A Crash Course on Coding Theory

Madhu Sudan MIT Topic: Linear time decoding - Part II

This lecture will focus on

- Simple and fast decoding algorithms
- Rate of noise close to optimal
- But noise is <u>random</u>, not adversarial.

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Eight

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Eight

Recall Shannon Capacity

Binary symmetric channel

Capacity = 1 - H(p), i.e., $\forall \ \epsilon > 0$, \exists code of rate $1 - H(p) - \epsilon$, s.t. if we transmit using code, and decode from $\approx (p + \epsilon)$ -fraction errors, then recover message w.p. $1 - \exp(-n)$.

How to decode so much?

Other channels

Erasure channel

Capacity
$$= 1 - p$$

Other channels (contd.)

AWGN Channel

(Additive White Gaussian Noise)

- Transmitted sequence in $\{-1, +1\}^n$.
- Received coordinates in \Re^n ith rec'd element equals

 Transmitted number + e_i Where e_i is Gaussian r.v.

 with mean 0 and variance σ^2 .

Note: σ replaces the parameter p.

Today's topics

- Polynomial time encoding and decoding up to capacity on Binary Symmetric Channel. (Original motivation of [Forney].)
- Linear time encoding and decoding up to capacity on Binary Symmetric Channel. (Using [Spielman].)
- A simple linear time encoding and decoding algorithm for the erasure channel. (Due to [Luby, Mitzenmacher, Shokrollahi, Spielman, Stemann].)

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Eight

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Eight

Forney Codes

Fix BSC parameter p and $\epsilon > 0$.

The code

- Let C_1 be $[n, (1-\epsilon)n, \epsilon n]_n$ RS code.
- Let C_2 be $[\ell, (1 H(p + \epsilon))\ell, (p + \epsilon)\ell]_2$ code with n messages. (i.e., $\ell \approx \log n$.)
- Let $C = C_1 \circ C_2$ be their concatenation.
- Transmit messages using C.

Its Parameters

- Block length N = nl.
- Rate = $(1-\epsilon)(1-H(p+\epsilon)) \approx (1-H(p))$.
- Distance Rate = ϵp .

Decoding Forney Codes

Simple Decoding algorithm

Step 1 Decode each inner block using Brute Force in time 2^{ℓ} .

Step 2 Decode outer code using RS decoder.

- But distance is pathetic!
- Why is this any good?
- (Work in Inf. Th. ⇒ Know your probability.)

Analysis: Motivation

- Errors are random, so they are evenly distributed.
- Most blocks contain only *p*-fraction errors.
- Most errors caught by inner decoder.
- Outer decoder comes in to clean up.

 $\textcircled{C} \textbf{Madhu Sudan}, \ \textbf{August}, \ \textbf{2001: Crash Course on Coding Theory: Lecture Eight}$

g

1. For any fixed inner block: $\Pr[\ \# \ \text{errors} \ge (p+\epsilon)\ell] \le 2^{-\delta\ell}.$ Call the bad event above a decoding failure.

Analysis: Formally

- 2. $\Pr[\# \text{ decoding failures} \ge \epsilon n/2] \le 2^{-\gamma N}.$ $(\gamma > 0 \text{ depends on } \epsilon \text{ and is called the error exponent.})$
- 3. If event in (2) doesn't happen, then decode successfully!

Thm: \exists codes with rate $1-H(p)-\epsilon$ with polytime encoders and decoders, with decoding error prob. $\exp(-n)$ on the BSC with parameter p.

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Eight

Moving on

- [Forney]'s work is from 1966.
- Introduced all the above ideas (concatenation, decoding, error analysis) and more.
- In fact also introduced GMD why? To improve the error exponent!
- Very careful analysis needed to see why GMD helps!

Next: Linear time encoding and decoding.

Aside: High-rate Spielman codes

As described [Spielman] codes had rate 1/4. But can also get codes of high rates.

Thm: $\forall \epsilon > 0, \ \exists \delta > 0$ and codes of rate $1 - \epsilon$ that are linear-time encodable and decodable up to δ fraction errors.

Linear time encoding and decoding

Decoding + Analysis

Encoding:

- Given k message bits.
- Encode using Spielman codes of rate 1ϵ .
- Partition into blocks with $\approx \frac{1}{\epsilon^2}$ bits.
- Encode blocks using random inner code of rate $\approx 1 H(p)$.

 As usual decode inner blocks and then decode outer block.

- Prob. of inner decoding failure is small constant.
- Prob. that # of inner decoding failures is twice the expectation is exponentially small.

Thm: \exists codes with rate $1-H(p)-\epsilon$ with linear-time encoders and decoders, with decoding error prob. $\exp(-n)$ on the BSC with parameter p.

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Eight

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Eight

Towards Practice

- Last theorem seems best possible theoretically.
- Not so good for practice.
- Needs large block lengths!
- Running time is actually $O(2^{\frac{1}{\epsilon^2}} \cdot n)$.
- While, can hope for running time of $O(n \cdot \text{poly} \log \frac{1}{\epsilon})!$

Recent developments

- Turbo codes + decoding:
 Simple codes + decoding algorithms, giving good results in simulations.
 [Benedetto, Montorsi, Thitijsima].
 But no analysis?
- Low-density Parity Check Codes:
 - Provably good performance.
 - Reach capacity on erasure channel [LMSSS].
 - Come close on error channel.
 [LMSS, Richardson+Urbanke, ...].

Cascade codes [LMSSS]

Binary erasure channel with parameter β .

Main idea:

- Cascade seq. of "Error-reduction" codes.
- This helps correct the check bits first.
- Then correct message bits.

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Eight

17

Cascade codes (contd.)

The construction

- Fix seq. of bipartite graphs G_1, G_2, \ldots
- G_i has $\beta^{i-1}k$ left nodes and β^ik right nodes.
- Identify right vertices of G_{i-1} with left vertices of G_i .
- Terminate when # vertices $\approx \sqrt{k}$
- ullet Truncate with $O(n^2)$ -time decodable code.

Encoding

- Message sets values of k left nodes of G_1 .
- Encode left to right setting vertices to parity of their left neighbours.

© Madhu Sudan, August, 2001. Crash Course on Coding Theory: Lecture Eight

Cascade codes (contd.)

Decoding

- Decode right to left.
- First decode final layer.
- Then, assuming all checkbits known for G_i , decode for "message" bits of G_i .
- Claim: Each layer fails with exponentially small probability.

Unspecified

- ullet How are the graphs G_1,G_2,\ldots , picked?
- How to decode them?

The decoding algorithm

Will explain for G_1 .

- Assume all checkbits known.
- Delete vertices corr. to message bits that are not erased, and incident edges.
- Iterate the following steps:
 - If \exists edge (m,c) in residual graph, with c having degree one, then
 - Set m to be parity of c with ngbrs of c (in original graph).
 - Delete m and c from residual graph.
- Stop when no such vertex exists.

Properties of Cascade codes

- Rate = 1β .
- If graphs have linear number of edges, then encodable and decodable in linear time.
- Correct from β -fraction erasures, with all but exponentially small error probability, assuming the bipartite graphs can be constructed.

The bipartite graphs

• Option 1: Go the [Sipser+Spielman] route. (c,d)-regular graph with expansion > c/2. This is good to correct small # fraction of errors, but not close to capacity.

- Regular graphs seem to be no good!
- Irregular degree graphs work!
 Key innovation of [LMSSS].

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Eight

21

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Eight

The bipartite graphs (contd.)

- Pick a degree sequence $\{\lambda_i\}_i$, $\{\rho_i\}_i$, where λ_i (resp. ρ_i) denotes fraction of edges of left (resp. right) degree i.
- Let G_i 's be random graphs with this degree pattern on appropriate # of edges.
- Rate condition: Degree seq. must satisfy

$$\frac{\sum_{i\geq 1} \lambda_i/i}{\sum_{i\geq 1} \rho_i/i} = \beta$$

 Analyze as a function of the degree sequences.

Analysis via And-Or trees

- Say, decode in rounds: Delete all degree 1 edges simultaneously etc.
- Fix edge m, c. What is the prob. that this edge is not deleted by the ℓ th round?
 - 1. m must be an erasure. AND
 - 2. \exists check bit c_j s.t. for all m_{jk} adjacent to c_j (other than m), m_{jk} not deleted by round $\ell-1$.
- Analysis leads to an "And-Or Tree" [LMS]. (assume no short cycles in graph).

And-Or trees

Let $q_\ell = \mathsf{Prob}$. of failure after ℓ rounds. Then

$$q_{\ell} \approx \beta \left(1 - \sum_{i} \lambda_{i} \left(1 - \sum_{j} \rho_{j} q_{\ell-1}^{j-1} \right)^{i-1} \right)$$

(Above informal: formal analysis hairier.)

Analysis (contd.)

Some compact notation:

Represent degree sequences by polynomials $\lambda(x) = \sum_{i \geq 1} \lambda_i x^{i-1}$ and $\rho(x) = \sum_{i \geq 1} \rho_i x^{i-1}.$

Then
$$q_{\ell} = \beta(1 - \lambda(1 - \rho(q_{l-1})))$$

When is decoding going to be successful? If $q_{\ell} < q_{\ell-1}$.

Happens if

$$\beta(1 - \lambda(1 - \rho(x))) < x, \quad \forall x \in (0, \beta).$$

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Eight

2.

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture Eight

Degree sequences?

- Given a degree sequence, can tell if it is good enough by previous analysis.
- How to find one? [LMSSS] give good sequence: λ_i proportional to 1/i, up to max degree D. ρ_i 's give Poisson distribution, with mean adjusted so as to satisfy rate condition.
- Note: Analysis only works for constant # of rounds. To finish off, add a Sipser-Spielman like analysis.

Theorem: Have linear time $(O(n \ln \frac{1}{\epsilon}))$ encodable and decodable codes acheiving capacity on binary erasure channel.

Extending to BSC

- For the Binary Symmetric Channel, decoding algorithm has to change:
- Use a "Belief-Propagation" algorithm.
 - Maintain estimate (on edges) of prob.
 that incident message bit is 1.
 - On even rounds average the edges at the message end.
- On odd rounds update the probability on the edges based on check bits.
- [LMSS], Richardson+Urbanke] prove that some degree sequences do very well.
- No analytic forms known on degrees.
 Numerically results come close to capacity (but not arbitrarily close.)

Conclusion

• Theoretically good analysis has resulted in good influence on practice.