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List Decoding

When # errors more than the error-correction
radius, the transmitted word is not specified
uniquely by the received word! What should
an error-correction algorithm do?

List Decoding Problem:

Given: r € [F, error bound e.

Task: Output list of codewords ¢ s.t.
A(r,c) <e.

e Set more appropriate than list?
e Problem dates back to [Elias '57].
Also [Wozencraft '58].
e Reasonable notion of recovery.
e Error probabilistic = List size < 1 w.h.p.
e Clean separation of algorithmic problem
from probability.
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Topic: Decoding more errors

In this lecture we will see how we can
“correct” more errors.

More correctly, we will redefine the
“correction” problem, and then how to correct
more errors in this definition.
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List decoding radius

Prereq. for polytime soln. (in input):
Output size must be polynomial.

Informal Defn:  The list-decoding radius
(LDR) of a code {C} is the largest radius
for which the output size of the list decoding
problem is bounded by a polynomial in the
block length.

Notes:
e Sound familiar? Recall Johnson bound!
e To formalize defn.,
Either fix list-size (e.g. poly(n,q) = nq)
Or consider infinite families of codes.
e Better to work with ratios (LDR/n).
e List-size 1 gives error correction radius!
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List decoding radius

e Well understood as function of distance,
for list-size = 1.

e Not well understood for list-size > 1.

e Fix g-ary C with dist. dn,
and LDR (for poly-sized lists) is en.
— For “natural” codes € < 6.
— For all codes 6/2 < e.
— 1—+/1—06 < e. (Johnson bound.)
— %(1 — /1= ;50) < e (Johnson.)
(Lower bounds on ¢ increasing.)
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Algorithms for List Decoding

List decoding radius

e Relation to rate of the code?

e Intuitively, LDR drops as rate increases.
What is largest LDR for code of rate R7

e Not known if list-size = 1. (Why?)

e Very well understood for list-size > 1.
—e<1—-Hy1-R)
— There exist codes s.t. ¢ = 1—H (1—R).

e Musing: Which is more important?
LDR or Distance?
If former, then why pursue all the bounds?
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List decoding of Reed Solomon Codes

Given: t,d; {(z1,v1),--- (T, Un)}-
Task: Find all polynomials p of degree < d
that go through at least 7 points.

Madhu Sudan, : 7



Example Instance
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Solution Idea (contd.)

e New idea: Try relational explanation.

e le. Find non-zero Q(z,y) such that
Q(z;,y;) = 0 for every 7. (Ideally degree of

() small in both variables.)

e Hopefully p emerges in picture!

e Formally (y — p(z)) | Q(z,v).
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Solution Idea

e Somehow need to explain both the curve
y = x and y = —xz. Further there is the
mess of points (which fortunately lie on a
circle 4> + 2> = 1. Need an error-locator
for this!

e How to explain all these points together?
Algebraically?

e Previously: Gave “functional” explanation.
y; = R(z;) for some rational function R.
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A Quartic Fit: All the Lines Emerge

Qz,y) =y* — z* +y* — 2?

After factoring

Qz,y) =’ +2> - 1)(y+z)(y — )

Madhu Sudan, : 11



Finding Q(z,y) with low degree

e Q1: How to find () of low degree?

e Q2: Why does it even exist?

e Al: Solve linear system. Let Q(z,y) =
Zj,l lexjyl-
Unknowns: {g;;: 0 < j,l < D}.
Constraints: ) ¢ =] y; = 0; i €

{1,...,n}.

e A2: Non-zero solution exists if

# unknowns >  # constraints
(D+1)2>n
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Proof

o Let S = {i|y; = p(x;)}.
o Let g(z) = Q(z,p(z)).
o deg(g) < (d+1)D.

e But g(z;) = Q(xi,p(;)) = Q(z4,9:) =0
for every i € S.

e |S| > (d+1)D implies g = 0.

e Thus p(x) is a root of Q(z,y) (or y — p(z)
divides Q(z,v).
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Conditions for divisibility of ()

e deg,(Q),deg,(Q) small.

e deg(p) small.

o # pts. st. Q(ziy,vyi) = vi —p(z;) =0
large.

Lemma: deg,(Q),deg,(Q) < D, deg(p) <
d, t > D(d+ 1) implies y — p(z) divides

Q(z,y).

Why? Similar to the fact that two degree &
polynomials can not agree in k£ + 1 places.
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Summary

Algorithm:

Step 1: Find @ # 0 of degree /n s.t.
Q(z;,y;) =0 for every i € {1,... ,n}.
(Solve a linear system.)

Step 2: Factor Q(z,y) and report all p such
that y — p(z) divides Q).
(Factoring easy [Kaltofen,Grigoriev,Lenstral.

Theorem: Can find every p with agreement ¢,
provided ¢ > (d + 1)/n.

Improvements:
— Careful choice of ) = t > /2dn.
(Will do better later.)
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Algorithms & Their Performance Another Example
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A Quartic Fit: No information!! Why?
\\
\ - - -
1N e Each point is good for at least two lines.

e But () has allowance to explain only one
of each (i.e., is forced to go through each
point only once)!

Solution idea:

— Similar Plan: Fit @), Hope for factors of

L ‘\&;/@/ form y — p(z) for all “relevant” p.

’ — Main Difference: Expect more from ().

— Every (z;,y;) is a “singularity” of Q.
(Expressible as 3 linear constraints on
coefficients of ().)
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Why this will help?

What we lose? — Additional constraints force
us to raise the degree of ). (We need
more unknowns to guarantee existence of non-
trivial solution.)

But....

Much more gain in the second phase when
we factor () and look for factors of the form

y—p(x) !

e Now p passes through singularities of ) as
opposed to just points on ().

e Need only half as many singularities as
regular points!!
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Degree 7 Super-fit: All Lines Emerge!!
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Back to the Example

Fit Q)(x,y) of total degree 7 through the
points s.t () “intersects itself” at each of the
11 points. (Can do this: solve homogeneous
linear system with ("1?) = 36 unknowns and

11 x 3 = 33 constraints.)

Now all relevant linear polynomials “emerge”
in the picture!!

Madhu Sudan, : 21

Weighted Polynomial Reconsruction
Problem

Given: Integers ¢, d.

n points {(z1,v1),. -, (Tp,yn)}
weights wq, ..., w,.

Task: Find all polynomials p of degree < d
that go through points whose weights
sum to at least V.

e Solution: () should have w; K singularities
at i-th point.

e Thm: Can solve above if W > \/d ), w?.

e w; = 1 yields unweighted case.
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Application: Decoding Concatenated
Codes

e Say have a concatenation of RS code with
some inner code.

e New decoding approach:
— By brute-force, list-decode inner code
with distance information.
— Convert distances into weights.
— Apply weighted list-decoding algorithm.

e Concatenation of RS 4+ Hadamard code can
be decoded up to known bound on LDR,
using above paradigm.
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Some abstract algebra

Recall: Commutative rings, Integral domains.

Ideals in rings:
Defn: I C R is a ideal if
Vabel,reR a+barel

Examples:
o (p) ={pr|r € R} wherep € R
Set of multiples of p.
e (z,y) = (x) + (y) where z,y € R
Polynomials in z,y with constant term 0.

Nice Properties:
e [ Jideals =soare [+ J INJ,I-J.
e | factors R nicely. Can define » mod I.
R/ also a ring (and often a field).
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Ideal Error Correcting Codes

Abstraction: ldeals

Defn: Code specified by
e Integral domain R,
e n ideals I4,...,1,, and
e Message space M C R.

m +— <m([1), ce ,m([n)>

e Usually have norm on R.
e Axiom: No small non-zero element in
product of too many ideals.
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Examples

Reed Solomon codes:
® R =Fy[z]
o [, =(x—uz;),z; €F,
o M ={peF,[z],degp < k}

Chinese Remainder codes:
e R=17
o I; = (pi),pi
e M={0,..., K—1}

Algebraic Geometry codes:
e Underlying field K = [zy,... ,z,,]/1,
I some 1-dimensional ideal.
e R = polynomials from K to IF,.
e [; = P; place of degree 1.
e M = functions of pole order < k.
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Solution

Note: Norm on R induces norm on R[y]

Step 0: Pick zy,... , z, carefully.

Step 1: Find @ € R[y] of small norm s.t.

Qe

Step 2: Factor ) and output factors of the
form y — m.

e Choice of z;'s depends on I;'s.
e Bound on norm of ) depends on M.
e Existence of small ): counting argument.
e Finding: algorithmic question about £.
e y — m|Q since Q(m) in product of
too many ideals.
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The decoding question

Standard definition:

Given: rq,... .7, € R; t.
Find: me M st. mer;+ I;
for at least ¢ values of i.

Strategy to solution:

— Redefine problem by working over R|y].
— Defineideals J; C Rly|, J; = Li+(y—1;).
— Notemer;+1; & (y—m) € J,.

New Problem definition:

Given: Jq,...,J, ideals in R]y|.
Find: me M st. y—m € J;
for at least t values of «.
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Application: Chinese remainder decoding

Given: py, ..., p, relatively prime.
ri,...,7, residues; error bound e.
Find: m € {0,... , K — 1} s.t.
m # r; mod p; for < e choices of i.

Note: I; = (p;), and J; = (p;) + (y — 7).
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CRT decoding References

e Obvious norm on integers.

e |deals = Lattices.

e Product = intersection, if ideals coprime.
e Small polynomials found by LLL algorithm.

e RS codes: [S.'97, Guruswami+S.99,]
Based on prior work of
[Ar+Lipton+Rubinfeld+S. "00].

e AG codes.
[Shokrollahi+Wasserman’98, Guruswami+S.99 ]
Algorithm: e CRT codes.
e [; = lattice corr. to polynomials in J". [Goldreich+Ron+S5."98, Boneh "00]
e [, = intersection of lattices. [Guruswami+Sahai+S. '00]
e Find small vector qg, ... ,qq in L.

e Abstraction:

® Factor polynomial () = Ziqwi [Guruswami+Sahai+S. '00]

and output roots.
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