).

• Waters [27] identity-based keypairswhere the secret key issk = (S1, S2) and, givenX a publicly
computable function of theMPK, e(S1, g) = Xe(S2, pk). PublishA = e(S1, g). S1 is then the
pre-image ofA againstg, andS2 the pre-image ofA/X againstpk .

• Camenisch-Lysyanskaya [7] keypairswherepk = (P1, P2), ande(P1, P2) = e(sk , g). 1 sk is the
pre-image againstg of the publicly computableQ = e(P1, P2).

1.3 Related Work
Our construction relies heavily on Cramer et al.’s Proofs ofPartial Knowledge Protocol [11], which provides
the basis for the one-out-of-many group signature structure. Additional tricks borrowed from Abe et al.’s
ring signature compiler [1] provide the ability to integrate hash-and-sign algorithm keypairs as well as full
separability, a concept first introduced by Camenisch and Michels [8].

While our construction is not exactly a ring signature, previous ad-hoc-group signatures have been
implemented as rings, as first introduced by Rivest et al [21], and later adapted to identity-based keypairs
by Zhakim et al [28]. These signatures, including the one we present, provide one implementation of
designated verifier proofs, as introduced by Jakobsson et al. [17]. A similar cryptographic construction
based on Jakobsson’s work is Naor’s deniable signature scheme [18], including recent extensions [25, 26,
19]. Recently, Bellare et al. [4] created weaker ad-hoc-group signatures from general assumptions, such as
families of trapdoor permutations. (By weaker, we mean theydo not allow for the broad key-hijacking that
we address.)

Note also that our new protocol for proving knowledge of bilinear map pre-images is reminiscent of
Schnorr’s original discrete-log based protocol [23]. Our SHVZK proof of secret keys for Boneh-Franklin
keys effectively formalizes and proves the Hess identity-based signature scheme [16]. Our signature scheme
for Waters keys continues the identity-based signature work begun by Shamir [24], first implemented by
Guillou and Quisquater [15], and recently summarized by Bellare et al. [2].

1.4 Roadmap
In Section 2, we formally define our goals. In Section 3, we review some technical preliminaries and
notation. Our main construction is detailed in Section 4, which combines any key types that support: (1)
a SHVZK proof of knowledge protocol or (2) a Hash-and-Sign algorithm, into an ad-hoc-group signature.
Then, in Sections 5 and 6, we show how to achieve efficient SHVZK proof of knowledge protocols for
Boneh-Franklin [5] IBE keys, Waters [27] IBE keys, and Camenisch-Lysyanskaya [7] signature keys.

1The secret key was originally specified as the pair(logg(P1), logg(P2)), but we observe that the above-specified secret key is
equivalent.

3

2 Definitions

Intuitively, an ad-hoc-group signature scheme is a method by which any user with a keypair can create a
signature on behalf of a group including himself and any other users with public keys. The important point is
that the public keys associated with these users may have been generated according to different algorithms;
for example, one user may have an RSA encryption [20] keypairwhile another member may have a Hess
identity-based signature [16] keypair.

Notation: By negl(·), we denote a negligible function such that for all polynomials p(·) and all sufficiently
large integersk, negl(k) < 1/p(k).

Definition 2.1 (Ad-Hoc-Group Signature) Let n, i be positive integers such that1 ≤ i ≤ n. An ad-hoc-
group signature schemeis defined as a set of algorithms:{KeyGenj}j∈[1,n], GroupSign, andGroupVerify:

• KeyGenj produces a public key pair(pk , sk), on input a security parameter1kj .

• GroupSign produces a group signatureσ, on input a set of public keys{pk 1, . . . , pk i−1, pk i+1, . . . , pkn}
for n − 1 of the group members, a secret keysk i for the remaining group member, and an arbitrary
string m.

• GroupVerify produces a verification bit (1 or 0), on inputσ,m, {pk j}j∈[1,n]. The result is 1 if and
only if σ is a valid group signature on messagem for the group designated by public keyspk j.

Correctness. We require that the usual property holds with probability one:

GroupVerify({pk j}j∈[1,n],m,GroupSign(pk1, . . . , pk i−1, pk i+1, . . . , pkn, sk i,m)) = 1.

Security. We have two guarantees: (1)unforgeabilityand (2)signer-ambiguity.

1. Unforgeable against adaptive chosen-message attack:We guarantee that forgeries occur with no more
than negligible probability. A forgery is defined as a group signature that passesGroupVerify, but
was not created by any of the group members. That is, for all positive integersn, i, where1 ≤ i ≤ n,
all security parameters1k1 , . . . , 1kn , and all probabilistic polynomial-time (PPT) adversariesAdv,

Pr[(pk 1, sk1)← KeyGen1(1
k1), . . . , (pkn, skn)← KeyGenn(1kn),

(m,σ)← AdvOGroupSign(·,·)({pk j}j∈[1,n]) :

GroupVerify({pk j}j∈[1,n],m, σ) = 1 ∧ m /∈ Q] ≤ negl(min(k1, . . . , kn)),

whereOGroupSign is an oracle that takes as input a messagem and an indexi, and returns
GroupSign(pk1, . . . , pk i−1, pk i+1, . . . , pkn, sk i,m); Q is the set of messages queried toOGroupSign;
andmin(k1, . . . , kn) represents the smallest security parameter.

2. Computational signer-ambiguity:We guarantee that the original signer’s identity is concealed even
if the secret keys of all group members are revealed. That is,for all positive integersn, i, where
1 ≤ i ≤ n, and all PPT adversariesAdv,

Pr[(pk 1, sk1)← KeyGen1(1
k1), . . . , (pkn, skn)← KeyGenn(1kn),

m← Adv({(pk j , sk j)}j∈[1,n]),

4

i
R
← [1, n],

σ ← GroupSign(pk1, . . . , pk i−1, pk i+1, . . . , pkn, sk i,m),

y ← Adv(σ,m, {(pk j , sk j)}j∈[1,n]) :

y = i] ≤
1

n
+ negl(min(k1, . . . , kn)).

If the above definition holds with respect to all infinitely powerful adversariesAdv, we say that the
scheme is hasunconditionalsigner-ambiguity.

In the above definition and throughout this paper, we will only be considering ad-hoc-group signatures
created by a single group member. One might also imagine ad-hoc-group signatures created by a subset of
the group members. Our definition and construction can be extended to those cases as well.

3 Number Theoretic Preliminaries and Notation

We briefly review some technical preliminaries which will beused from this point on in the paper.

3.1 Bilinear Maps
Let Setup be an algorithm that, on input the security parameter1k, outputsγ = (q, g,G1, G2, e), wheree
is a non-degenerate, efficiently computable bilinear map from G1 × G1 to G2, where bothG1 andG2 are
groups of prime orderq = Θ(2k), and whereg is a generator element ofG1. We assume that each group
element has a unique binary representation. More formally,e : G1 ×G1 → G2 is a function that is:

• Bilinear: for all g, h ∈ G1, for all a, b ∈ Zq, e(ga, hb) = e(g, h)ab,
• Non-degenerate: if g is a generator ofG1, thene(g, g) generatesG2, and
• Efficient: computinge(g, h) is efficient for allg, h ∈ G1.

By writing, G1 = 〈g〉, we mean thatg generatesG1. We recognize that, for some instantiations of the
mappings, it is more efficient to lete : G1 × G̃ → G2, whereG1 andG̃ are distinct groups of sizeq. Most
of our constructions will work in this setting as well.

3.2 Notation
By writing x

R
← S, we denote thatx is chosen uniformly at random from a setS. By writing P (A(x),B(y)),

we denote thatP is a protocol between two partiesA andB, whereA takes inputx andB takes inputy.
When discussing various proofs of knowledge, we will followthe notation introduced by Camenisch

and Stadler [9] for proofs of knowledge of discrete logarithms. For example,

PK
{

(α, β) : e(α, g) = X ∧ hβ = Y
}

denotes a “zero-knowledge proof of knowledge of valuesα and β such thate(α, g) = X and hβ = Y ”.
Greek letters denote values whose knowledge is being proven, while other parameters are public.

4 Our Construction

Our goal is to provide an efficient ad-hoc-group signature algorithm that can “hijack” (i.e., combine) as
many different keytypes as possible. We begin this section by describing the broad classes of keytypes that
are eligible for use in our algorithm. As we shall see, these keytypes mustefficientlysupport at least one of
two different types of protocols themselves. Then, we guarantee that the computations required to generate
and verify one of our ad-hoc-group signatures, beyond running these individual protocols, is essentially
negligible. Thus, the complete signature scheme is also efficient.

5

4.1 Eligible Keytypes
A keytype mustefficientlysupport one of the following two protocols to be included in our construction:
(1) SHVZK Proof of Knowledge of Secret Key given the Public Key, or (2) a Hash-and-Sign algorithm.
By “efficient,” we mean that, for all keypairs of that type, the running-times of all corresponding algo-
rithms are polynomial, and, more specifically, that the computations required to either create or verify the
proof of knowledge or the hash-and-sign values should be at most some small constant number (e.g., 6) of
exponentiations and/or bilnear pairings. The overall litmus test is “is it fast enough to be used in practice?”

Property #1: SHVZK Proofs of Knowledge. For our purposes, a proof of knowledge is a three-round
protocol between a proverP and a verifierV, where, for a given public keypk (and global information),
P convincesV that he knows the corresponding secret keysk . The three rounds are called the committ,
challengec, and the responses. The prover begins the protocol by sendingt.

Loosely, we call such a scheme zero-knowledge if the verifierlearns nothing in addition to being con-
vinced thatP knowssk . For our purposes, we will only need to considerhonest-verifierzero-knowledge
proofs of knowledge, whereV is honest-but-curious:V always sends back a fresh random value for the
challengec. This makes it possible for a simulator to generate tuples ofthe form(t, c, s) that are indistin-
guishable from conversations between an honestP (with sk) and an honestV.

Finally, we say that a protocol isspecial honest-verifier zero-knowledge(SHVZK) if, given fixed public
parameters (including, in our case,pk), the transcript simulation can be performed by taking any challenge
c and producing a valid commitmentt and responses, all under the same indistinguishability constraint.

Examples: A subsetof schemes with keytypes that support efficient SHVZK proofsof knowledge follows.
(See the specific references for details on the system parameters; this is just a quick review.)

Scheme Keytype (One) Eff. SHVZK PoK

Waters IBE [27] pub info= (g, h, gs, gx) Section 5
sk = (hsgxr, gr) (for a randomr)

Boneh-Franklin IBE [5] pub info= (g, gx, gy), sk = gxy Hess [16], Section 5
Hess IBS [16]
Cha-Cheon IBS [10]
Sakai-Ohgishi-Kasahara IBS [22]
Camenisch-Lysyanskaya Signatures [7] pk = (g, gx, gy), sk = gxy Hess [16], Section 5
Schnorr Signatures [23] pk = (y, yx), sk = x Schnorr [23]
El Gamal Encryption [14]
Cramer-Shoup Encryption [12]
Guillou-Quisquater IBS [15] pk = (N, e, xemod N), sk = x GQ [15]

Property #2: Hash-and-Sign. As described by AOS [1], we say that a keypair(pk , sk) has a hash-and-
sign algorithm if, together with an appropriate hash function H and trapdoor one-way functionFpk (with
inverseF−1

sk), the following algorithms are efficient:

Signing: On input(sk ,m), computec = H(m,α), s = F−1
sk

(c), and output the signatureσ = (s, α), for
an arbitrary stringα.

Verification: On input(pk , σ), parseσ as(s, α), computec = H(m,α) andd = Fpk (s), accept ifc = d
and reject otherwise.

The security of such a scheme depends upon the inability of anadversary to computeF−1 without sk .

6

Examples: One popular example in this category is the Full-domain RSA signature scheme [3].

4.2 The Ad-Hoc-Group Signature Construction
Many of the ingredients needed to hijack a variety of public keypairs for group signatures already exist. Our
contribution is two-fold. First, we provide a hybrid of two previous ad-hoc-group signature schemes [11, 1]
which covers moresignaturekeypairs than either does individually. Along these lines,we also point out that,
while different signature schemes may share the same keytype (e.g., several IBS schemes [22, 16, 10] all
use the same keypairs), our construction can simply use the most efficient corresponding algorithms known
(among those that are SHVZK proofs of knowledge of the secretkey).

Second, we broaden the scope of ad-hoc-group signature schemes by includingencryptionkeypairs as
potential targets. We address certain technical difficulties that result: for example, in previous ad-hoc-group
schemes [11, 1] each keypair was required to be associated with a hash function that was necessary for the
ad-hoc-group construction. For some signature [7] and encryption [14, 27] keys, such a hash function is not
inherently defined. Thus, we exert a little creativity to include these types of keypairs as well.

As we said, our ad-hoc-group signature scheme is a hybrid of two existing schemes: one due to Cramer,
Damgard, and Schoenmakers [11] (CDS) and a subsequent one proposed by Abe, Ohkubo, and Suzuki [1]
(AOS). Let us describe their relation to each other and our new scheme.

Combining CDS and AOS. In 1994, CDS [11] showed how to efficiently execute a proof of partial
knowledge; that is, for example, a protocol for proving, in special honest-verifier zero-knowledge, that you
know either Alice’s secret key or Bob’s secret key. Such a protocol has many uses, and the authors briefly
mention ad-hoc-group signatures as one possible application. They do not, however, deal explicitly with the
difficulties of constructing such a protocol when the keypairs are heterogeneous, nor do they consider the
integration of SHVZK protocols with other mechanisms.

More recently, in 2002, AOS [1] provided an ad-hoc-group signature scheme that combines keypairs
which efficiently support either a hash-and-sign algorithmor a certain type of SHVZK proof of knowledge
(specifically ones where the zero-knowledge simulator works by generating the responses after seeing the
challengec andthencomputes the commitmentt). The AOS scheme focused onsignaturekeypairs only.

In this work, we include all keypairs efficiently supportingeither any SHVZK proof of knowledge
protocol or a hash-and-sign algorithm. Thus, we provide functionality which includes the union of that
of CDS [11] and AOS [1]. Furthermore, we go beyond their scopeand includeencryptionkeypairs and
signature keypairs which are secure without random oracles.

Details of Signing Algorithm (GroupSign): The input is(pk1, . . . , pk i−1, pk i+1, . . . , pkn, sk i,m, info).
The index of the actual signer isi, n is the total number of group members,m is an arbitrary bit string to be
signed, andinfo is some string containing information for the verifier (e.g., a description of a hash function).
Furthermore,1kj is the security parameter for memberj. (These details are illustrated in Figure 1.)

1. For all group membersj = 1 to n, except signeri, select a random stringcj from {0, 1}max(k1,...,kn).
This will serve as theraw challengefor memberj.

2. Next, for each memberj (excepti), map theraw challengevaluecj into thescheme-specificchallenge
valuec′j using the hash functionHj such thatHj(cj) = c′j . We assume that, for every type of keypair,
there is an efficient hash function mapping arbitrary strings toscheme-specificchallenge values; for
example, such a hash function for Schnorr signatures would map arbitrary strings to elements in
integers modulo a large primeq. The hash functionHj is specified concretely for the eventual verifier
of the signature by one of two methods: (1) it is specified as part of the public keypk j, or (2) its
description is appended to a stringinfo. Of course, the verifier’s confidence in the final signature will

7

�

�

... ... cn

c
′

n
c
′

i+1

ci+1ci−1

c
′

i−1
......

Hn
Hi−1 Hi+1

� � �
(ti−1, si−1) (ti+1, si+1) (tn, sn)ti

... ...

�

(t1, s1)

H1

c1

c
′

1

�
C = Hash(t1, . . . , tn,m, info)

�

� 	

ci = C ⊕ c1 ⊕ . . . ⊕ ci−1 ⊕ ci+1 ⊕ . . . ⊕ cn

Hi c
′

i
sici

GroupSign(pk1, . . . , pk i−1, pk i+1, . . . , pkn
, sk i,m, info)

σ = ((t1, c1, s1), . . . , (tn, cn, sn), m, info)

Figure 1: TheGroupSign Algorithm: a temporal view for a group of sizen with signeri.

be affected by the choice of this hash function; therefore, aprudent signer will choose well-known
(and standardized) hash functions for this purpose.

3. For each memberj (excepti), compute a simulated proof of knowledge transcript:(tj , c
′
j , sj) given

c′j as input. This transcript may be completed by one of two methods depending on the properties
supported by its keypair. The method of its completion can beindicated ininfo.

• SHVZK Proof of Knowledge:By definition, a SHVZK proof of knowledge has an efficient
algorithm for generating valid proof of knowledge transcripts of the form(tj , c

′
j , sj), for a given

c′j . This is often (but not exclusively done) by selecting a random sj and then computing the
correspondingtj.

• Hash-and-Sign Algorithm:The observation that any hash-and-sign algorithm can be written as
a SHVZK transcript is due to Abe et al. [1]. This is done as follows: choose a random valuesj

from the appropriate range and settj = Fpk (sj) + c′j .

4. Choose an appropriateti value for the actual signeri.

5. ComputeC = Hash(t1, . . . , tn,m, info), whereHash : {0, 1}∗ → {0, 1}max(k1,...,kn) is a hash
function whose description is appended to the end ofinfo.

6. Compute the raw challenge for the actual signer, memberi, asci = C ⊕ c1 ⊕ . . . ⊕ cn.

7. Compute the scheme-specific challenge for memberi asc′i = Hi(ci), whereHi is the appropriate
hash function, whose description is appended toinfo, as discussed in step 2.

8. With knowledge ofsk i, compute the responsesi to complete the transcript tuple(ti, c′i, si). In the
case thatsk i is the trapdoor in a hash-and-sign algorithm, the tuple(ti, c

′
i, si) is formed as described

in step 3, withti random, andsi = F−1
pk (ti − c′i).

8

9. Output the group signatureσ = ({(tj , cj , sj)}j∈[1,n],m, info). Note thatcj ’s are the raw challenges
(not the scheme-specific ones, which will need to be recomputed during verification). Furthermore,
the valuesm andinfo may optionally be omitted fromσ.

Details of Verification Algorithm (GroupVerify): The input is(pk 1, . . . , pkn,m, info, σ). Parse the first
portion ofσ as{(tj , cj , sj)}j∈[1,n].

1. Extract the description of the functionHash from info and computeC = Hash(t1, . . . , tn,m, info).

2. Check that the length ofC and eachc1, . . . , cn is max(k1, . . . , kn) bits, and thatC = c1 ⊕ . . .⊕ cn.

3. Forj = 1 to n, extract the description of functionHj from eitherpk j or info. Computec′j = Hj(cj).
According to the preference ininfo and the individual verification algorithm specified byinfo or
pk j , verify that the triple(tj , c

′
j , sj) is either a valid SHVZK proof of knowledge tuple or a valid

hash-and-sign tuple.

There are many such possible algorithms for the SHVZK proof verification (we will see some exam-
ples in Section 6). For the case of hash-and-sign, this simply involves checking thattj = Fpk (sj)+c′j.

4. If all checks pass, accept; otherwise, reject. We note that a verifier must further base his trust in
this signature on the quality of the hash functions, proofs of knowledge, and hash-and-sign schemes
included. Thus, a prudent verifier would only accept when allsubfunctions included are standardized
(e.g., SHA-256) and/or well-known (e.g., RSA hash-and-sign).

Theorem 4.1 The above ad-hoc-group signature scheme is correct, existentially unforgeable under adap-
tive chosen message attack, and unconditionally signer-ambiguous.

Correctness is by observation. The unconditional signer-ambiguity follows from the perfectly indistigu-
ishable transcripts that can be produced for either the SHVZK proof-of-knowledge or the hash-and-sign
protocols. The unforgeability is more involved; there we show that an adversary who can forge with
probability ε can be used to invert a trapdoor permutation or fake an SHVZK prover with probability

ε
nqHj

qH
wide

− negl(k), whereqHj
is the number of queries the adversary makes to the hash function as-

sociated with the protocol we wish to break, andqHwide
is the number of queries to the ad-hoc-wide hash

function. We provide more details in Appendix A.

5 Proofs of Knowledge of Bilinear Pre-Images

To hijack certain desirable bilinear-based keypairs, for which no previous efficient SHVZK or hash-and-sign
algorithms were known, we must first develop some tools: proofs of knowledge of bilinear pre-images.

We work in the common parameters model, where the global parametersparams = (q, g,G1, G2, e) are
obtained by running theSetup algorithm on input the security parameter1k. Letx ∈ G1 andQ,Q∗ ∈ G2 be
publicly known values, whereQ is any random value inG2 andQ∗ = e(y, y) for somey ∈ G1. We provide
the following novel proof-of-knowledge protocols, which are all special honest-verifier zero-knowledge:

1. PoK of canonical bilinear pre-image ofQ with respect tox: PK{(α) : e(α, x) = Q}.
2. PoK of any bilinear pre-image ofQ: PK{(α, β) : e(α, β) = Q}.
3. PoK of the symmetric bilinear pre-image ofQ∗: PK{(α) : e(α,α) = Q∗}.

Each of these protocols naturally extends the Schnorr protocol for proving knowledge of a discrete
logarithm [23] into protocols for proving knowledge of certain pre-images of bilinear mappings. The first

9

P(params , Q, x,w) V(params , Q, x)

r
R
← Zq

t = e(gr , x)

c c
R
← Zq

s = wcgr
e(s, x)

?
= Qct

Figure 2:Description of the HVZK proof of knowledge protocolTcanonical for showing knowledge of the canonical
pre-image ofQ with respect to elementx (i.e.,w ∈ G1 such thatQ = e(w, x)). First, the prover sendst = e(gr, x)
as a commitment to a random valuegr ∈ G1. Next, the verifier issues a random challengec ∈ Zq. Finally, the prover
responds withs = wcgr. The verifier accepts if and only ife(s, x) = Qct. Note that the prover need not know the
value ofr during this protocol; it is enough to knowgr, which can be selected at random fromG1.

protocol is the only tool we will use to in Section 6 to efficiently prove knowledge of several different
keypair types. Thus, for space reasons, we include only the first protocol here and include the second two in
Appendix B.

5.1 Proving Knowledge of the Canonical Pre-image of a Bilinear Mapping
For global parametersparams = (q, g,G1, G2, e) and any valuesx ∈ G1 andQ ∈ G2, thecanonicalpre-
image ofQ with respect to the bilinear mappinge and elementx is the valueα ∈ G1 such thate(α, x) = Q.
We provide a protocolTcanonical in Figure 2 for proving knowledge of thecanonicalpre-image ofQ with
respect to the bilinear mappinge and elementx; that is:

PK{(α) : e(α, x) = Q}.

Observe that protocolTcanonical also works smoothly for mappings of the forme : G1 × G̃→ G2. This
protocol generalizes a protocol proposed by Hess [16] (as anidentity-based signature scheme), which was
proven secure by Dodis et al. [13].

Lemma 5.1 Protocol Tcanonical is a special honest-verifier, zero-knowledge proof of knowledge of the
canonical pre-image ofQ with respect to the global parametersparams = (q, g,G1, G2, e) and elementx.
(Proof in Appendix B.1.)

6 Bilinear-Map Keypair Types

Recall that our goal is to construct an ad-hoc-group signature from as many key types as possible. In
particular, we are interested in including identity-basedkey types, since we conjecture that they have the
best chance of seeing wide-spread use. We now use the proof ofknowledge from Section 5.1 to form efficient
SHVZK proofs of knowledge of the (user) secret key for the twodominant IBE schemes, Boneh-Franklin [5]
and Waters [27], and for the Camenisch-Lysyanskaya [7] signatures.

6.1 Boneh-Franklin IBE Keypairs
The keypairs for the master authority and the users in the Boneh-Franklin [5] identity-based encryption
scheme are also used by a variety of identity-based signature schemes [22, 16, 10]. Thus, by providing
a SHVZK proof of knowledge protocol for these user secret keys, we include keypairs published for sev-
eral distinct schemes in our ad-hoc-group signature construction. This protocol is actually identical to one
proposed by Hess [16], although the proof that it is a full SHVZK proof of knowledge is new.

10

Setup: On input the security parameter1k, run the bilinear map generation algorithmSetup(1k) →
(q, g,G1, G2, e) = params . Select a hash functionH : {0, 1}∗ → G1. Select a random element
s ∈ Zq. Output the master public keyMPK = (q, g,G1, G2, e,H, gs) and store the master secret
keyMSK = (MPK, s).

User Keypair: On input an identityID ∈ {0, 1}∗, the master computes the secret key for identityID as
SKID = H(ID)s, where anyone can compute the corresponding public keyPKID = H(ID).

SHVZK Proof of Knowledge Protocol of SKID: On common inputMPK andID, where the proverP
has additional inputSKID, the proverP and verifierV:

1. both locally compute the valueQ = e(gs, PKID).
2. execute theTcanonical(P(params , Q, g, SKID),V(params , Q, g)) protocol from Section 5.1.

Let us explain why the above protocol works. The prover is being asked to prove knowledge of the
canonical pre-image ofQ = e(gs, PKID) with respect to elementg. There is only one solution for this and
it is SKID = H(ID)s = (PKID)s. Interestingly, when one views the valueH(ID) asgb for someb ∈ Zq,
it becomes apparent that the above identification protocol is actually proving knowledge of thecompletion
of a DDH tuple inG1. To see this, note that we have public valuesg, gs,H(ID) = gb, and the prover must
show that he knows the valuegsb = H(ID)s. Thus, for anyg,X, Y ∈ G1, we have the following proof
protocol:PK{(α) : X = gx ∧ Y = gy ∧ α = gxy}.

Theorem 6.1 The above scheme is a SHVZK proof of knowledge protocol in therandom oracle model.

The above result follows from Lemma 5.1. We also note in passing that the above protocol can be turned
into aregular signature scheme by applying the extended Fiat-Shamir heuristic due to Bellare et al. [2].

6.2 Waters IBE Keypairs
We now provide a SHVZK proof of knowledge protocol for user secret keys in the Waters [27] identity-
based encryption scheme. This is the first such scheme for these keypairs. The technical difficulty is that
there is an exponentially-large set of secret keys corresponding to any specific public key: as we shall see
shortly the secret keys are a pair of the form(ABr, gr) for an arbitrary value ofr. Thus, the goal is to prove
knowledge of a pair of values satisfying a certain relationship to each other and the public values, rather
than proving knowledge of a specific value.

We note that this technical difficulty seems to prevent the integration of Waters keys into the AOS
protocol compiler. Thus, one notable advantage of our scheme over AOS is its ability to include this new
keypair type.

Setup: On input the security parameter1k, run Setup(1k) → (q, g,G1, G2, e). Select random elements
h, u′, u1, . . . , un ← G1. Select a random elements ∈ Zq. Output the master public keyMPK =
(q, g,G1, G2, e, h, u′, u1, . . . , un, gs) and store the master secret keyMSK = (MPK,hs). (Note
that this scheme supports IDs of lengthn ∈ poly(k).)

User Keypair: On input an identityID ∈ {0, 1}∗, the master computes the secret key for identityID by
selecting a randomr ∈ Zq and outputtingSKID = (hsF (ID)r, gr), where the functionF (ID) =
u′

∏

IDi=1 ui. Anyone can compute the corresponding public keyPKID = F (ID).

SHVZK Proof of Knowledge Protocol of SKID: On common inputMPK andID, where the proverP
has additional inputSKID = (S1, S2), the proverP and the verifierV:

1. both locally computeX = e(gs, h), wheregs, h ∈MPK.

11

2. P simultaneously sendsV the valueA = e(S1, g) with the first messages of the procotols:

P1 = Tcanonical(P(params , A, g, S1),V(params , A, g))

P2 = Tcanonical(P(params , A/X,PKID , S2),V(params , A/X,PKID))

Intuitively, the prover is simultaneously showing:

PK{(α, β) : e(α, g) = Xe(β, PKID)}.

3. V issues a challenge that can be parsed as(c1, c2).
4. P jointly sends the response of protocolP1 on challengec1 with that of protocolP2 on challenge

c2.

This protocol requires more creativity than the previous one for Boneh-Franklin keys, because Waters’
user secret keys can be re-randomized. Thus, the prover mustconvince the verifier that he knows a pair of
valuesof a certain form, rather than a fixed value. Proof of the following theorem appears in Appendix C.

Theorem 6.2 The above scheme is a SHVZK proof of knowledge protocol.

6.3 Camenisch-Lysyanskaya Signature Keypairs
The Camenisch-Lysyanskaya (CL) [7] signatures support a variety of efficient protocols, which have allowed
construction of anonymous credentials, electronic cash, and other interesting schemes. If any user publishes
a CL keypair, then that keypair can be hijacked for our ad-hoc-group signature purposes. We describe these
key types followed by a SHVZK proof of knowledge protocol forthese secret keys.

Setup: On input the security parameter1k, run the bilinear map generation algorithmSetup(1k) →
(q, g,G1, G2, e) = params .

User Keypair: On input the system parametersparams , select random elementsx, y ∈ Zq and output the
keypairPK = (gx, gy) andSK = gxy.

SHVZK Proof of Knowledge Protocol of SK: On common inputparams andPK, where the proverP
has additional inputSK, the proverP and verifierV:

1. both locally compute the valueQ = e(gx, gy).
2. execute theTcanonical(P(params , Q, g, SKID),V(params , Q, g)) protocol from Section 5.1.

Theorem 6.3 The above scheme is a SHVZK proof of knowledge protocol.

7 Conclusion

The purpose of an ad-hoc-group signature is to help a signer gain credibility while maintaining a certain
degree of anonymity. The signer may be trying to leak a secretfrom an in-the-know committee, or to
achieve designated-verifier signatures with a sender-verifier signatory group. An ideal ad-hoc-group signa-
ture scheme will allow such a signer to proceed in the face of minimal or often inexistent cooperation from
other group members.

In this paper, we presented a scheme that allows a signer to use almost any pre-existing cryptographic
setup to serve in the creation of such a signature. This existing setup need not be group-signature specific:
if a user publishes just about any kind of public key, it can behijacked for the purposes of constructing a
group signature that includes that user. We illustrated thestrength of this approach by presenting specific
methods to integrate bilinear-map-based keypairs in this scheme.

Our scheme makes it easy to establish an anonymity-preserving authentication mechanism in the face of
adversity. We have yet to identify a practical keypair that cannot be integrated in our scheme.

12

Acknowledgements. We thank Brent Waters for useful discussions about his IBE scheme. We also thank
Steve Weis for comments on an earlier version of this paper.

13

References

[1] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-out-of-n signatures from a variety of keys.
In Yuliang Zheng, editor,Advances in Cryptology — ASIACRYPT ’02, volume 2501 ofLNCS, pages
415–432. Springer Verlag, 2002.

[2] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security proofs for identity-based identifi-
cation and signature schemes. In Christian Cachin and Jan Camenisch, editors,Advances in Cryptology
— EUROCRYPT ’04, volume 3027 ofLNCS, pages 268–286. Springer Verlag, 2004.

[3] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. InACM Conference on Computer and Communications Security (CCS), pages 62–73, 1993.

[4] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundationsof group signatures: The case of dynamic
groups. InCT-RSA, volume 3376 of LNCS, pages 136–153, 2005.

[5] Dan Boneh and Matt Franklin. Identity-based Encryptionfrom the Weil Pairing. SIAM Journal of
Computing, 32(3):586–615, 2003.

[6] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record communication, or, why not to use PGP. In
WPES ’04: the 2004 ACM workshop on Privacy in the electronic society, pages 77–84. ACM Press,
2004.

[7] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear
maps. InAdvances in Cryptology — CRYPTO 2004, volume 3152 ofLNCS, pages 56–72. Springer
Verlag, 2004.

[8] Jan Camenisch and Markus Michels. Separability and efficiency for generic group signature schemes.
In Advances in Cryptology – CRYPTO ’99, volume 1666 of LNCS, pages 413–430, 1999.

[9] Jan Camenisch and M. Stadler. Efficient group signature schemes for large groups. InAdvances in
Cryptology – CRYPTO ’97, volume 1296 of LNCS, pages 410–424, 1997.

[10] Jae Choon Cha and Jung Hee Cheon. An Identity-Based Signature from Gap Diffie-Hellman Groups.
In Y.G. Desmedt, editor,PKC 2003, volume 2567 ofLNCS, pages 18–30. Springer-Verlag, 2003.

[11] Ronald Cramer, Ivan Damgard, and Berry Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. InAdvances in Cryptology – CRYPTO ’94, volume 839 of LNCS,
pages 174–187, 1994.

[12] Ronald Cramer and Victor Shoup. A pratical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. InAdvances in Cryptology – CRYPTO ’98, volume 1642 of LNCS, pages
13–25, 1998.

[13] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Strong key-insulated signature
schemes. In Y. Desmedt, editor,PKC 2003, volume 2567 ofLNCS, pages 130–144. Springer Ver-
lag, 2003.

[14] Taher El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.
In Advances in Cryptology – CRYPTO ’84, pages 10–18, 1984.

[15] Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” identity-based signature scheme re-
sulting from zero-knowledge. In Shafi Goldwasser, editor,Advances in Cryptology — CRYPTO ’88,
volume 403 ofLNCS, pages 216–231. Springer Verlag, 1988.

[16] Florian Hess. Efficient identity based signature schemes on pairings. In K. Nyberg and H. Heys,
editors,Selected Areas in Cryptography — SAC ’02, volume 2595 ofLNCS, pages 310–324. Springer
Verlag, 2002.

[17] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier proofs and their appli-
cations. In Ueli Maurer, editor,Advances in Cryptology — EUROCRYPT ’96, volume 1233 ofLNCS.
Springer, 1996.

[18] Moni Naor. Deniable ring authentication. InProceedings of Advances in Cryptology – CRYPTO ’02,
volume 2442 ofLNCS, pages 481–498. Springer, 2002.

[19] Mario Di Raimondo and Rosario Gennaro. New approaches for deniable authentication. InWorkshop
on Provable Security, 2004.

[20] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures and
public-key cryptosystems.Communications of the ACM, 21(2):120–126, February 1978.

[21] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin Boyd, editor,Advances
in Cryptology — ASIACRYPT ’01, volume 2248 ofLNCS, pages 552–565. Springer Verlag, 2001.

[22] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. InProceedings of the
Symposium on Cryptography and Information Security — SCIS 2000, 2000.

[23] Claus-Peter Schnorr. Efficient Signature Generation by Smart Cards.Journal of Cryptology, 4(3):161–
174, 1991.

[24] Adi Shamir. Identity-based cryptosystems and signature schemes. In George Robert Blakley and
David Chaum, editors,Advances in Cryptology — CRYPTO ’84, volume 196 ofLNCS, pages 47–53.
Springer Verlag, 1985.

[25] Willy Susilo and Yi Mu. Non-interactive deniable ring signatures. Inthe 6th International Conference
on Information Security and Cryptology (ICISC) ’03, pages 397–412, 2003.

[26] Willy Susilo and Yi Mu. Deniable ring authentication revisited. InApplied Cryptography and Network
Security (ANCS) ’04, volume 3089 of LNCS, pages 149–163, 2004.

[27] Brent Waters. Efficient Identity-Based Encryption Without Random Oracles. InAdvances in Cryptol-
ogy – EUROCRYPT ’05, volume 3494 of LNCS, pages 114–127, 2005.

[28] Fangguo Zhang and Kwangjo Kim. ID-Based Blind Signature and Ring Signature from Pairings. In
Yuliang Zheng, editor,Advances in Cryptology — ASIACRYPT ’02, volume 2501 ofLNCS, pages
533–547. Springer Verlag, 2002.

A Proof Sketch of Main Construction

Due to space limitations, we will only sketch the proof of Theorem 4.1.

Proof sketch.The correctness property is fairly straight-forward.
For unconditional signer-ambiguity, observe that, in the random oracle model, all raw, and thus all

scheme-specific challenge valuesc′j are distributed uniformly at random. Given this fact, we know by the
definition of special honest-verifier zero-knowledge that the transcripts(tj , c′j , sj) produced as part of the
signature are perfectly indistinguishable from those an actual signer would produce. For the case of hash-
and-sign algorithms, note thatsj was chosen uniformly at random and by virtue of being a permutation
Fpk (sj) is also distributed uniformly at random. Since bothc′j andFpk (sj) are independently random, so is
the valuetj = Fpk (sj) + c′j , exactly as a honest signer would create it. Finally, we observe that the XOR
secret sharing scheme we employ obviously reveals nothing about the actual signer, sinceC is also random.

The unforgeability of the scheme under adaptive chosen message attack has two distinct parts: either
the adversaryAdv can be used to invert the trapdoor one-way function associated with a hash-and-sign
algorithm orAdv can be used to fake interactive SHVZK proof of knowledge of the secret key of some
scheme. Suppose the total success probability forAdv is ε.

The security game requires thatAdv be provided with a list of public keyspk1, . . . , pkn as well as
access to a signing oracle for messages of the adversary’s choice. We thus concoctAdv′, an adversary that
will use Adv as a black box to either (1) invert a trapdoor permutation, or(2) successfully act as a prover
in an SHVZK protocol for a secret key.Adv′ generatespk1, . . . , pkn−1 with corresponding secret keys.
The last public keypkn is set to bepk ′, the public keyAdv′ is trying to “break.” Note thatAdv′ can easily
simulate theOGroupSign oracle forAdv, since it has at least one of the secret keys and can thus perform
real ad-hoc-group signatures on demand. The signer-ambiguity property ensures thatAdv cannot determine
which secret keyAdv′ is using. Note also that, given the Random Oracle model,Adv′ can set the output
value of any call fromAdv to the random oracles.

We consider that, whetherpk ′ is a hash-and-sign or a SHVZK key,Adv′ will break them in the same
way: by acting as the prover in a(t, c, s) protocol. In the SHVZK case, this is obvious. In the hash-and-sign
case, this is done via the usual AOS approach:t is random, ands = F−1(t − c′), wherec′ = H(c) where
H is the scheme-specific hash function modeled as a random oracle. Being able to act as the prover in such
a protocol trivially implies breaking the one-wayness of the trapdoor permutation.

Now, let us describe the way in whichAdv′ can perform a(t, c, s) proof by usingAdv as a black box.

1. Adv′ sendsAdv the valuespk1, . . . , pkn. (in a detailed proof, the index position of the algorithm to
break should be randomized so it isn’t alwaysn).

2. Adv makes requestsQ for signatures, whichAdv′ can easily answer, since it has at least one of the
secret keys.

3. For some time,Adv′ responds to all Random Oracle queries (either scheme-specific or the ad-hoc-
wide random oracle) with random values.

4. At a certain point,Adv′ decides that a query it receives destined for the ad-hoc-wide random oracle is
“the real one,” from which it extractstn and sends it to the external verifier.

5. Adv′ receivescn from the external verifier.

6. From that point on,Adv′ picks one of the queries destined for schemen’s random oracle as “the real
challenge query,” and returnscn to Adv on that one. All other queries are answered with random
values.

7. EventuallyAdv outputs a forged signature, from whichAdv′ extractssn, which it sends out to the
external verifier.

Note that, in the final forged signature, there must be, with overwhelming probability, at least one(t, c, s)
triple for which the first call to the appropriate random oracle with valuec cameafter the call the to ad-hoc-
wide random oracle with values(t1, . . . , tn). Otherwise,Adv is able to predict the output of one of those
two random oracles. We call these triples thelate-queried triples.

Thus,Adv′ succeeds if it picks the right random oracle query from whichto extracttn and the right
random oracle query into which to injectcn. Also, for Adv′ to succeed, the(t, c, s) triple that corresponds
to the key it is trying to break must be one of the late-queriedtriples (possibly the only one). Finally, it is
conceivable, though highly unlikely and, in fact, negligibly probable, thatAdv could forge a query without
ever querying the ad-hoc-wide random oracle on the set oft1, . . . , tn, or one of the scheme-specific random
oracles on that scheme’s correspondingcj .

Thus, if Adv succeeds at forgery with probabilityε, thenAdv′ succeeds at faking an SHVZK proof or
inverting a trapdoor permutation with probability ε

nqHnqH
wide

−negl(k). n is the size of the group,qHn is the

number of scheme-specific random oracle queries for the random oracle of the attacked scheme, andqHwide

is the number of random oracle queries to the ad-hoc-wide random oracle.
2

B Proofs of Knowledge of Bilinear Pre-images and Their Security

B.1 Proving Knowledge of the Canonical Pre-image of a Bilinear Mapping
We now prove Lemma 5.1.

Proof. We first show thatTcanonical is a proof of knowledge, and then show that it also has the special
honest-verifier zero-knowledge property.

ForTcanonical to be a proof of knowledge, there must exist a PPT extractorE that, after interacting with
any proverP which can convince an honestV to accept with probability> 1/poly(k), can produce the
witnessw with probability> 1/poly(k). E works as follows:

1. executeTcanonical with P exactly as an honestV would to obtain the transcript(t1, c1, s1);

2. rewindP until just after it sendst1 and reply with a new random challengec2, and receiveP ’s
responses2 to obtain the transcript(t1, c2, s2). If an honestV would have accepted these transcripts,
thenE now holds the valuess1 = wc1t1 ands2 = wc2t1, wherec1 6= c2, and thusE can compute the
witness as

(s1/s2)
1/(c1−c2) = (wc1t1/w

c2t1)
1/(c1−c2) = (wc1−c2)1/(c1−c2) = w.

Thus,P must know the witnessw.

(To see this, consider that on input(g, ga, gb), one setsx = gr for a randomr ∈ Zq andQ = e(ga, gb),
and then carries out the proof with a cheating prover. When the witnessw is extracted, as above, it must be
the case thatwr = gab sincee(w, x) = Q.)

For Tcanonical to be a special honest-verifier zero-knowledge proof, theremust exist a PPT simulator
S that can simulate a prover for any honestV without knowing the witnessw. The “special” aspect of
the simulation implies that, given a randomc message,S can produce a triple(t, c, s) with the proper
distribution. By sayingV is honest, we mean thatV has a fixed random tape from which he selects his
challenges.S works as follows:

P(params , Q,w1, w2) V(params , Q)

x, r
R
← Zq

(t1, t2) = (Qx2

, Qr)

c c
R
← Zq

(w′
1, w

′
2, s) = (wx

1 , wx
2 , yc + r) (1) e(w′

1, w
′
2)

?
= t1

(2) Qs ?
= tc1t2

(3) t1
?
6= 1

Figure 3:Description of the HVZK proof of knowledge protocolTany for showing knowledge of any pre-image of
Q (i.e.,w1, w2 ∈ G1 such thatQ = e(w1, w2)). First, the prover sendst1 = Qy andt2 = Qr, wherex, r are random
values inZq andy = x2 (mod q). Next, the verifier sends a random challengec ∈ Zq. Finally, the prover responds
with w′

1
= wx

1
, w′

2
= wx

2
, ands = yc + r. The verifier accepts if and only if the following relations hold: (1)

e(w′

1
, w′

2
) = t1, (2)Qs = tc

1
t2, and (3)t1 6= 1.

1. send an arbitrary value inG2, wait forV to send a challengec

2. pick a randoms ∈ G1, computet = e(s, x)/Qc

3. rewindV, sendt as the first message, ands as the response toV ’s challenge. SinceV is honest and
its random-tape is fixed, he will send the same challengec and thus accept the transcript(t, c, s). One
can observe that this simulation produces perfectly distributed transcripts.

2

B.2 Proving Knowledge ofany Pre-image of a Bilinear Mapping
For global parametersparams = (q, g,G1, G2, e) and any valueQ ∈ G2, we provide a protocolTany in
Figure 3 for proving knowledge ofanypre-image ofQ with respect to the bilinear mappinge; that is:

PK{(α, β) : e(α, β) = Q}.

This is a generalization of the canonical pre-image protocol. Though slightly less efficient, this protocol is
interesting because, unlike the previous one, there are many possible witnesses.

Observe that protocolTany also works smoothly for mappings of the forme : G1 × G̃ → G2. For a
witness indistinguishable proof of knowledge, the prover may simply choose a randomc ∈ Z

∗
q and send

the verifier(wc
1, w

1/c
2). However, this has the potentially negative side-effect ofproviding the verifier with a

valid pre-image ofQ. Thus, we achieve something stronger inTany.

Lemma B.1 Protocol Tany is an honest-verifier, zero-knowledge proof of knowledge ofa pre-image ofQ
with respect to the global parametersparams = (q, g,G1, G2, e) under the Bilinear One-Way Assumption;
that is, given(params , Q) for a randomQ ∈ G2, it is hard to compute anyx, y ∈ G1 such thate(x, y) = Q.

Proof. We first show thatTany is a proof of knowledge, and then show that it also has the honest-verifier
zero-knowledge property.

For Tany, the proof of knowledge extractorE works as follows: (Step 1) executeTany with P exactly
as an honestV would to obtain the transcript((t1, t2), c, (w1, w2, s)); (Step 2) rewindP until just after it
sends(t1, t2) and reply with a new random challengec′, and receiveP ’s response to obtain the transcript

P(params , Q,w) V(params , Q)

x, r
R
← Zq

(t1, t2) = (Qx2

, Qr)

c c
R
← Zq

(w′, s) = (wx, yc + r) (1) e(w′, w′)
?
= t1

(2) Qs ?
= tc1t2

(3) t1
?
6= 1

Figure 4:Description of the HVZK proof of knowledge protocolTsym for showing knowledge of a symmetric pre-
image ofQ (i.e.,w ∈ G1 such thatQ = e(w, w)). P andV follow the Tany protocol; except in round three,P only
sends two valuesw′ = wx ands = yc+r, andV accepts if and only if the following relations hold: (1)e(w′, w′) = t1,
(2) Qs = tc

1
t2, and (3)t1 6= 1.

((t1, t2), c
′, (w′

1, w
′
2, s

′)). If an honestV would have accepted these transcripts, thenE now holds the values
s = yc + r ands′ = yc′ + r, wherec 6= c′, and thusE can recover the valuey as(s − s′)/(c − c′) = y.

Next,E computesx as the square root ofy moduloq. Finally,E can output the witness(w1/x
1 , w

1/x
2). Thus,

P must know a witness, or she breaks the Bilinear One-Way Assumption.
For Tany, the honest-verifier zero-knowledge simulatorS works as follows: (Step 1) select random

valuesa, b ∈ G1 andd ∈ G2, send toV the pair of values(t1 = e(a, b), d), and wait forV to send a
challengec; (Step 2) pick a randoms ∈ G1, computet2 = Qs/tc1; (Step 3) rewindV to the beginning,
send(t1, t2) as the first message, ands as the response toV ’s challenge. SinceV is honest, he will send the
same challengec and thus accept the transcript((t1, t2), c, s). One can observe that this simulation produces
perfectly distributed transcripts. 2

B.3 Proving Knowledge of the Symmetric Pre-image of a Bilinear Mapping
For global parametersparams = (q, g,G1, G2, e) and special values ofW ∈ G2, whereW is of the form
e(g, g)a

2

for somea ∈ Zq, the above protocol can be adjusted to become a protocolTsym in Figure 4 for
proving knowledge of thesymmetricpre-image ofQ with respect to the bilinear mappinge; that is:

PK{(α) : e(α,α) = Q}.

Lemma B.2 ProtocolTsym is an honest-verifier, zero-knowledge proof of knowledge ofthe symmetric pre-
image ofQ with respect to the global parametersparams = (q, g,G1, G2, e) under the Bilinear One-Way
Assumption.

C Proof for Waters IBE Keypairs

We now provide proof of Theorem 6.2.

Proof. We first show that the protocol is a proof of knowledge; we thenargue that it is also special honest-
verifier zero knowledge.

The proof of knowledge extractorE works as follows: (Step 1) execute the protocol withP exactly as
an honestV would to obtain the transcript((A, t1, t2), (c1, c2), (j1, j2)); (Step 2) rewindP until just after
it sends(A, t1, t2) and reply with a new random challenge(c′1, c

′
2), and receiveP ’s response to obtain the

transcript((A, t1, t2), (c
′
1, c

′
2), (j

′
1, j

′
2)). If an honestV would have accepted these transcripts, thenE can

extract the witness (i.e., user’s secret key) as follows.
Sincec1 6= c′1 andc2 6= c′2, E can recover secret key(S1, S2) as(j2/j

′
2)

1/(c2−c′
2
) = S1 and(j1/j

′
1)

1/(c1−c′
1
)

= S2. Thus,P must know the secret key.
The special honest-verifier zero-knowledge simulatorS works as follows: (Step 1) select a random

valuer ∈ Zq and t′1, t
′
2 ∈ G2, computeA = e(gs, h)e(g, f(ID))r (wheregs andh are part ofMPK),

and send toV the tuple(A, t′1, t
′
2), and wait forV to send a challenge(c1, c2); (Step 2) pick two random

valuesj1, j2 ∈ G1, computet1 = e(j1, f(ID))/(A/X)c1 andt2 = e(j2, g)/Ac2 ; (Step 3) rewindV to the
beginning, send(A, t1, t2) as the first message, and(j1, j2) as the response toV ’s challenge. SinceV is
honest, he will send the same challenge(c1, c2) and thus accept this conversation. Again, we observe that
the transcripts produced byS are perfectly distributed. This follows in part from the fact that a real prover
can randomize his witness(hsf(ID)r, gr) as(hsf(ID)rf(ID)r

′
, grgr′) = (hsf(ID)r+r′ , gr+r′) for any

value of(r + r′) ∈ Zq. Thus,anyrandom value fromZq used byS to createA in step one is valid and from
the correct distribution. 2

