
6.841 Advanced Complexity Theory Mar 14, 2007

Lecture 11
Lecturer: Madhu Sudan Scribe: Igor Ginzburg, Adam Lerer

1 Administrative

• PS2 is graded and available from Swastik.

• PS3 is out and due Friday 4/6.

2 Overview

In this lecture we prove the two containments of Toda’s Theorem:

1. PH ⊆ BP · ⊕ ·P

2. BP · ⊕ ·P ⊆ P# P

3 Operator Definitions

The alternation operators acting on a language L or complexity class C are defined as follows:

∃ · L = {x|∃y s.t. (x, y) ∈ L} ∃ · C = {∃ · L|L ∈ C}
∀ · L = {x|∀y s.t. (x, y) ∈ L} ∀ · C = {∀ · L|L ∈ C}
⊕ · L = {x|#y s.t. (x, y) ∈ L is even} ⊕ · C = {⊕ · L|L ∈ C}
BP ·L = (ΠY ES , ΠNO) BP ·C = {BP ·L|L ∈ C}

ΠY ES = {x|Pry[(x, y) ∈ L] ≥ 1− 1
2q(n)

}

ΠNO = {x|Pry[(x, y) ∈ L] ≤ 1
2q(n)

}

The classes in PH can be defined using these operators: ΣP
k∃ · ∀ · ∃ · ... · P and ΠP

k = ∀ · ∃ · ∀ · ... · P.

4 Toda’s Theorem 1: PH ⊆ BP · ⊕ ·P
Lemma 1 BP · ⊕ P = BP · ⊕ ·BP · ⊕ ·P

First we note that for a complexity class C closed under complement, BP ·C is closed under complement
since the error bounds for BP are symmetric. ⊕ · C is also closed under complement since by a method
from Lecture 12 we can add exactly one satisfying assignment to a formula, flipping the parity. Therefore
all the classes we’re dealing with are closed under complement. The method from Lecture 12 also allows us
to exchange ‘odd’ for ‘even’ in the definition of ⊕.

We see that BP · ⊕ P ⊆ BP · ⊕ ·BP · ⊕ ·P trivially. The opposite containment can be shown based on
some general properties:

Property 1.1 ⊕ · ⊕ · C = ⊕ · C.

11-1



Proof For L ∈ C, let L′ = ⊕ · L and L′′ = ⊕ · ⊕ · L. Now,

x ∈ L′′ ⇐⇒ #y1 s.t. (x, y1) ∈ L′ is odd

⇐⇒
∑
y1

L′(x, y1) = 1(mod2)

⇐⇒
∑
y1

∑
y2

L(x, y1, y2) = 1(mod2)

⇐⇒
∑

(y1,y2)

L(x, y1, y2) = 1(mod2)

⇐⇒ #(y1, y2) s.t. (x, y1, y2) ∈ L is odd
⇐⇒ x ∈ L′

So, L′′ = L′.

Property 1.2 BP ·BP ·C ⊆ BP ·C

Proof Again, for L ∈ C let L′′ = BP ·BP ·L and L′ = BP ·L. Now,

x ∈ L′′ ⇒ Pry1 [(x, y1) ∈ L′] ≥ 1− 2−q1(n)

⇒ Pry1 [Pry2 [(x, y1, y2) ∈ L] ≥ 1− 2−q2(n)] ≥ 1− 2−q1(n)

⇒ Pry1,y2 [(x, y1, y2) ∈ L] ≥ 1− 2−q1(n) − 2−q2(n)

⇒ x ∈ L′

Since we can similarly show that x 6∈ L′′ ⇒ x 6∈ L′, L′′ = L′.

Property 1.3 ⊕ · BP ·C ⊆ BP⊕ · C

Proof
Fix L ∈ C. We will show that ⊕ · BP · L ⊆ BP · ⊕ ·C.
Now, ⊕ · BP ·L = {x|#y s.t. {Prz[(x, y, z) ∈ L] ≥ 1− 2−q1(n)} is even}.
We define L̃ = {x|Prz[#y s.t. (x, y, z) ∈ L is even] ≥ 1− 2−q2(n)}. L̃ is clearly ∈ BP · ⊕ ·C. We will show
that for proper q1(n) and q2(n), ⊕ · BP ·L = L̃:

Define L′ = BP ·L = {(x, y)|Prz[(x, y, z) ∈ L] ≥ 1− 2−q(n)}.
Fix x. We say that z is bad for y if L(x, y, z) 6= L′(x, y).

When we fix y, we see that:
Prz[z is bad for y] ≤ 2−q(n)

Prz[∃y s.t. z is bad for y] ≤ 2l2−q(n)(where l = |y|)

Prz[z is good for all y] ≥ 1− 2l2−q(n)

Prz[∀yL(x, y, z) = L′(x, y)] ≥ 1− 2l2−q(n)

By choosing q(n) sufficiently large, we can get that for most z’s, ∀yL(x, y, z) = L′(x, y). So, for most z’s,
⊕ · L(x, z) = ⊕ ·  L′(x). Now, this is equivalent to saying that L̃ = ⊕ ·  L′(x) = ⊕ · BP · L(x).

Lemma 2 ∃ · C ⊆ BP · ⊕ · C

11-2



Proof Let’s look at some language L ∈ C. By the same argument given by Valiant-Varizani (an RP
reduction), there is a language L′ ∈ C such that

∃y : (x, y) ∈ L ⇔ Prz[#y : (x, y, z) ∈ L′ is even] ≥ 1/p(n) (1)

and
∀y : (x, y) /∈ L ⇔ Prz[#y : (x, y, z) ∈ L′ is even] = 0 (2)

Now, the only problem is that RP only needs a probability of 1/p(n) when x ∈ L, but strong-BP needs
a probability 1− frac12−q(n). But it is easy to get the stronger probability.

L′k = {(x, y|∀i : (x, yi, zi) ∈ L′} (3)

Clearly, L′k will still be in C. So

∃y : (x, y) ∈ L ⇔ Prz1..zk
[#y1..yk : (x, y, z) ∈ L′ is even] ≥ 1− (1− 1/p(n))k. (4)

Therefore,

∃y : (x, y) ∈ L ⇔ Prz[#y : (x, y, z) ∈ L′ is even] ≥ 1/p(n) (5)

So L ∈ BP · ⊕ · C.
C is closed under complement, so we can easily make the same argument for ∀ · C.

Theorem 3 (Toda’s Theorem 1) ∀k : ΣP
k , ΠP

k ⊆ BP · ⊕ ·P

Proof We will prove by induction on k, where the base case of k = 0 is trivial since ΣP
0 = ΠP

0 = P. We
assume the induction hypothesis that ΣP

k−1, ΠP
k−1 ⊆ BP · ⊕ ·P . We will now show the inductive case using

a series of containments:

ΣP
k = ∃ ·ΠP

k−1 ⊆ ∃ · BP · ⊕ ·P ⊆ BP · ⊕ ·BP · ⊕ ·P ⊆ BP · ⊕ ·P

The first containment, ΣP
k = ∃ ·ΠP

k−1 is true by definition. The second containment is proven in Lemma
2. The last containment is true by the following:

BP · ⊕ ·BP · ⊕ ·P ⊆ ⊕ · ⊕ · BP ·BP ·P (by Property 1.3)
⊆ ⊕ · BP ·BP ·P (by Property 1.1)

⊆ ⊕ · BP ·P (by Property 1.2)

11-3



5 Theorem 2: BP · ⊕ · P ∈ P #P

Toda’s theorem states that we can reduce any language in BP · ⊕ · P to a language of the form

L# = {x | 0 ≤ #y s.t. (x, y) ∈ L ≤ a(mod b)} (6)

for some language L and integers a and b.

L# ∈ P#P , because it’s just counting the satisfying y values modulo some constant. In fact, if we prove
this reduction, we will show that any language in BP · ⊕ · P can be decided with just one query to a #P
oracle.

Let L be some language in P and let L′ ∈ BP · ⊕ · P be defined as:

x ∈ L′ ⇒ Pry[#z{(x, y, z) ∈ L} = 1(mod 2)] ≥ 2
3

(7)

x /∈ L′ ⇒ Pry[#z{(x, y, z) ∈ L} = 0(mod 2)] ≤ 1
3

(8)

We are using a weak version of BP because it is all we’ll need for this proof.

Let’s suppose that the number of y values that we’re enumerating over is ≤ 2k.

Now, what if we were somehow able to “pump up” the modulus to be 2k? In other words, what if we
could convert L′ into a language defined as:

x ∈ L′ ⇒ Pry[#z{(x, y, z) ∈ L} = 1(mod 2k)] ≥ 2
3

(9)

x /∈ L′ ⇒ Pry[#z{(x, y, z) ∈ L} = 0(mod 2k)] ≤ 1
3

(10)

Then, we could remove the probability notation and write the definition as

x ∈ L′ ⇒≤ #(y, z){(x, y, z) ∈ L} ≥ 2
3
· 2k(mod 2k) (11)

x /∈ L′ ⇒ #(y, z){(x, y, z) ∈ L} ≤ 1
3
· 2k(mod 2k) (12)

Now this can be calculated by a language of the form described in ( 6)!

So how are we going to boost this modulus up to 2k?

Given that #y : {(x, y) ∈ L1} = N1 and #y : {(x, y) ∈ L2} = N2 for some x, we can construct languages
L+ and L×:

L+ = {(x, by)|(b = 0 & (x, y) ∈ L1) or (b = 1 & (x, y) ∈ L2)} (13)

#y : {(x, y) ∈ L+} = N1 + N2 (14)

11-4



L× = {(x, (y1, y2))|((x, y1) ∈ L1) and ((x, y2) ∈ L2)} (15)

#y : {(x, y) ∈ L×} = N1 ×N2 (16)

Combining these constructions, it is clear that if N(x) = #y : {(x, y) ∈ L}, then for any f , we can
construct a language Lf such that #y : {(x, y) ∈ Lf} = f(N(x)). So, we just need a function f such that:

x = 0 (mod 2z) ⇒ f(x) = 0(mod 22z) (17)

x = 1 (mod 2z) ⇒ f(x) = 1(mod 22z) (18)

With such an f , we can iteratively apply f to x k times, which will pump (mod2) up to (mod2k). Well,
it turns out there’s no function with these properties. However, if we replace 1 with −1, then there is such
a function, namely f(x) = 4x3 + 3x4.

x = 0 (mod 2z) ⇒ 4x3 + 3x4 = 0 (mod 22z) (19)

x = −1 (mod 2z) ⇒ 4x3 + 3x4 = −1 (mod 22z) (20)

So now we can construct a language from L′ that we can use in ( 6) with a = 2k−1 and b = 2k, thus
solving L′ in P#P .

11-5


