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Lecture 12
Lecturer: Madhu Sudan Scribe:  Suho Oh, Jose Soto

1 Overview

e Randomized Reductions. Valiant-Vazirani: SAT <gp Unique-SAT.

e Toda’s Theorem: PH C P#FP.

2 The Theorem of Valiant-Vazirani.

To state this theorem we will need some definitions first:

Definition 1 (Unique-SAT promise problem) .

Unique-SAT = (Uygs,Uno).

Uygs = {¢|p has I satisfying assignment}.

Uno = {¢]|p has 0 satisfying assignment}.

Definition 2 (Randomized Reductions) Given two promise problems Il = (Ily gs,lIyo) and T =
(Tves,Ino). We say that 1T reduces to T under a BP randomized reduction “Il <gp I'” if there exists a
probabilistic polynomial time algorithm A, a polynomial p(n) and a polynomial time computable function
s(n) such that:

1
z €llygs = A(:C) el'yves w.p. > S(TL) + T

(n)’
rellyo = A(z) € Tno w.p. < s(n).
[ A(z) eTno w.p. >1—s(n)].

When s(n) = 0 we say that it is a RP randomized reduction and we denote it by “Il <gp T'”.

Using the previous definition we can state the theorem as follows:

Theorem 1 (Valiant-Vazirani)
SAT <gpp Unique-SAT.

To find an RP reduction a natural idea is to map an instance ¢(z) of SAT into a new formula
Y(x) = p(x) A f(z), where f(x) is a sufficiently “nice” formula. In that way if p(x) € SATNo then we
would know that ¥ (z) has no satisfying assignment, and so ¥(x) € Uyo. The problem is to determine
a nice f(x) such that if ¢ € SATygg, then ¥ (z) has exactly one satisfying assignment with enough
probability.

How can we find such a formula?

One idea is to pick some m < n, and some h : {0,1}" — {0,1}™ “at random”, and output the
formula ¢ (z) = ¢(z) A [h(x) = 0] so that if p € SATy gs then hopefully ¥ € Uy gs.

Let us formalize the idea a little bit:

Define for a fixed ¢, the set S of satifying assignment of ¢, S = {z|p(z) = 1}. Clearly there
exist an m € {2,...,n + 1} such that 2m=2 < |S| < 2m~L1. Using that m we can pick a function
h:{0,1}™ — {0,1}™ and use it to output ).

How can we find the right m? We just guess it, since we are picking it at random from the set
{2,...,n+ 1}, we are right with probability 1/n.
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How can we pick h? We can not pick it at random since h would not be efficiently computable. What
do we mean/want?
We need a set H C {h:{0,1}"™ — {0,1}™} such that:

1. 'H is not too big. Precisely we need |H| < 2P°'(") 5o that we are able to pick an element from it
using with only poly(n) random bits.

2. Every h € H should be computable in polynomial time (i.e. it should have a small formula)

3. A typical h € H should be sufficiently random. More precisely, for any set S C {0,1}" with
2m72 S |S| S 2m71’
Pr[3lz € S s.t. h(z) =0] > Q(1).

How can we get such family? We can use a “Pairwise Independent hash family”.

Definition 3 (Pairwise independent) H C {h: {0,1}" — {0,1}"} is a pairwise independent family
if Ve #y € {0,1}", Vo, 8 € {0,1}™,
1
Pr [h(x) = a,h(y) =B8] = —.
Lemma 1 There exists a pairwise independent hash family H such that it is easy to sample and Vh € 'H,
formula-size(h) is poly(n).
Proof Define
H={hap(z) = Az +b (mod 2)| A € {0,1}™*", b e {0,1}"}.

It is clear that h4p has small formula size and for any = # y, a,

Eg[Ax—i—b:a,Ay—i—b:ﬁ]:

qm’
|
Lemma 2 VS C {0,1}", 2m~2 < |§| < 2m~ 1
— 1
! =0>-.
hlzg{[El x € S,h(z)=0] > 5
Proof Fix z € S, then:
1
ELHe) = 0= 5.
Fix x #y € S, then:
1
P = = = —.
Pr[h() = 0 A h(y) = 0] =
Then:
JPr[h(@) =0 Yy € S\ {z}, (h(y) #0)] > Prlh(z)=0]— > Pr[h(z)=0=h(y)]
yeS\{=}
1 s, 1
— om qm — 2’m+17
where the last inequality holds since |S| < 2™~
Hence,
Pr Bz € Ss.t. h(z) =0AVy € S\ {z}, (h(y) #0)] = Bt [h(z) = 0AVy € S\ {z}, (h(y) # 0)]
€S
N I
- QTI’L71 - 87
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where the first equality holds by independence of the events inside the probability, and the last equality
holds since |S| > 2m~2. W

Using both lemmas we can prove Valiant-Vazirani’s theorem. Given an instance ¢ for SAT, the
polynomial time algorithm A does the following:

1. It picks at random m € {2,...,n + 1}.
2. It picks at random a hash function from the hash family H given by Lemma 1.
3. It outputs the formula ¢ (z) = ¢(x) A [h(x) = 0].

If p(z) € SATy g, then with probability 1/n, A picks the right m. Using Lemma 2 for S the set of
satisfying assignments of ¢, we know that A picks a hash function from H, such that h(xz) = 0 for an
unique x € S. It follows that with probability 1/(8n) the algorithm outputs a formula with only one
satisfying assignment, i.e. a formula in Uy gg.

On the other hand, if p(z) € SATNo, then A will output ¥ (z) that has no satisfying assignment.
Hence A is an RP reduction from SAT to Unique-SAT.

2.1 Consequences

Corollary 1 SAT <grp P SAT.
Where @ SAT := {¢ | Number of satisfying assignments of ¢ is even }

Proof
We reduce Unique-SAT to @ SAT as following. For given ¢(z) € Unique-SAT,
/ 1, b=0,2=0
Y br):=<¢ 1, b=1¢Yx)=1
0, o.w.

Combining with SAT <gp Unique-SAT, the corollary follows! ll

Now we can use this reduction k times to get,

v — Pi(x1)
—  Pa(z2)

— ¢3($3)

no

—  r(w)

Set 1& as,
k

1/3(5517 cTg) = /\ Yi(z:)

i=1

Then, # of satisfying assignments of 1& = [ (#of satisfying assignments of ;)
So if the # of satisfying assignments for some v; is even, then # of satisfying assignments for 1 is even
too! From this we get :

SAT SS’trongBP @ SAT

3 Toda’s Theorem

Theorem 2 (Toda) PH C P#F
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3.1 Operators

For a complexity class C, define the following operators:

Parity Operator :

e BC—{DLILeC)

o (P L := {x|# of y’s satisfying (x,y) € L is even }
BP Operator :

e BP-C:={BP-L|Le€C}

e BP-L:={z| Pry[(z,y) € L] > 1— 2—(1(71/)}

e ie,ife g BP- L, Pry[(z,y) € L] < 9—q(n)

3 Operator :

e 3C:={3L|L €C}

e 1L := {x|3y such that (z,y) € L}.

3.2 Properties

Proofs will be shown on Wednesday.
1. -P-C<BP-6C.
2. p-p-Cc<PpcC.
3. BP-BP-C<BP-C.

3.3 Main Ideas
SAT <girongp @ SAT implies:
o« NPCBP-@-P.
¢ Co-NP C BP-@ P, because BP - @ P is closed under complement.

BP-PH-BP-PH-P

BP.-BP- @ . @ -P (Using properties above)

BP-@-P.

»Pc3.v.p

N 1N

N

By induction, we can get
5S¢ € BP--P.

which implies PH C BP - -P.

4 To show Next time
e BP-@-P C P#P.
o L:={(M,x,ab)# {y|M(z,y) accepts } < a(mod b) } € P#P.
e« P C3.BP-P-P.
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