A Crash Course on Coding
Theory

Madhu Sudan
MIT

Madhu Sudan, : 1

Computation in the presence of noise

e Influence of coding theory.

— [von Neumann '56]

— [Shannon & Moore '56]

— [Elias '58]

— [Dobrushin & Ortyukov '77]
— [Rivest et al. '80]

— [Pippenger '85]

— [Spielman '97]

e Won't describe in detail.

— Models tricky.

— This is what codes were meant to do.

— We will focus on less obvious
connections.

Madhu Sudan, : 3

Topic: Applications in CS

We'll cover an assortment of applications of
coding theory in computer science.

Disclaimer: Most connections to coding
theory brought about in hindsight.

Madhu Sudan, : 2

Secret sharing [Shamir]

Defn: (n,k, N) Secret Sharing Scheme:
“Distribute” secret s € [N] among n parties,
so that no subset of size £ — 1 has any
information about secret, while every subset
of size k can compute secret.

Formally, SSS given by sets (2, M and
f:[n] x[N]xQ— M:

Distribution Given secret s € IV, pick w € ()
at random and let i-th share be f(i,s,w).

Recovery Given {(7,s;)|i € S} for |S| > E,
{s 3w, Vie s, f(i,s,w) =si}| < 1.

Secrecy Given {(i,s;)|i € S} for |S| < k
Vs, Pry[ViesS, f(i,s,w) =s;] = %

Madhu Sudan, : 4

Construction
Let C = [n+1,k,n—k+ 2]y MDS code.

Let = [N]*=1 and M = [N].
f is computed as follows:
Given s € [N], and w = (s1,... ,5k_1)
let c € C's.t. (¢); = s; and (¢),41 = s.
Then f(i,s,w) = (¢);.

Properties
Distance = Recovery.
Dimension = Secrecy.

[Shamir]'s scheme:
Used polynomials = RS codes.

Madhu Sudan,

Prob. Comm. Complexity

Identity(z,y) = 1 if x = y and 0 o.w.,

[Yao]: Identity has deterministic comm.

complexity at least n.

[Rabin+Yao|: Identity has prob. comm.

complexity O(logn).

Proof:

e Parties agree on a code C' = [2n, n, .01n]s.

e X picks i € [2n] at random

e X sends (i,C(x);) to Y.

e Y sends back 1 if C(z); = C(y);
and 0 otherwise.

e (Repeat as desired.)

Original proof: Via Chinese Remaindering.

Madhu Sudan,

Probabilistic Communication Complexity

Defn: Let f : {0,1}"™ x {0,1}" — {0,1}.
The communication complexity of f is the
minimum number of bits that two players X
and Y have to exchange to determine f(z,y),
where initially X knows = and Y knows y.

Parties may be forced to be deterministic or
allowed to toss random coins.

An important result in the early study
of communication complexity, separated
probabilistic communication complexity from
deterministic communication complexity, by
considering the Identity function.

Madhu Sudan, : 6

Pseudorandomness: [-wise independence

Limited independence:

e Concept used in reducing randomness
used by randomized algorithms.

e Take algorithm using n independent
random coins.

e Show algorithm works as well when given
n dependent coins in which any subset
of [are independent.

e Use an [-wise independent sample space.
(Typically much less randomness.)

Defn: (Simplified): A set S C [g]" is [-wise
independent, if for every sequence of [distinct
indices i1,... ,i; and b € [q]',

Prmes[Vj € [l],:l?ij = bj] = q_l.

Goal: Given n,q,![find smallest such S.

Madhu Sudan, : 8

[-wise independence

Insight: linear independence =- independence.

Construction:
e Pick code C = [n, k,[+ 1],.
e Set S = C*. (Duality!)

Correctness: Exercise!
Quality: Rate(C) large = S small.

Well-known examples:

Pairwise independence:
Usual construction: Hadamard codes.
From above: Hamming® = Hadamard!

k-wise independence:

Usual construction: Polynomial evaluation
From above: RS = RS codes!

Madhu Sudan, : 9

Examples

e (m,n,t)-Design: Family of subsets of
[m|, each subset of size n, with every
intersection being of size at most .

Designs = constant-weight binary ECCs.
e [Nisan-Wigderson] Pseudo-Randomness:

Create pseudo-random strings from hard
functions. One key ingredient: Design.

e Many paths from ECCs to pseudo-
randomness! (e-biased spaces: another
well-known application of ECCs.)

Madhu Sudan, : 11

Aside: Explicit constructions

Some common examples of combinatorial
structures for which we seek explicit
constructions:

e Error-correcting codes

e Designs (Constant-weight binary codes)
e Expanders

e Pseudo-random sequences

e Low disrepancy sequences

e Dispersers

e Extractors

Many inter-relationships.

Madhu Sudan, : 10

Examples (contd).

e [Trevisan] Constructs “Extractors” - a
special family of expanding graphs: Main
ingredients: [NW] (i.e., designs) + error-
correcting codes of large list-decoding
radius!

e [*.*] Interactive Proofs, Program Checking
and Probabilistically Checkable Proofs.
Rich collection on results over the course
of last 12 years. Reliance on coding theory
hidden initially, but explicit now!

(Details omitted.)

Madhu Sudan, : 12

Linearity Testing

Defn: f : [— [Fy is linear if for every
z,y € Iy, we have f(z) + f(y) = f(z +).

Problem:
Given: oracle access to f : [} — 5.
Goal: Is function linear? l.e.,

Completeness | linear = accept w.p. 1.

Soundness If every linear function ¢ is at
least e-far in Hamming distance from f,
then reject with probability 6.

Madhu Sudan, : 13

Linearity Testing a la [Kiwi]

Let C be code whose codewords are all
linear functions (where truth tables of linear
functions are viewed as binary vectors).

C is the [27,2", 2"~], Hadamard code.

Let C' + f be the linear code spanned by
codewords of C' and f.

Realization 1: € = distance rate of C' + f.

Madhu Sudan, : 15

Linearity Testing (contd).

Linearity Test[Blum,Luby,Rubinfeld]

e Pick z,y at random
e Accept if f(z) + f(y) = f(z +y).

Performance: How do ¢ and § relate?
In particular, is ¢ lower bounded by
some growing function of €7

e Easy: e > 04 6> 0.
e Non-trivial: § > Ze. [BLR].
e Subsequently: § > e [BCHKS].

e The realization: Testing = Duality of
coding theory [Kiwi].

Madhu Sudan, : 14

Linearity testing (contd).

e To understand § = need to look at dual.

e Random strings in linearity test correspond
to weight 3 codewords in C'*!

e Recall (C+ f)* C C*. 1—§ = fraction
of weight 3 codewords of C* that are also
contained in (C' + f)*!

e Summarizing:
e Have partial info on wt. dist. of primal.
e Have partial info on wt. dist. of dual.
e Use MacWilliams ldentities!

e [Kiwi] analyzes many tests! Esp. linearity
testing over arbit. fields.

Madhu Sudan, : 16

Worst-case to Average-case

Defn: Language L belongs to avg-P if
there exists a polynomial time algorithm that
decides L. on “most” instances of every length

n, when inputs are drawn uniformly at random
from {0, 1}".

Question: Is avg-P = NP?

Answer: Certainly, YES if P = NP.
But what if P £ NP?

Questions of this nature are studied under the
label “Average-case Complexity”

Relationship between average to worst case
open at the P vs. NP level.

Coding theory answers the questions at the
EXP vs. P/poly level.

Madhu Sudan, : 17

Worst-case to Average-case

Thm: EXP ¢ P/poly = EXP ¢
avg-P /poly.

Proof uses following code.

Fact: Ve > 0,k, 1 systematic code C
mapping k bits to n = poly(k/e) bits,
with list-decoding algorithm that, given an
implicit representation of a received word
r € {0,1}", outputs implicit representations
of all codewords within a distance of %+ €
from the received word, in poly logn time.

(Implicit representations = oracles)

Madhu Sudan, : 19

Aside: Definitions

EXP = languages decidable in exponential
time. (Hard).
P/poly = languages decidable with

polynomial size circuits. (Easy).)

Madhu Sudan, : 18

Worst-case to Average-case

Proof:[of Theorem, assuming Fact]:

Given: g : {0,1}' — {0,1} in EXP — P /poly.

o Let O = [n,k = 2!, 6], code (from Fact.)
e View g = 2\-bit string to be encoded.

e View h = C(g) as truth-table of function.
e Then h is hard almost everywhere.

Analysis:
e Let f predict h with accuracy %-ﬁ— €.
e View [as implicit rep'n of rec’'d vector.
e List decoder outputs implicit representations
(circuits) computing nearby codewords.
e Some nearby codeword is h = C'(g);
hence computes g efficiently.

Madhu Sudan, : 20

Hard Boolean Functions

Issue:
Suppose I hard computation problem.
Then, do there exist hard languages?

Distinction?
Problem = f: {0,1}" — {0,1}™.
Language = L : {0,1}" — {0, 1}.

Languages are easier to work with, but insight
into hardness usually comes from general
functions.

Well-known answer: Obviously yes.
If f:{0,1}" — {0,1}™ is hard, then
sois L:{0,1}"™ x [m] — {0,1},
where L(z,i) = (f(x));.

Madhu Sudan, : 21

Hardcore Predicates[Goldreich+Levin]

Given: One-way perm. 7 : {0,1}* — {0, 1},
Want: Boolean function b = b(z,17) s.t.
b(x,1) hard to compute given 7(z), 1.

(Can’t compute 7 w.p. greater than ¢ should
imply can’t predict b w.p. greater than %+5.)

Abstract GL [Impagliazzo]:
— Let C' = [n, k,]2 code w. list decoder.
— b(z,i1) = C(x), is a hardcore predicate.

Analysis:

— Let A(m(z),i) compute b(z,i) w.p. 5 + €.
— List decode f where f(i) = A(n(x),1).

— Gives C(z1),...,C(z) s.t. some z; = z.
— Check which one using 7(x).

Madhu Sudan, : 23

Hard Boolean Functions (contd).

e Answer satisfactory in a worst-case setting.

e But weak in the average-case setting. E.g.,

If the Discrete Log function is almost
always hard to compute, then the
resulting language may be easy to
compute on 1—% fraction of the inputs!

e Can we do better?

(Specific answers exists. E.g., it is
known that most bits of the Discrete
Log function are very hard. We look
for generic answers.)

Madhu Sudan, : 22

Application (contd.)

[GL]:

— Use C' = Hadamard code.

— Oracle rep'n saves time to write f.

— Give eff. list decoding algorithm for
Hadamard code.

[Impagliazzo|:

— Use Thm 2.
— Extra randomness reduces

from O(k) to O(log k).

Madhu Sudan, : 24

Conclusion

e Many interesting applications.

e But most connections to coding theory
found after the fact.

e Does explicit knowledge help? Recent
results (e.g. [Trevisan]) seem to say, YES!

Madhu Sudan, : 25

