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Erasure correction problem

(Gentle introduction to errors).

Defn: Erasure channel either transmits
symbol faithfully, or outputs 7.

Erasure decoding problem:

Given: (G generator for code C.
T1y... ,Tn € Fg U {7}
Task: Find ¢ € C s.t.
T; 75{? = r; = C;

Prop: ¢; unique if # 7's is less than d.
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Topic: Decoding Algorithms

This lecture will focus on algorithms for
decoding of algebraic codes.
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Erasure correction (contd).

Alg:
e Delete rows of (G corresponding to 7s.
Call resulting matrix G.
e Let » with 7s deleted be 7.
e Find z s.t. 2G' =71/
by solving linear system.
e Output c¢ if unique
Else, output A,cs.t. ¢+ yA
are all the solutions.

Conclusion:
e Erasure decoding easy for linear codes.
— Can find soln. if unique.
— Can enumerate all if not!

Madhu Sudan, : 4



The Error Correction Problem

(Welcome to the real world.)

Task:
(Implicitly given) Code C.
Explicit Input: 7 = (ry,... ,r,) € F}.

Parameter: Integer e.
Goal: Compute ¢ € C s.t. A(r,c) <e.
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Decoding Reed Solomon
Codes

Error correction radius

Combinatorial question:

When is ¢ uniquely specified (by 7, e and C)?
Prop: If e < d(C)/2 then at most one c.
(Maybe none!)

Food for thought: Which comes first? Error-
correction radius? or distance? (l.e., which
one to optimize, given rate?)

Answer: Doesn’'t matter - they are essentially
optimized simultaneously!
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Problem Statement

Given:
® ry,...,x, € F distinct.
®ery,...,r, €F.

e Integers k, e
Task: Find a poly p of deg. k£ — 1 s.t.
p(zi) # i

for at most e values of 7 € {1,... ,n}.
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Decoding Reed Solomon Codes

[Peterson60, Berlekamp66, Massey66]
[Welch-Bkmp86, Gemmell-S.92]

Key concept: Error locator polynomial
Y(z) s.t. Y(x;) =0 if p(x;) # r;

1. Y has low-degree (< ¢)

2. Z =Y.p has low-degree (< e+ k — 1)

3. Vi, Z(z;) =Y (x;).p(x;) =Y (x;).r;

Main Idea: Ignore all references to p above
and look for Y, Z.
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Why does it work?

Claim 1: Pair of polynomials V| Z satisfying
the requirements of Step | do exist!

(In fact we just proved the existence.)

Claim 2: Linear Algebra can find one such
pair.

(But pair may not be unique. How do we
guarantee Y is the error-locator?)

Claim 3: If YV,Z and Y’ Z" both satisfy
conditions of Step |, then Z/Y = Z'/Y".
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Decoding RS Codes (contd.)

. Find (Y, Z) s.t.

—Y#£0
—degY <e
—degZ <e+k—1

[I. Output ggig

Demystifying Step I: Just linear algebra!

Madhu Sudan, : 9

Proof of Claim 3

Consider the polynomials Y- Z and YV - 7',

e Both have deg. < 2e+ k — 1.
e Foreveryic {l,... ,n},

Z(z;)) =Y (z;)-r;iand Y'(2))r; = Z' ().
e Multiplying and cancelling 7;’s:

(¥ Z)(w:) = (V- Z')(x2).
e But above happens for n points,

while degrees are smaller than n!
eSoY' - Z=Y -7

Thm: Alg. works if e < ”T_k

(As given, runs in time O(n®) time. Best
implementations take O(npoly logn).)
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Musings

e Algorithm essentially in [Peterson’60].
Before “polytime” was formalized.

e Magic of algebra! Also a warning shot!
Beware if you intend to base cryptography
on algebra ...

e Roots of the specific algorithm.
CS literature: [Berlekamp-Welch'86].
All ideas are there, but not the exposition.
Exposition is from [Gemmell-S."92].

e But equally simple exposition well-known
in coding theory (from around 1988).
[Pellikaan,Kotter,Duursmal.

e We'll describe their knowledge next.
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Abstract decoding (contd.)

Fix a code C = [n, k,d|.

Defn: (), Z) are e-error-correcting pair for C
if the following hold:

e ) are linear codes.

oY =[n,e+1,n—d+ 1] code.

e Z =n,7, e+ 1] code.

e Vx(C C Z, where

AxB={axbla€ A,bec B}
and a * b denotes coordinatewise product.

Thm: If C has a e-error-correcting pair then
it has an e-error-correcting algorithm.
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Abstract decoding algorithm

e How much of the prev. algorithm is
linear algebra? And how much polynomial
arithmetic?

e Investigated by
[Pellikaan,Kotter,Duursma 88].

e Surprisingly little polynomial arithmetic.
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Algorithm

Given: 7 = (ry,... ,r,) € IF].

e Find (ye ),z € 2) sit.
—y#0.

—y*xr=2.
e Set ¢; = r; if y; # 0 and erasure otherwise.

e Erasure decode for c.
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Proof steps

1. Such a pair (y, z) exists:

— Set y; to zero whenever ¢; # ;.

— Find non-zero y € ) subject to above.
(Exists by dim. of ).)

— Set z = cxy.

2. Pair can be found (linear system).

3. For any (y, z) found by alg. and any c s.t.
Ale,r) < e, we have y x ¢ = z. (Follows
from distance of Z.)

4. Any pair y, z has at most one ¢ s.t. y*xc =

2. (Follows from distance of ).)
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Decoding Concatenated Codes

Recall concatenation:

[nla kl? dl]qkz o [TLQ, k27 d2]q

n_1 symbolsover g*k_2
Eq

(outer) i
k_1 symbols over g*k_2 E, / \E2 (inner)

‘ n

o ]

n_1 blocks of n_2 symbols each

[Forney'66]: Also gave decoding algorithms.
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Application: AG codes

e Recall order axioms for algebraic-geometry
codes. (Product rule, and # zeroes.)

e C = functions of order < k..

e ) = functions of order < (n — k + g)/2.
e Z = functions of order < (n+ k + g)/2.
e Gives (n — k — g)/2-error-correcting pair.

e Thus every AG code C has a decoding alg.
going up to (d(C) — g)/2 errors.

Madhu Sudan, : 17

Simple decoding

Prop: If outer code decodable up to e
errors (in poly time), then concatenated code
is decodable up to e; - % errors in poly

+0(n1¢"?) time.

r r2 rn 1
Bty () [ ---- ]
itslong Closest Codeword
S . [Brute Force]
Elements: [ | [ |
of k2. % % s

’ Outer Decoder ‘
Alg: DecodeMeétsesymbol of inner code by
Brute force. Then decode the “received word”
corr. to outer code.
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Generalized Min. Dist. Decoding

More sophisticated decoding. Stronger
assumptions. Stronger result. [Forney].

Assumption: Outer code has error and erasure
decoder. Decodes if 2¢ + s < d;,
where e = # errors, s = # erasures.

Consequence: Concat. code can be decoded
for up to did2/2 errors (= half the minimum
distance).
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GMD Analysis

e Let m be s.t. A(Eg(El(m)),r) < d1d2/2
Let (z1,...,2n,) = E1(m).
Let [; = A(ZZ,T'l)
Let bl =1if Z; 7é Yi-

e Assume decoding unsuccessful. Then
following inequalities hold:
(D)V)j, (ni—j)+2-Y0_ b >di
(2) V’L, ll Z max{wi, bl(dg - wl)}
(3) VZ, w; S Wi+1 S d2/2

e Above imply:
did
27:11 li > %
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GMD Algorithm

I r

r 2 n1
Bty ) [ ---- [
itslong Closest Codeword
O [Brute Force]
Elements I I I
of k2% % 1

’ Outer Dpcoder ‘

'

"Message" m

Alg:
o Let w; = min{A(r;,v:),d1/2}.
e Wlog wi <wy <+ <w,y,.
e Fori=1ton; do
— Declare {i,... ,n1} to be erasures.
— Decode prefix.
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Analysis (details)

(2) = l;>w;+ bz(dg — Zwi)
So suffices to show:
>oiwif/da+ 32 bi(1 — 2(wi/dy)) = di /2.
eletz,=1— Qwi/dg.
e Then x;'s are non-increasing,
with 0 < z; < 1.

e Suffices to show:

>l —2i/2) + 37, bixy > di /2,
given (n1 —j)/2+ 31 b > di/2

e Above follows if the vector

(1,0 &y — D Ti)
is in the convex hull of the vectors
V1, ... Uy, wherev; = (170™77 (—j)),

e Last is easily verified.
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Summarizing

e Can decode Reed-Solomon codes efficiently,
up to half the minimum distance.

e Can decode algebraic codes efficiently, up
to some close approximation to half the
distance.

e Can decode concatenated codes also up to
half the distance, provided outer code is
nicely decodable.

e Why half the distance?

— Algorithmic limitation? (Can’t handle
more errors?)

— Combinatorial limitation? (Answer is not
unique!)
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