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Other channels (contd.)

AWGN Channel
(Additive White Gaussian Noise)

e Transmitted sequence in {—1,+1}".
e Received coordinates in k™
ith rec’d element equals
Transmitted number + ¢;
Where e; is Gaussian r.v.
with mean 0 and variance 2.

Note: o replaces the parameter p.
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Forney Codes

Fix BSC parameter p and € > 0.

The code
o Let C be [n, (1 — €)n, en], RS code.
olet Oy be [6,(1—H(p+e€))l,(p+e€)l2
code with n messages. (i.e., £~ logn.)
o Let C = C; o C5 be their concatenation.
e Transmit messages using C.

Its Parameters
e Block length N = nl.
o Rate = (1—¢)(1—H(p+e€)) ~ (1-H(p)).
e Distance Rate = ep.
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Today'’s topics

e Polynomial time encoding and decoding up
to capacity on Binary Symmetric Channel.
(Original motivation of [Forney].)

e Linear time encoding and decoding up to
capacity on Binary Symmetric Channel.
(Using [Spielman].)

e A simple linear time encoding and decoding
algorithm for the erasure channel. (Due
to  [Luby, Mitzenmacher, Shokrollahi,
Spielman, Stemann].)
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Decoding Forney Codes

Simple Decoding algorithm

Step 1 Decode each inner block using Brute
Force in time 2°¢.

Step 2 Decode outer code using RS decoder.

e But distance is pathetic!
e Why is this any good?

e (Work in Inf. Th. = Know your
probability.)
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Analysis: Motivation

e Errors are random, so they are evenly
distributed.

e Most blocks contain only p-fraction errors.
e Most errors caught by inner decoder.

e Outer decoder comes in to clean up.
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Moving on

e [Forney]'s work is from 1966.

e Introduced all the above ideas (concatenation,
decoding, error analysis) and more.

e In fact also introduced GMD - why? To
improve the error exponent!

e Very careful analysis needed to see why
GMD helps!

Next: Linear time encoding and decoding.
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Analysis: Formally

1. For any fixed inner block:
Pr[ # errors > (p+ €)f] < 279
Call the bad event above a decoding failure.

2. Pr[# decoding failures > en /2] < 277N,
(v > 0 depends on € and is called the error

exponent.)

3. If event in (2) doesn't happen, then decode
successfully!

Thm: 3 codes with rate 1 — H(p) — €
with polytime encoders and decoders,
with decoding error prob. exp(—n)
on the BSC with parameter p.
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Aside: High-rate Spielman codes

As described [Spielman] codes had rate 1/4.
But can also get codes of high rates.

Error-Reducer with ek check bits

Spielman code on €k message bits

S

Thm: Ve > 0, 396 > 0 and codes of rate 1 — ¢
that are linear-time encodable and decodable
up to 4 fraction errors.
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Linear time encoding and decoding

Encoding:

( )

C1 = Spielman Code

e Given k message bits.

e Encode using Spielman codes of rate 1 —e.

e Partition into blocks with & % bits.

e Encode blocks using random inner code
of rate & 1 — H(p).
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Towards Practice

e Last theorem seems best possible

theoretically.
e Not so good for practice.
e Needs large block lengths!
e Running time is actually O(Qel2 ‘n).

e While, can hope for running time of O(n -
poly log %)'
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Decoding + Analysis

e As usual decode inner blocks and then
decode outer block.

e Prob. of inner decoding failure is small
constant.

e Prob. that # of inner decoding failures
is twice the expectation is exponentially
small.

Thm: 3 codes with rate 1 — H(p) — €
with linear-time encoders and decoders,
with decoding error prob. exp(—n)
on the BSC with parameter p.
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Recent developments

e Turbo codes + decoding:
Simple codes + decoding algorithms,
giving good results in simulations.
[Benedetto, Montorsi,  Thitijsima].
But no analysis?

e Low-density Parity Check Codes:
e Provably good performance.
e Reach capacity on erasure channel
[LMSSS].
e Come close on error channel.
[LMSS, Richardson+Urbanke, ...].
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Cascade codes [LMSSS]

Binary erasure channel with parameter S.
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Main idea:
e Cascade seq. of "Error-reduction” codes.
e This helps correct the check bits first.
e Then correct message bits.
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Cascade codes (contd.)

Decoding
e Decode right to left.
e First decode final layer.
e Then, assuming all checkbits known for
G;, decode for “message” bits of G;.
e Claim: Each layer fails with exponentially
small probability.

Unspecified
e How are the graphs G1,Ga, ... , picked?
e How to decode them?
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Cascade codes (contd.)

The construction

e Fix seq. of bipartite graphs G1,Ga,....
o G, has B*~ 1k left nodes
and B% right nodes.
e Identify right vertices of G;_1
with left vertices of G;.
e Terminate when # vertices =~ vk
e Truncate with O(n?)-time decodable code.

Encoding

e Message sets values of k left nodes of G.
e Encode left to right setting vertices to
parity of their left neighbours.
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The decoding algorithm

Will explain for G.
e Assume all checkbits known.

e Delete vertices corr. to message bits that
are not erased, and incident edges.

e |terate the following steps:
— If 3 edge (m,¢) in residual graph,
with ¢ having degree one, then
— Set m to be parity of ¢ with ngbrs of ¢
(in original graph).
— Delete m and ¢ from residual graph.

e Stop when no such vertex exists.
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Properties of Cascade codes

e Rate = 1— 4.

e If graphs have linear number of edges, then
encodable and decodable in linear time.

e Correct from [-fraction erasures, with all
but exponentially small error probability,
assuming the bipartite graphs can be
constructed.
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The bipartite graphs (contd.)

e Pick a degree sequence {\;};, {p:i}:,
where A; (resp. p;) denotes fraction of
edges of left (resp. right) degree 1.

e Let GG;'s be random graphs with this degree
pattern on appropriate # of edges.

e Rate condition: Degree seq. must satisfy

2121 )‘i/i -3
ZiZl pift

e Analyze as a function of the degree
sequences.
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The bipartite graphs

e Option 1: Co the [Sipser+Spielman] route.
(¢, d)-regular graph with expansion > ¢/2.

This is good to correct small # fraction of
errors, but not close to capacity.

e Regular graphs seem to be no good!

e Irregular degree graphs work!
Key innovation of [LMSSS].
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Analysis via And-Or trees

e Say, decode in rounds: Delete all degree 1
edges simultaneously etc.

e Fix edge m,c. What is the prob. that this
edge is not deleted by the £th round?

1. m must be an erasure. AND

2. 3 check bit ¢; s.t. for all m;; adjacent
to ¢; (other than m), mj not deleted by
round £ — 1.

e Analysis leads to an "And-Or Tree” [LMS].
(assume no short cycles in graph).
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And-Or trees

Let g; = Prob. of failure after £ rounds. Then
. oNi—1
Q@ ~pB (1_Zi)‘i (1_23'/71"1%:11) )

(Above informal: formal analysis hairier.)
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Degree sequences?

e Given a degree sequence, can tell if it is
good enough by previous analysis.

e How to find one?
[LMSSS] give good sequence:
A; proportional to 1/i,
up to max degree D.
pi's give Poisson distribution,
with mean adjusted so as to
satisfy rate condition.

e Note: Analysis only works for constant #
of rounds. To finish off, add a Sipser-
Spielman like analysis.

Theorem:  Have linear time (O(nlnl))
encodable and decodable codes acheiving
capacity on binary erasure channel.
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Analysis (contd.)

Some compact notation:

Represent degree sequences by polynomials
)\(.’L‘) = ZiZl )\i.’lfz._l
and p(x) = 3251 pir

Then o= B(1 = A1 - p(qi—1)))
When is decoding going to be successful?
I qr < qo—1.

Happens if
BA—=A1—p(z)) <z, Vre(0,5).
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Extending to BSC

e For the Binary Symmetric Channel,
decoding algorithm has to change:

e Use a “Belief-Propagation” algorithm.

— Maintain estimate (on edges) of prob.
that incident message bit is 1.

— On even rounds average the edges at the
message end.

— On odd rounds update the probability on
the edges based on check bits.

e [LMSS], Richardson+Urbanke] prove that
some degree sequences do very well.

e No analytic forms known on degrees.
Numerically results come close to capacity
(but not arbitrarily close.)
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Conclusion

e Linear time decoding is an important
feature in practice.

e Theoretically good analysis has resulted in
good influence on practice.
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